JPS61277394A - Speed-controlling method for brushless dc motor - Google Patents

Speed-controlling method for brushless dc motor

Info

Publication number
JPS61277394A
JPS61277394A JP60116451A JP11645185A JPS61277394A JP S61277394 A JPS61277394 A JP S61277394A JP 60116451 A JP60116451 A JP 60116451A JP 11645185 A JP11645185 A JP 11645185A JP S61277394 A JPS61277394 A JP S61277394A
Authority
JP
Japan
Prior art keywords
speed
inverter
motor
detection signal
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60116451A
Other languages
Japanese (ja)
Other versions
JPH0824434B2 (en
Inventor
Tsunehiro Endo
常博 遠藤
Nobuaki Kato
加藤 信明
Fumio Tajima
文男 田島
Kenichi Iizuka
健一 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP60116451A priority Critical patent/JPH0824434B2/en
Publication of JPS61277394A publication Critical patent/JPS61277394A/en
Priority to US07/192,357 priority patent/US4879502A/en
Publication of JPH0824434B2 publication Critical patent/JPH0824434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To enable positional detection signal and speed control treatment to be synchronized, by computing the proportional member, integral member, and differential member of the deviation between command rotational frequency and detected rotational frequency performed arithmetic every specified time, and by determining the output voltage of an inverter according to the computation. CONSTITUTION:The position of the rotor 4 of a synchronous motor 3 is detected by a positional detection circuit 5. By a control circuit 6, a time for a very electrical angle 60n1 (n1 is positive integer) degrees is measured through positional detection signal from the positional detection circuit 5, and through the obtained time, rotational frequency every time on 60n2 (n2 is positive integer) degrees is calculated, and the proportional member, integral member, and differential member of the deviation between the command rotational frequency and the detected rotational frequency as the result of the arithmetic operation are computed, and according to the members, the output voltage of an inverter 2 is determined.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ブラシレス直流モータの速度制御法に係り、
特に、位置検出信号よシ回転周期を計測して回転数を演
算する方式のブラシレス直流モータの速度制御法に関す
るものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a speed control method for a brushless DC motor,
In particular, the present invention relates to a speed control method for a brushless DC motor that calculates the number of rotations by measuring the rotation period based on a position detection signal.

〔発明の背景〕[Background of the invention]

従来のこの種の速度制御法は、%開昭59−44991
号に記載のように、位置検出信号よシミ気角60度毎の
時間の計測、nI を正の督数として電気角60J度の
時間算出、その時間よシ回転数の演算、この演3!′結
果でちる検出回転数と指令回転数との偏差回転数の比例
、積分、微分項の算出、これに基づいてインバータの出
力電圧の決定、という5つの処理過程によって行ってい
た。
The conventional speed control method of this type is
As described in the issue, the position detection signal is used to measure the time for every 60 degrees of air angle, calculate the time for 60 J degrees of electrical angle using nI as a positive remanent, and calculate the number of rotations from that time. 'Difference between the detected rotation speed and the commanded rotation speed determined by the result; calculation of the proportional, integral, and differential terms of the rotation speed; and determination of the output voltage of the inverter based on this.

しかし、第1の処理である電気角60度毎の時間の計測
と、それに続く他の処理とは非同期であった。すなわち
、60度の時間算出後に、その算出結果からインバータ
出力電圧決定までに時間遅れが生じ、このため速度制御
系の応答速度が低下するという問題点があった。
However, the first process, which is the measurement of time for every 60 degrees of electrical angle, and the other processes that follow are asynchronous. That is, after calculating the time for 60 degrees, there is a time delay between the calculation result and the determination of the inverter output voltage, which causes a problem in that the response speed of the speed control system decreases.

特に、圧縮機用モータとして、従来の速度制御法を採用
したブラシレス直流モータを用いる場合には、以下のよ
うな問題が生じた。すなわち、ルームエアコンや冷蔵庫
に用いられている圧縮機は、一般に、駆動用のモータと
共にチャンバ内に密閉される構造であシ、圧縮機のモー
タに加わる負荷トルクは、ロータリ圧縮機、レシプロ圧
縮機のいずれにかかわらず、回転角度に対して大きく脈
動し、その最大負荷トルクは平均負荷トルクのおよそ3
倍にも達する。そして、この脈動負荷は回転角度に対し
て、およそ決まったパターンとなる。
In particular, when a brushless DC motor employing a conventional speed control method is used as a compressor motor, the following problems occur. In other words, the compressors used in room air conditioners and refrigerators are generally sealed in a chamber together with the drive motor, and the load torque applied to the compressor motor is Regardless of the rotation angle, the maximum load torque is approximately 3 times the average load torque.
It reaches twice as much. This pulsating load has a roughly fixed pattern with respect to the rotation angle.

