JPS61277208A - Dielectric substrate and its production - Google Patents

Dielectric substrate and its production

Info

Publication number
JPS61277208A
JPS61277208A JP60119253A JP11925385A JPS61277208A JP S61277208 A JPS61277208 A JP S61277208A JP 60119253 A JP60119253 A JP 60119253A JP 11925385 A JP11925385 A JP 11925385A JP S61277208 A JPS61277208 A JP S61277208A
Authority
JP
Japan
Prior art keywords
dielectric
copper foil
base material
crosslinked
glass cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60119253A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shibagaki
柴垣 和芳
Motohiro Akamatsu
赤松 基弘
Mitsuru Motogami
満 本上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP60119253A priority Critical patent/JPS61277208A/en
Publication of JPS61277208A publication Critical patent/JPS61277208A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Abstract

PURPOSE:To reduce the dielectric constant and the dielectric loss tangent by joining electrolytic copper foils to both faces of a dielectric base material through crosslinked super molecular weight polyethylene layers so that surfaces opposite to specular surfaces of copper foils are brought into contact with super molecular weight polyethylene layers. CONSTITUTION:With respect to a dielectric substrate, two dielectric base materials each of which consists of a glass cloth 1 and a crosslinked polyethylene layer which is impregnated in the cloth 1 and covers surfaces of the cloth 1, and crosslinked UHPE layers 3 are arranged on both faces of these laminated base materials, and electrolytic copper foils 4 are arranged on UHPE layers 3 so that rough surfaces 5 of foils 4 face crosslinked UHPE layers 3, and they are joined into one body. A crosslinked polyethylene layer 6 is provided as desired for the purpose of adhering base materials to each other more firmly. UHPE films are crosslinked by irradiation of an electron beam or the like, and it is preferably from the aspect of adhesion that UHPE films are crosslinked in such degree that the gel rate is 30-100%, and it is obtained if the exposure of the electron beam is 0.1-10M rad normally. Thus, the dielectric constant and the dielectric loss tangent are reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はマイクロ波受信平面アンテナの作製に好適な誘
電体基板およびその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a dielectric substrate suitable for manufacturing a microwave receiving planar antenna and a method for manufacturing the same.

(従来の技術) マイクロ波受信平面アンテナとしてはシート状誘電体基
材の片面に電解銅箔から成るパターン状のストリップ導
体が、他面に電解銅箔から成る地導体が各々積層され、
更に所望によシ地導体上に繊維強化プラスチック板或い
はアルミニウム板等から成る補強体を設けた構造を有す
るものが知られている。而して、この平面アンテナにお
いては、電解銅箔における鏡面とは反対の面が誘電体基
材側になるように積層されている。
(Prior Art) As a microwave receiving planar antenna, a patterned strip conductor made of electrolytic copper foil is laminated on one side of a sheet-like dielectric base material, and a ground conductor made of electrolytic copper foil is laminated on the other side.
Further, there are known structures in which a reinforcing body made of a fiber-reinforced plastic plate, an aluminum plate, or the like is provided on the ground conductor, if desired. In this planar antenna, the electrolytic copper foils are stacked so that the surface opposite to the mirror surface faces the dielectric base material.

(発明が解決しようとする問題点) マイクロ波受信平面アンテナに要求される重要な特性と
して誘電率、誘電正接が小さなことが挙げられる。
(Problems to be Solved by the Invention) Important characteristics required of a microwave receiving planar antenna include a small dielectric constant and a small dielectric loss tangent.

そして、との7シテナにおける誘電率、誘電正接はアン
テナを構成する誘電体基材に左右されることが知られて
いる。
It is known that the dielectric constant and dielectric loss tangent of the antenna are influenced by the dielectric base material that constitutes the antenna.

また、このアンテナにおいては誘電体基材と、ストリッ
プ導体および地導体を形成する銅箔との接着強度につい
ても配慮が必要である。
In addition, in this antenna, consideration must be given to the adhesive strength between the dielectric base material and the copper foil forming the strip conductor and the ground conductor.