したがって、従来の速度制御のように回転角度に同期し
た位置検出信号とは非同期に速度制御を行う方式では、
回転角0度に応じて変化する負荷に速やかに応じてイン
バータの出力電圧を決定することが困難となる。この結
果、モータ出力トルクと負荷トルクとの差トルクが増し
、回転脈動が発生し、特に低速時において回転脈動の振
幅が増大し、また回転脈動の周波数も低下するためチャ
ンバ全体の振動が激しくなるという問題がめった。
Therefore, in the conventional speed control method that performs speed control asynchronously with the position detection signal synchronized with the rotation angle,
It becomes difficult to quickly determine the output voltage of the inverter in response to the load that changes depending on the rotation angle of 0 degrees. As a result, the differential torque between the motor output torque and the load torque increases, causing rotational pulsation, which increases the amplitude of the rotational pulsation, especially at low speeds, and also reduces the frequency of the rotational pulsation, which intensifies the vibration of the entire chamber. This problem happened very often.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、以上のような従来の速度制御法におけ
る問題点を解決し、回転位置に対して負荷が変化する場
合にも高速に応答して速度制御できるブラシレス直流モ
ータの速度制御法を提供することにある。
The purpose of the present invention is to solve the problems with the conventional speed control methods as described above, and to provide a speed control method for brushless DC motors that can control the speed in a high-speed response even when the load changes with respect to the rotational position. It is about providing.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、直流から三相交流へ電力変換するイン
バータ、このインバータ出力で駆動される永久磁石回転
子形の同期モータ、前記回転子の磁極位置を検出して位
置検出信号を出力する手段を備え、前記位置検出信号か
ら、ntを正の整数として電気角60n1度毎の基本信
号を作りこの信号の周期から回転数を検出しこの検出回
転数と指令回転数とく応じてインバータの出力電圧を決
定して速度制御を行う方式のブラシレス直流モータにお
いて、前記インバータの出力電圧を決定する処理を、前
記位置検出信号に同期し、かつ、n、を正の整数として
電気角6012度の時間毎に実行する速度制御法とする
にある。
The present invention is characterized by an inverter that converts power from DC to three-phase AC, a permanent magnet rotor type synchronous motor driven by the output of the inverter, and means for detecting the magnetic pole position of the rotor and outputting a position detection signal. From the position detection signal, a basic signal is generated every 60n electrical degrees, where nt is a positive integer, the rotation speed is detected from the period of this signal, and the output voltage of the inverter is determined depending on the detected rotation speed and the command rotation speed. In a brushless DC motor that performs speed control by determining the output voltage of the inverter, the process of determining the output voltage of the inverter is performed every 6012 electrical degrees in synchronization with the position detection signal, and where n is a positive integer. There are speed control methods to be implemented.

さらにいい換えれば、本発明の速度制御法は、回転子の
位置検出信号から、ntおよびntを正の整数として、
電気角60n1度毎の時間を計測し、得られた時間から
6on8度の時間毎に回転数の演算、この演算結果であ
る検出回転数と指令回転数との偏差回転数の比例、積分
、微分項の算出、これに基づいてインバータの出力電圧
の決定を行うことで、位置検出信号と速度制御処理との
同期化を可能としたものである。
In other words, in the speed control method of the present invention, from the rotor position detection signal, nt and nt are positive integers,
Measure the time for each electrical angle of 60n1 degree, calculate the rotation speed for each 6on8 degree time from the obtained time, and calculate the proportionality, integration, and differentiation of the deviation rotation speed between the detected rotation speed and the commanded rotation speed, which are the results of this calculation. By calculating the term and determining the output voltage of the inverter based on this, it is possible to synchronize the position detection signal and the speed control process.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図ないし第4図によ、り
説明する。
An embodiment of the present invention will be explained below with reference to FIGS. 1 to 4.