ところで、従来、このアンテナの作製に用いられる誘電
体基板における基材としてはプラスチック!−内にガラ
スクロスを埋設せしめたものが有シ、これらは(a)ガ
ラスクロスにエポキシ樹脂粉末を散布塗工し、次いでこ
の散布塗工を施したガラスクロス同志を積層する方法、
或いは(b)ガラスクロスにフッ素樹脂ディスバージ冒
ンを浸漬塗工して乾燥し、次いでこの浸漬塗工を施した
ガラスクロス同志を積層する方法により得られている。
By the way, conventionally, the base material for the dielectric substrate used to make this antenna is plastic! - There is a method in which glass cloth is embedded within the interior, and these methods include (a) spraying and coating the glass cloth with epoxy resin powder, and then laminating the glass cloths coated with this spray coating;
Alternatively, (b) it is obtained by dip coating a glass cloth with a fluororesin dispersion spray, drying it, and then laminating the dip coated glass cloths together.

しかしながら、JIS  C6481に基づく試験試料
を作製し、これらの誘電率および誘電正接をl MHz
で測定してみると、前記(a)法によって得られる誘電
体基材は比誘電率が約4〜5、誘電正接が約0.01〜
0.03であL(b)法によって得られる誘電体基材板
は比誘電率が約2.2〜2.8、誘電正接が約0.00
1〜0.003でめシ、これら両特性には未だ改善すべ
き余地がある。
However, test samples based on JIS C6481 were prepared, and their permittivity and dielectric loss tangent were determined to be 1 MHz.
When measured, the dielectric base material obtained by method (a) has a relative permittivity of about 4 to 5 and a dielectric loss tangent of about 0.01 to 5.
0.03, the dielectric base plate obtained by the L(b) method has a relative dielectric constant of about 2.2 to 2.8, and a dielectric loss tangent of about 0.00.
1 to 0.003, and there is still room for improvement in both of these characteristics.

上記(a)法における誘電体基°材では、プラスチック
成分として誘電率、誘電正接の大きなエポキシ樹脂を用
いている為、これら両特性が小さくならない。その反面
、(b)法による誘電体基材ではプラスチック成分とし
ては誘電率、誘電圧接ともに非常に小さなフッ素樹脂を
用いているものの、価格的には高価でアシ、その上、ガ
ラスクロスへのディスページコン浸漬塗工後の乾燥、焼
成温度が350〜400℃と非常に高く、同様に、誘電
体基材のプレス成形にも高温度が必要であシ、設備的に
も非常に高価となるため、使用用途も限られたものとな
っている。
In the dielectric base material in the above method (a), since an epoxy resin having a large dielectric constant and a large dielectric loss tangent is used as a plastic component, both of these characteristics are not reduced. On the other hand, although the dielectric base material produced by method (b) uses a fluororesin as a plastic component, which has a very low dielectric constant and dielectric voltage contact, it is expensive and has a tendency to dissipate into glass cloth. The drying and firing temperature after dip coating of Pagecon is extremely high at 350 to 400°C. Similarly, press molding of the dielectric base material also requires high temperatures and is extremely expensive in terms of equipment. Therefore, its uses are limited.

これら従来法によって得られる誘電体基材の誘電率、誘
電正接が充分でない他の理由としては、誘電体基材にお
いてガラスクロスを構成する繊維束内部への樹脂の浸透
が不充分であり、樹脂の浸透していない部分が不均一に
点在することに帰因していることも考えられる。
Another reason why the dielectric constant and dielectric loss tangent of the dielectric base material obtained by these conventional methods are not sufficient is that the penetration of the resin into the fiber bundles that make up the glass cloth in the dielectric base material is insufficient; This may also be due to the non-penetrated areas being scattered unevenly.

従って、本発明の目的は、誘電率および誘電圧接の小さ
な誘電体基板を提供することにある。
Therefore, an object of the present invention is to provide a dielectric substrate with a small dielectric constant and a small dielectric voltage contact.

(問題点を解決するための手段) 本発明者達は、先ず、誘電体基材の誘電率および誘電圧
接を改良すべく、種々検討の結果、ガラスクロスの内部
にポリエチレン(以下、PEと称す)を含浸せしめると
共にPEによシ該クロス表面を覆わしめ、更にこのPE
を架橋せしめることによシ、その目的が達せられること
を見出した。
(Means for Solving the Problems) First, in order to improve the dielectric constant and dielectric voltage contact of the dielectric base material, the inventors of the present invention found that polyethylene (hereinafter referred to as PE) was added to the inside of the glass cloth as a result of various studies. ), the surface of the cloth is covered with PE, and this PE is further impregnated with PE.
It was discovered that this purpose could be achieved by cross-linking.

ところで、誘電体基板は誘電体基材の両面に銅箔を接合
せしめた構造を有するものであるが、ガラスクロスの内
部にPKを含浸せしめると共にPEによシ該クロス表面
を覆わしめ、更にこのPKを架橋せしめた上記誘電体基
材は、電解銅箔における鏡面の反対面との接着強度が小
さいという新たな問題が生じた。
By the way, a dielectric substrate has a structure in which copper foil is bonded to both sides of a dielectric base material, but the inside of a glass cloth is impregnated with PK, the surface of the cloth is covered with PE, and the surface of the cloth is further coated with PE. A new problem arose in that the dielectric base material cross-linked with PK had low adhesive strength with the surface opposite to the mirror surface of the electrolytic copper foil.

本発明者達はこの問題についても更に検討を重ね、架橋
せしめた超高分子量ポリエチレン(以下、UHPEと称
す)を介して誘電体基材と電解銅箔を接合せしめること
によシ、充分な接着強度が得られることをも見出した。
The inventors of the present invention have further investigated this problem and have found that sufficient adhesion can be achieved by bonding the dielectric base material and electrolytic copper foil via cross-linked ultra-high molecular weight polyethylene (hereinafter referred to as UHPE). It was also found that strength can be obtained.

本発明はこれら知見に基づいて完成されたもので、新規
な構造を有する誘電体基板を提供する。
The present invention was completed based on these findings and provides a dielectric substrate having a novel structure.

即ち、本発明は、ガラスクロスと、このガラスクロスに
含浸され且つ表面を覆う架橋PE層とから成る誘電体基
材の両面に、架橋されたUHPE層を介して電解銅箔が
接合されておシ、該銅箔はその鏡面の反対面が架橋UH
PEHJと接していることを特徴とする誘電体基板であ
る。
That is, the present invention has an electrolytic copper foil bonded to both sides of a dielectric base material consisting of a glass cloth and a crosslinked PE layer impregnated into the glass cloth and covering the surface through a crosslinked UHPE layer. C. The copper foil has a cross-linked UH surface opposite to its mirror surface.
This dielectric substrate is characterized by being in contact with PEHJ.

本発明において用いられる誘電体基材は、ガラスフロス
の内部にPEが含浸されると共に、このクロス表面には
PK薄層が形成され、しかもクロスの内部および表面上
に存在するPEが架橋さ−れているものである。
In the dielectric base material used in the present invention, PE is impregnated inside the glass floss, a PK thin layer is formed on the surface of the cloth, and PE existing inside and on the surface of the cloth is cross-linked. This is what is happening.

とのPEの架橋度は、PEとガラスクロスとの密着力向
上効果、基材と電解銅箔との間に介在せしめられるUH
PE層との接着力、或いは基材を2枚以上重ね合わせ、
これらを接合せしめる場合における基材同志の接着力等
を考慮し、ゲル分率(測定法は後述)を10%以上好ま
しくは20〜90%とする。
The degree of cross-linking of PE with is due to the effect of improving the adhesion between PE and glass cloth, and the effect of UH interposed between the base material and electrolytic copper foil.
Adhesive strength with PE layer or overlapping two or more base materials,
Considering the adhesive force between the base materials when these are bonded together, the gel fraction (the measurement method will be described later) is set to 10% or more, preferably 20 to 90%.

誘電体基材の構成材料としてのPIは、低密度、中密度
或いは高密度PEのいずれも使用できる。
PI as a constituent material of the dielectric base material can be any of low density, medium density, and high density PE.