第1図は本発明が適用されるブラシレス直流モータの構
成図であシ、その主回路は、直流電源1よシインバータ
2を介して同期モータ3へ電力を供給する構成である。
FIG. 1 is a block diagram of a brushless DC motor to which the present invention is applied, and its main circuit is configured to supply power to a synchronous motor 3 via a DC power supply 1 and an inverter 2.

ここで、同期モータ3の永久磁石形の回転子4の磁極位
置が、位置検出回路5においてインバータ2の出力゛電
圧を用いて検出され、この位置検出信号よシ、制御回路
6は、回転子40回転位置に対応したインバータ2内の
トランジスタに、ペースドライバ7を介してスイッチン
グ制御信号と供給するものである。
Here, the magnetic pole position of the permanent magnet type rotor 4 of the synchronous motor 3 is detected in the position detection circuit 5 using the output voltage of the inverter 2, and based on this position detection signal, the control circuit 6 detects the rotor A switching control signal is supplied via the pace driver 7 to the transistor in the inverter 2 corresponding to the 40 rotation position.

第2図は、上記ブラシレス直流モータの動作を示す、主
回路の各部信号波形図である。第2図(a)は位置検出
回路5の出力である位置検出信号、(b)は電気角60
度のタイミング信号PS、(C)は三角波搬送波で、一
定の発振周波数をもつ。第2図(Φは前記(C)図中の
スライスレベルDIによって作られる変調信号で、さら
に位Iji検出信号執)との論理処理によって、トラン
ジスタのドライブ信号(e)が作られる。ここで、ブラ
シレス直流モータの回転数は、上記のスライスレベルD
zによってインバータ2の出力′電圧を変えることによ
シ決定されるものである。
FIG. 2 is a signal waveform diagram of each part of the main circuit, showing the operation of the brushless DC motor. FIG. 2(a) shows the position detection signal which is the output of the position detection circuit 5, and FIG. 2(b) shows the electrical angle 60.
The timing signal PS, (C) is a triangular carrier wave and has a constant oscillation frequency. A drive signal (e) for the transistor is created by logic processing with FIG. 2 (Φ is a modulation signal created by the slice level DI in FIG. Here, the rotation speed of the brushless DC motor is the slice level D above.
It is determined by changing the output voltage of the inverter 2 according to z.

第3図は、本実施例速度制御法に係る制御系統図で、こ
れらは、第1図の制御回路6にをける構成によシ実現さ
れるものである。まず、第3図のェ、において、電気角
60度毎のタイミング信号P8C第2図の(b)〕の2
周期分(TI+T+−Ilの時間を3倍して、1fイク
ル相当分の時間Tを算出し、次のItにおいては、回転
数N ’k N =に/T(Kは定数)によシ計算し、
セして工3において、検出回転数Nと指令回転数N翼と
の偏差回転数の比例、積分、微分項のKp 、Kl 、
KDを求め、その和(Kp +KI+Ko )からスラ
イスレベルDIが決定されるものであシ、これらの処理
は、制御回路6におけるマイクロコンビュータナトチ、
電気角60度の時間毎に、PS信号に同期して行われる
FIG. 3 is a control system diagram according to the speed control method of this embodiment, which is realized by the configuration of the control circuit 6 of FIG. 1. First, in Fig. 3C, the timing signal P8C for every 60 electrical degrees is shown in Fig. 2(b)].
Multiply the period (TI+T+-Il time by 3 to calculate the time T equivalent to 1 f cycle. In the next It, calculate the rotation speed N 'k N =/T (K is a constant). death,
In Setup 3, the proportional, integral, and differential terms of the deviation rotation speed between the detected rotation speed N and the commanded rotation speed N blades, Kp, Kl,
KD is determined, and the slice level DI is determined from the sum (Kp + KI + Ko). These processes are performed by the microcomputer in the control circuit 6,
This is performed every 60 electrical degrees in synchronization with the PS signal.

第4図は、PS信号と上記の処理との時間関係を示した
図である。処理” e fz + I3は電気角60度
の時間毎に、連続して一度に行い、一方、回転数算出の
ための情報は、Ifの処理の実行の都度、最新のPS信
号の2周期分に相当する電気角120度の時間を用いる
ものとしている。
FIG. 4 is a diagram showing the time relationship between the PS signal and the above processing. The processing "e fz + I3 is performed continuously at once every 60 degrees of electrical angle, while the information for calculating the rotation speed is obtained from two cycles of the latest PS signal each time processing If is executed. The time period corresponding to 120 electrical degrees is used.