この誘電体基材はその一枚を用い、その両面に架橋UH
PE層を介して電解銅箔を接合してもよく、或いは該基
材の2枚以上を重ね合わせ、この重ね合わされた基材の
両面に架橋UHPE層を介して銅箔を接合してもよい。
One piece of this dielectric base material is used, and both sides of the dielectric base material are cross-linked with UH.
Electrolytic copper foil may be bonded via a PE layer, or two or more of the base materials may be stacked, and copper foil may be bonded to both sides of the stacked base materials via a crosslinked UHPE layer. .

誘電体基材と電解銅箔を接合させるための架橋UHPE
層は、ハイゼツクスミリオン(三井石油化学社製)、ホ
スタレンGUR(ヘキスト社製)等の商品名で市販され
ているUHPEによル形成できる。
Cross-linked UHPE for bonding dielectric base material and electrolytic copper foil
The layer can be formed using UHPE, which is commercially available under trade names such as Hi-Zex Million (manufactured by Mitsui Petrochemicals) and Hostalen GUR (manufactured by Hoechst).

UHPBHの架橋度は、誘電体基材および電解銅箔との
接着力を大きなものとするため、そのデル分率を30〜
100%とするのが好適である。
The degree of crosslinking of UHPBH is such that its del fraction is 30 to 30 to increase the adhesive strength with the dielectric base material and electrolytic copper foil.
It is preferable to set it to 100%.

UHPEはその分子量が約50万以上(粘度法による測
定値)であシ、一般のポリエチレンのそれが約10万以
下であるのに比べ大きな値を示すものである。
UHPE has a molecular weight of about 500,000 or more (measured by a viscosity method), which is larger than that of general polyethylene, which is about 100,000 or less.

一方、架橋UHPE層を介して誘電体基材と接合せしめ
られる銅箔としては電解銅箔が特に限定されることなく
用いられる。
On the other hand, as the copper foil bonded to the dielectric base material via the crosslinked UHPE layer, electrolytic copper foil can be used without particular limitation.

電解電箔はその製造時にド°ラム(ロール)K接する面
(鏡面)は光沢を有し且つ表面の凹凸度合が小さく、該
鏡面の反対面(以下、粗面と称す)は光沢を有せず且つ
表面の凹凸度が鏡面に比べ大きいものであシ、本発明に
おりては電解銅箔の粗面が架橋UHPE層側になるよう
にして接合する。
When producing the electrolytic foil, the surface (mirror surface) that comes into contact with the drum (roll) K is glossy and has a small degree of surface unevenness, and the surface opposite to the mirror surface (hereinafter referred to as the rough surface) is glossy. Moreover, the surface roughness is larger than that of a mirror surface, and in the present invention, the electrodeposited copper foil is bonded with the rough surface facing the crosslinked UHPE layer.

本発明者達は誘電体基材の両面に銅箔を接合せしめた構
造の誘電体基板から得られるマイクロ波受信平面アンテ
ナの動作利得向上についても探究の結果、誘電体基材に
向き合う銅箔表面の粗さを小さくすることにより、その
目的が達成せられることを見出したばかりでなく、これ
を理論的にも解明したので、以下に説明する。
The present inventors investigated how to improve the operating gain of a microwave receiving planar antenna obtained from a dielectric substrate with a structure in which copper foil is bonded to both sides of the dielectric substrate. Not only did we discover that this objective can be achieved by reducing the roughness of the surface, but we also clarified this theoretically, which will be explained below.

銅箔表面粗さを考慮した場合の鋼損失α′Cは下記(1
)式によって表わされる。
The steel loss α'C when considering the surface roughness of the copper foil is as follows (1
) is expressed by the formula.

α’c = aa (1+” tan−’ (1,4(
−e−)2J ) −−−−=−(1)π ところで、銅箔表面の凹凸を模式的に示すと第2図のと
pりである。第2図に示す銅箔Kにおいては、誘電体層
に対応する表面に微小な凹凸が連続状に存在している。
α'c = aa (1+"tan-' (1,4(
-e-)2J) ----=-(1)π By the way, the unevenness on the surface of the copper foil is schematically shown as shown in FIG. In the copper foil K shown in FIG. 2, minute irregularities exist continuously on the surface corresponding to the dielectric layer.