以上の方法によれば、PS信号の2周期分を回転数の情
報としたことによ)、1周期毎に生じる測定値のばらつ
きが平均化されるとともに、2周期分の時間測定結果を
直ちにスライスレベルD1に反映することから、検出回
転数の精度が向上し、かつ、回転数変化に伴なう速度制
御系の応答が速くなる効果がある。
According to the above method, by using two cycles of the PS signal as information on the rotation speed, the variations in measurement values that occur every cycle are averaged out, and the time measurement results for two cycles can be immediately obtained. Since this is reflected in the slice level D1, the accuracy of the detected rotational speed is improved and the response of the speed control system to changes in the rotational speed becomes faster.

本発明の他の実施例を第5図および第6図により説明す
る。第5図は本実施例に係る速度制御法を示す制御系統
図である。第3図に示した制御系統図と異なる点は、L
において、1サイクルの時間Tの計算を高速時と低速時
とで切替えるとともに、III * L t iIsと
続く処理の実行周期も切替えるようにしたものであり、
Ih 、IIsの処理内容については、第3図の場合と
同様である。
Another embodiment of the present invention will be described with reference to FIGS. 5 and 6. FIG. 5 is a control system diagram showing the speed control method according to this embodiment. The difference from the control system diagram shown in Figure 3 is that L
In this method, the calculation of the time T for one cycle is switched between high speed and low speed, and the execution cycle of the process following III * L t iIs is also switched,
The processing contents of Ih and IIs are the same as in the case of FIG.

すなわち、マイクロコンピュータなどで速度制御に係る
処理を実行するには、ある時間を要するため、高速時に
は、PS信号の1周期が短かくなり、この1周期内での
処理が困難となる。これを避けるために、高速回転の領
域においては、第5図、第6図に示す実施例では、PS
信号の3周期毎、すなわち、電気角180度毎に速度制
御に係る各処理を実行するようにしたものである。さら
に、高速回転領域においては、位置検出信号に係る位置
構出回路5の構成部品のばらつきが、PS信号の周期の
ばらつきに与える影響が大きくなることから、回転数算
出の1ft報として、L の処理の実行の都度、最新の
PS信号の6周期分に相当する電気角360度の時間を
用いて、平均化している。
That is, since it takes a certain amount of time for a microcomputer or the like to execute processing related to speed control, at high speeds, one period of the PS signal becomes shorter, making it difficult to process within this one period. In order to avoid this, in the high speed rotation area, in the embodiments shown in FIGS.
Each process related to speed control is executed every three cycles of the signal, that is, every 180 electrical degrees. Furthermore, in the high-speed rotation region, variations in the component parts of the position configuration circuit 5 related to the position detection signal have a greater influence on the variations in the period of the PS signal, so the L Each time the process is executed, it is averaged using a time of 360 electrical degrees, which corresponds to six cycles of the latest PS signal.

第6図は、高速回転領域における上記PS信号と、上記
の処理り、 TJx 、 IIsとの時間関係を示した
図である。各処理は連続して、電気角180度の時間毎
にPS信号に同期して実行し、回転数算出のための情報
は、その都度、最新のPS信号の6周期分の時間を用い
るものとしている。
FIG. 6 is a diagram showing the time relationship between the PS signal and the processing, TJx, and IIs in the high-speed rotation region. Each process is executed continuously in synchronization with the PS signal every 180 degrees of electrical angle, and the information for calculating the rotation speed is assumed to use the time equivalent to 6 cycles of the latest PS signal each time. There is.

ここで、I[t 、 I[z 、 Itsの3つの処理
は、連続して実行しなくとも、各処理を分割して、各処
理をPS信号に同期して実行しても同様の効果が得られ
る。
Here, the three processes I[t, I[z, Its) do not have to be executed consecutively, but the same effect can be obtained by dividing each process and executing each process in synchronization with the PS signal. can get.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、位置検出信号の電気角5ons度の時
間毎に速度制御を実行することから、例えば圧縮機駆動
用のブラシレス直流モータのように、回転位喧に対して
負荷が脈動する菱用例においても、特にその効果が顕著
であり、負荷変化により生じる回転数変化を速やかにイ
ンバータ出力電圧に反映することができ、速度制御系が
高速と々う回転脈動の少ないブラシレス直流モータを実
現できる。更には本発明の実施態様項によれば、負荷変
化によシ生じる回転数変化が負荷およびモータの発生す
る膚性力の増大によシ緩和される高速回転領域では、速
度制御系の処理時間を考慮して、低速時よりもn2を大
きくすることから、実用的効果にすぐれた制御法という
ことができる。
According to the present invention, since speed control is executed every 5 ounces of electrical angle of the position detection signal, for example, in a brushless DC motor for driving a compressor, the load pulsates with respect to the rotational position. The effect is particularly noticeable in practical applications, as changes in rotation speed caused by changes in load can be quickly reflected in the inverter output voltage, allowing the speed control system to achieve high speed rotation and a brushless DC motor with little pulsation. . Furthermore, according to the embodiments of the present invention, in a high-speed rotation region where changes in rotation speed caused by changes in load are alleviated by increases in physical force generated by the load and the motor, the processing time of the speed control system is reduced. Considering this, n2 is made larger than at low speeds, so it can be said that this control method has excellent practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されるブラシレス直流モータの構
成図、第2図は第1図モータの動作を示す各部・信号波
形図、第3図は本発明の一実施例に係る速度制御法を示
す制御系統図、第4図は第3図の速度制御の処理実行タ
イミングを表わす図、第5図は本発明の他の実施例に係
る速度制御法を示す制御系統図、第6図は第5図の速度
制御の処理実行タイミングを表わす図でおる。 1・・・直流11tL  2・・・インバータ、3・・
・同期モータ、4・・・回d云子、5・・・位イ慣出回
路、6・・・制御(ロ)路、7・・・ペースドライバ、
PS・・・タイミング信号、T・・・1サイクルの時間
、T1〜T6・・・タイミング信号PSの60度毎の時
間、N・・・回転数、Nu・・・指第1凹 $2図 第4図 第5図 W。
Fig. 1 is a configuration diagram of a brushless DC motor to which the present invention is applied, Fig. 2 is a diagram of various parts and signal waveforms showing the operation of the motor shown in Fig. 1, and Fig. 3 is a speed control method according to an embodiment of the present invention. FIG. 4 is a diagram showing the processing execution timing of the speed control in FIG. 3, FIG. 5 is a control system diagram showing a speed control method according to another embodiment of the present invention, and FIG. 6 is a diagram showing the processing execution timing of the speed control in FIG. 5. FIG. 1...DC 11tL 2...Inverter, 3...
・Synchronous motor, 4... Rotation motor, 5... Position acclimatization circuit, 6... Control (b) path, 7... Pace driver,
PS...Timing signal, T...1 cycle time, T1-T6...Time for every 60 degrees of timing signal PS, N...Rotation speed, Nu...Finger first concavity $2 figure Figure 4 Figure 5 W.

Claims (1)

【特許請求の範囲】 1、直流から三相交流へ電力変換するインバータ、この
インバータ出力で駆動される永久磁石回転子形の同期モ
ータ、前記回転子の磁極位置を検出して位置検出信号を
出力する手段を備え、前記位置検出信号から、n_tを
正の整数として電気角60n_1度毎の基本信号を作り
この信号の周期から前記回転子の回転数を検出しこの検
出回転数と指令回転数とに応じて前記インバータの出力
電圧を決定して速度制御を行う方式のブラシレス直流モ
ータの制御において、前記インバータの出力電圧を決定
する処理を、前記位置検出信号に同期し、かつ、n_2
を正の整数として電気角60n_2度の時間毎に実行す
ることを特徴とするブラシレス直流モータの速度制御法
。 2、前記正の整数n_2を、低速回転時には高速回転時
よりも小さい数に決めることを特徴とする特許請求の範
囲第1項記載のブラシレス直流モータの速度制御法。
[Claims] 1. An inverter that converts power from direct current to three-phase alternating current, a permanent magnet rotor type synchronous motor driven by the output of this inverter, and detects the magnetic pole position of the rotor and outputs a position detection signal. from the position detection signal, generates a basic signal every 60n_1 electrical angle with n_t as a positive integer, detects the rotation speed of the rotor from the period of this signal, and combines the detected rotation speed and the command rotation speed. In the control of a brushless DC motor that performs speed control by determining the output voltage of the inverter according to the position detection signal, the process of determining the output voltage of the inverter is synchronized with the position detection signal, and
1. A speed control method for a brushless DC motor, characterized in that the speed control method is performed every 60n_2 electrical degrees as a positive integer. 2. The speed control method for a brushless DC motor according to claim 1, wherein the positive integer n_2 is determined to be a smaller number during low speed rotation than during high speed rotation.
JP60116451A 1985-01-28 1985-05-31 Speed control method of brushless DC motor Expired - Lifetime JPH0824434B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60116451A JPH0824434B2 (en) 1985-05-31 1985-05-31 Speed control method of brushless DC motor
US07/192,357 US4879502A (en) 1985-01-28 1988-05-10 Speed control apparatus and method for motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60116451A JPH0824434B2 (en) 1985-05-31 1985-05-31 Speed control method of brushless DC motor