図中qは銅箔表面における微細な凹凸の山と谷の垂直距
離の平均値を示し、pは同様に隣接する山と山または谷
と谷の水平距離の平均値を示している。
In the figure, q indicates the average value of the vertical distance between the peaks and valleys of fine irregularities on the surface of the copper foil, and p similarly indicates the average value of the horizontal distance between adjacent peaks or valleys.

ここで、σは導電率、Rsは表面抵抗であl)、Rsは
下記(4)式で示される。
Here, σ is electrical conductivity, Rs is surface resistance (1), and Rs is expressed by the following equation (4).

上記(4)式中のμ0は透磁率、fは周波数である。In the above formula (4), μ0 is magnetic permeability and f is frequency.

次に、(4)式を(3)式に代入し、(5)式を得る。Next, equation (4) is substituted into equation (3) to obtain equation (5).

(5)式に銅の物性値σ=5.81X10”(Ω−1・
1−1)を代入し、μを真空透磁率po = 4 w 
X 10−’(Henry/(X)とみなし、更Kfに
は放送衛星に使用される代表値として11.95GHz
を用いると、3 = o、6o5(μm)となる。
The physical property value of copper σ = 5.81X10” (Ω-1・
1-1), and μ is vacuum permeability po = 4 w
X 10-' (Henry/(X), and Kf is 11.95 GHz as a typical value used for broadcast satellite
Using 3 = o, 6o5 (μm).

ところで、電解銅箔における粗面のp、qの値は、表面
粗さ計、電顕等の測定結果からは、qは1〜lOμ−p
は10〜30μ惰程度である。
By the way, the values of p and q of the rough surface of electrolytic copper foil are 1 to 1Oμ-p according to the measurement results of surface roughness meter, electron microscope, etc.
is about 10 to 30μ.

そこで、電解銅箔における一例として、q=sμ偽を用
いると、△=1.443μ惰、従やて、α6=1.92
αc、同様に、(1”3μfi、l、5μmおよび0.
7μ愕を用いると、α′Cは各々1.78αc、1.4
0αCおよび1.10αCとなる。これら結果よシ、明
らかに銅箔表面の凹凸が小さい程、銅損失は小さい事が
理論的にも実証される訳である。
Therefore, as an example for electrolytic copper foil, if q = sμ false, △ = 1.443μ, and therefore α6 = 1.92
αc, similarly (1”3 μfi, l, 5 μm and 0.
Using 7μ shock, α′C is 1.78αc and 1.4, respectively.
0αC and 1.10αC. These results clearly demonstrate theoretically that the smaller the unevenness of the copper foil surface, the smaller the copper loss.

上記の如く、銅箔の表面粗さを小さくすればアンテナの
動作利得が向上するが、表面粗さが小さくなると銅箔と
誘電体基材の接着強度が低下する。
As described above, reducing the surface roughness of the copper foil improves the operational gain of the antenna, but reducing the surface roughness reduces the adhesive strength between the copper foil and the dielectric base material.

本発明者達はこの点についても検討を重ね、電解銅箔の
場合には、粗面の表面粗さを1〜4.5μ惟に設定する
と、誘電率および誘電正接が小さく、アンテナとした際
の動作利得がよく、しかも誘電体基材と銅箔の接着強度
の大きな一11@Ij−11■■1m5s■11■■−
−誘電体基板となシ、最も好結果が得られることを知っ
た。
The inventors of the present invention have repeatedly studied this point, and found that when the surface roughness of the electrolytic copper foil is set to 1 to 4.5μ, the dielectric constant and dielectric loss tangent are small, and when used as an antenna. 11@Ij-11■■1m5s■11■■-
- I learned that the best results can be obtained with a dielectric substrate.