Publications (2)

Publication Number Publication Date
JPS61277394A true JPS61277394A (en) 1986-12-08
JPH0824434B2 JPH0824434B2 (en) 1996-03-06

Family

ID=14687441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60116451A Expired - Lifetime JPH0824434B2 (en) 1985-01-28 1985-05-31 Speed control method of brushless DC motor

Country Status (1)

Country Link
JP (1) JPH0824434B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356089A (en) * 1989-04-05 1991-03-11 Mitsubishi Electric Corp Controller for compressor of enclosed type
JP2017003272A (en) * 2015-06-04 2017-01-05 株式会社日本自動車部品総合研究所 Rotary machine
WO2017018157A1 (en) * 2015-07-27 2017-02-02 株式会社ミツバ Motor control method and motor control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136088A (en) * 1983-01-21 1984-08-04 Hitachi Ltd Speed controller of brushless motor
JPS60167695A (en) * 1984-02-10 1985-08-31 Yaskawa Electric Mfg Co Ltd Speed control system of polyphase dc brushless motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136088A (en) * 1983-01-21 1984-08-04 Hitachi Ltd Speed controller of brushless motor
JPS60167695A (en) * 1984-02-10 1985-08-31 Yaskawa Electric Mfg Co Ltd Speed control system of polyphase dc brushless motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356089A (en) * 1989-04-05 1991-03-11 Mitsubishi Electric Corp Controller for compressor of enclosed type
JP2017003272A (en) * 2015-06-04 2017-01-05 株式会社日本自動車部品総合研究所 Rotary machine
WO2017018157A1 (en) * 2015-07-27 2017-02-02 株式会社ミツバ Motor control method and motor control device
JP2017028935A (en) * 2015-07-27 2017-02-02 株式会社ミツバ Motor control method and motor controller
CN107852114A (en) * 2015-07-27 2018-03-27 株式会社美姿把 Motor control method and controller for motor
CN107852114B (en) * 2015-07-27 2021-02-05 株式会社美姿把 Motor control method and motor control device

Also Published As

Publication number Publication date
JPH0824434B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
US4879502A (en) Speed control apparatus and method for motors
JP3979561B2 (en) AC motor drive system
JPH05176587A (en) Method and system of driving motor
US20080258657A1 (en) Tuning Dc Brushless Motors
JPH0627653B2 (en) Position and speed detection method and device
JPS61277394A (en) Speed-controlling method for brushless dc motor
JP2003199388A (en) Motor driver
US11722087B2 (en) PWM signal measurement device, motor drive control device, PWM signal measurement method, and motor drive control method
KR900002420B1 (en) Speed-controlling method for brushless dc motor
JP4027721B2 (en) Speed control device for brushless motor
TW201640812A (en) System and wary for high precision motor drive
JP2001333591A (en) Motor drive controller
JP7272026B2 (en) Inverter device
JP2003111490A (en) Method and apparatus of controlling inverter
JP3684785B2 (en) Vector control inverter device
JPH05103492A (en) Motor driving method and system
JP2539170B2 (en) Current detection method and device
JP3578096B2 (en) Motor control device
RU221770U1 (en) Device for sensorless determination of the speed of an asynchronous electric motor based on injection of a high-frequency signal
JP2674024B2 (en) Servo controller
JP2783114B2 (en) Servo motor control method
JP3236607B2 (en) Digital servo controller
WO2021256481A1 (en) Flow rate control device and method, and chiller
JPH037084A (en) Controller of ac rotating machine
JPH0412798Y2 (en)