第1図は本発明に係る誘電体基板を示し、厚さ約30〜
200μ溝のガラスクロス1と、該クロス1の内部に含
浸され且つその表面を覆う架橋ポリエチレン層2から成
る誘電体基材が2枚重ね合わされておシ、この重ね合わ
された基板の両面には、厚さ約20〜200μ愼の架橋
UHPE 713が配置され、更に該UHPE層3上層
厚上約10〜100μmの電解銅箔4がその粗面5が架
橋UHPE層3と向き合うよ)に配置され接合一体化さ
れている。6は基材間の接着をよシ強固にするため所望
によシ装置された架橋ポリエチレン層である。
FIG. 1 shows a dielectric substrate according to the present invention, which has a thickness of approximately 30 to 30 mm.
Two dielectric substrates consisting of a glass cloth 1 with a 200μ groove and a cross-linked polyethylene layer 2 impregnated inside the cloth 1 and covering its surface are stacked on top of each other, and on both sides of this stacked substrate, A cross-linked UHPE 713 with a thickness of about 20 to 200 μm is placed, and an electrolytic copper foil 4 with a thickness of about 10 to 100 μm above the UHPE layer 3 is placed and bonded with its rough surface 5 facing the cross-linked UHPE layer 3. It is integrated. Reference numeral 6 denotes a crosslinked polyethylene layer provided as desired to strengthen the adhesion between the base materials.

本発明はこのような誘電体基板の製造に際しては、ガラ
スクロスの両面にPEフィルムを配置して加熱加圧する
ととKよシ、PEをガラスクロスに含浸せしめると共に
PEフィルムとガラスクロスを熱圧着せしめて誘電体基
材を得、次いで該基材におけるPEを架橋し、その後該
基材の両面に架橋せしめたUHPEフィルムおよび電解
銅箔を、該銅箔粗面が該UHPEフィルムと接するよう
に順次重ね合わせ、次いで加熱加圧することにより、基
材と電解銅箔を接合せしめることを特徴とするものであ
る。
In the present invention, when manufacturing such a dielectric substrate, PE films are placed on both sides of a glass cloth and heated and pressed. At least obtain a dielectric base material, then crosslink the PE in the base material, and then apply the crosslinked UHPE film and electrolytic copper foil to both sides of the base material so that the rough surface of the copper foil is in contact with the UHPE film. The feature is that the base material and the electrolytic copper foil are bonded by sequentially stacking them on top of each other and then applying heat and pressure.

本発明の製造法においては、先ずガラスクロスの両面に
PEフィルムが配置され、これらが加熱加圧される。こ
の加熱加圧はガラスクロスの両面にPEフィルムを重ね
合わせ、これらをラミネーションプレス機によシ加熱加
圧する方法或いはガラスクロスの両面にPEをフィルム
状に溶融押出しし、次いでこれを圧延ロール間に通して
加熱加圧する方法等によシ行なうことができる。
In the manufacturing method of the present invention, PE films are first placed on both sides of a glass cloth and then heated and pressed. This heating and pressing can be done by overlapping PE films on both sides of the glass cloth and heating and pressing them using a lamination press machine, or by melting and extruding PE into a film on both sides of the glass cloth and then rolling it between rolling rolls. This can be done by a method of heating and pressurizing the mixture through the process.

ここに用いられるPEフィルムは低密度、中密度或いは
高密度PEから形成されるフィルムのいずれも使用でき
る。これらPEフィルムの厚さは約20〜250μ鵠が
実用的である。
The PE film used here can be any film formed from low density, medium density, or high density PE. The practical thickness of these PE films is about 20 to 250 μm.

PEフィルムとガラスクロスを加熱加圧する際の作業条
件は、温度がPEの溶融温度以上であシ、圧力は約3〜
50 kg/J程度、加熱加圧時間は約5〜60分程度
に設定される。
The working conditions for heating and pressurizing PE film and glass cloth are that the temperature must be above the melting temperature of PE, and the pressure must be approximately 3~
The heating and pressurizing time is set to about 50 kg/J and about 5 to 60 minutes.

このようにガラスクロスの両面にPEフィルムを配置し
て加熱加圧することにより、PEはガラスクロスに含浸
せしめられると共にPEフィルムとガラスクロスが熱圧
着せしめられ誘電体基材が得られる。
By placing the PE film on both sides of the glass cloth and applying heat and pressure in this way, the glass cloth is impregnated with PE, and the PE film and the glass cloth are bonded under heat and pressure to obtain a dielectric base material.

この誘電体基材は次にその構成成分であるPEが架橋さ
れる。PEの架橋は電子線のような放射線を約0.5〜
20Mrad照射したシ、予じめPEフィルム中に配合
せしめられたシラン化合物、ラジカル発生剤、シロキサ
ン縮合触媒の加熱加圧反応によシ行なうことができる。
This dielectric substrate is then crosslinked with its constituent PE. Cross-linking of PE is about 0.5~
This can be carried out by heating and pressurizing a film irradiated with 20 Mrad, a silane compound mixed in advance into a PE film, a radical generator, and a siloxane condensation catalyst.

この架橋は主としてPEとガラスクロスとのf!着力を
向上させるために行なわれるもので、このようにPKの
架橋せしめられた誘電体基板は、これに応力が作用して
変形したような場合でも、PKとガラスクロスとの界面
剥離を生じ難い特徴を有する。PEの架橋は前記した如
く、デル分率が通常10%以上になるように行なうが、
好ましくは20〜90%である。
This crosslinking is mainly caused by f! between PE and glass cloth. This is done to improve the adhesion strength, and even if the dielectric substrate cross-linked with PK is deformed due to stress, it is difficult for the interface between the PK and the glass cloth to peel off. Has characteristics. As mentioned above, crosslinking of PE is carried out so that the del fraction is usually 10% or more,
Preferably it is 20-90%.

このゲル分率の測定は例えば次の方法による。The gel fraction can be measured, for example, by the following method.

誘電体基板の銅箔をエツチング等で全面除去した後、充
分に水洗し、乾燥させる。これよシ一定量の小片(X、
!iりを切り取り、この試料を105℃キシシン中(試
料に対して200〜500倍量程度の量とする)で、2
4時間還流後、r別し、充分に乾燥させて不溶のゲル分
量(Y、!iF)を求める。グいで、これをルツボ中で
灰化させガラスクロスのみの重量CZJ)を求め、下記
式によシ算出する。
After the copper foil on the dielectric substrate is completely removed by etching or the like, it is thoroughly washed with water and dried. This is a certain amount of small pieces (X,
! Cut out the sample and incubate the sample in xycin at 105°C (approximately 200 to 500 times the volume of the sample) for 2 hours.
After refluxing for 4 hours, the mixture was separated and thoroughly dried to determine the amount of insoluble gel (Y, !iF). This is then incinerated in a crucible to determine the weight of only the glass cloth (CZJ), which is calculated according to the following formula.

また、架橋PEフィルムまたは架橋UI(PEフィルム
の場合は上述の灰化処理は必要なく、z=0に相当する
Further, in the case of a crosslinked PE film or crosslinked UI (PE film, the above-mentioned ashing treatment is not necessary and corresponds to z=0.

このように本発明においては誘電体基材におけるPEが
架橋されるのであるが、かような積層前の該基材の架橋
は基材の厚さ方向における架橋度を均一にできる利点が
ある。
In this way, in the present invention, PE in the dielectric base material is crosslinked, and such crosslinking of the base material before lamination has the advantage of making the degree of crosslinking uniform in the thickness direction of the base material.

本発明においては、上記のようにしてPKが架橋せしめ
られた誘電体基材の両面に、予じめ架橋せしめられたU
HPEフィルムおよび電解銅箔が、該銅箔の粗面をUH
PEフィルムと接するように重ね合わされ、加熱加圧す
ることにより、UHPEフィルムを接着層として誘電体
基材と電解銅箔が接合される。
In the present invention, U crosslinked in advance is applied to both sides of the dielectric base material crosslinked with PK as described above.
HPE film and electrolytic copper foil coat the rough surface of the copper foil with UH
The dielectric base material and the electrolytic copper foil are bonded together using the UHPE film as an adhesive layer by superimposing them so as to be in contact with the PE film and applying heat and pressure.

この際、誘電体基材は1枚で用いてもよいが、所定厚み
になるように2枚以上を重ね合わせて用いることができ
る。また、誘電体基材を2枚以上重ね合わせて用いると
きは、基材間に接着性材料、例えば架橋PEフィルム(
ゲル分率20〜100゛%)を介在させることができる
At this time, a single dielectric base material may be used, but two or more dielectric base materials may be used in a stacked manner so as to have a predetermined thickness. In addition, when using two or more dielectric substrates stacked together, an adhesive material, such as a crosslinked PE film (
A gel fraction of 20 to 100%) may be present.

誘電体基材と電解銅箔とを接合させるためのUHPEフ
ィルムは、厚さが通常20〜200μ惰であシ、電子線
の照射等によシ架橋されている。このUHPIフィルム
の架橋度は接着性の観点から、デル分率が約30〜10
0%−になるように行なうのが好ましいものである。而
して、上記デル分率を有する架橋UHPEフィルムは、
他の条件にもよるが、電子線の照射量を通常0.1〜1
0 Mradとすることによシ得られる。
The UHPE film for joining the dielectric base material and the electrolytic copper foil usually has a thickness of 20 to 200 μm and is crosslinked by electron beam irradiation or the like. From the viewpoint of adhesion, the degree of crosslinking of this UHPI film is approximately 30 to 10.
It is preferable to perform this so that it becomes 0%-. Therefore, the crosslinked UHPE film having the above del fraction is
Although it depends on other conditions, the amount of electron beam irradiation is usually 0.1 to 1.
This can be obtained by setting it to 0 Mrad.

誘電体基材と電解銅箔を架橋UHPEフィルムを介して
接合する際の作業条件は、誘電体基材を構成するPEの
架橋度、UHP Eフィルムの架橋度等に応じて適宜設
定できるが、通常は温度145〜200℃、圧力5〜3
0に9/e4、加熱加圧時間5〜60分である。
The working conditions when joining the dielectric base material and the electrolytic copper foil via the crosslinked UHPE film can be set as appropriate depending on the degree of crosslinking of the PE constituting the dielectric base material, the degree of crosslinking of the UHPE film, etc. Usually temperature 145-200℃, pressure 5-3
The temperature was 0 to 9/e4, and the heating and pressurizing time was 5 to 60 minutes.

このようにして得られる誘電体基板は、ガラスクロスを
構成する繊維束内にPEが充分に浸透しており、この誘
電体基板は、後述の実施例からも明らかであるが、誘電
率と誘電正接が共に小さく、絶縁材料として有用である
。この理由は必らずしも明らかではないが、ガラスクロ
スの両面にPEフィルムを配置して加熱加圧した際、P
Kが溶融し、この溶融PEに圧力が作用することにより
、PEのガラスクロスの繊維束内への含浸が促進される
ためと推論される。
In the dielectric substrate obtained in this way, PE has sufficiently penetrated into the fiber bundles constituting the glass cloth, and as is clear from the examples described later, this dielectric substrate has a dielectric constant and Both have small tangents, making them useful as insulating materials. The reason for this is not necessarily clear, but when PE films are placed on both sides of glass cloth and heated and pressurized, the
It is inferred that this is because K is melted and pressure is applied to the molten PE, thereby promoting the impregnation of PE into the fiber bundle of the glass cloth.

(実施例) 以下、実施例によシ本発明を更に詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 厚さ100μ鴨のガラスクロスの両面に、密度0.92
のPEから成る50μ儒のPEフィルムを配置し、ラミ
ネーションプレス機により、 温度165℃、圧力10
kg/−jの条件で10分間加熱加圧し、PEをガラス
クロスの内部に含浸せしめると共にPEフィルムとガラ
スクロスを熱圧着せしめて、厚さ145μ惟の誘電体基
材を得る。
Example 1 Density 0.92 on both sides of 100μ thick duck glass cloth
A 50 μm PE film made of
The glass cloth was heated and pressurized for 10 minutes under the conditions of kg/-j to impregnate the inside of the glass cloth with PE, and the PE film and the glass cloth were bonded under heat and pressure to obtain a dielectric base material having a thickness of 145 μm.

次に、この誘電体基材に6.5 M radの電子線を
照射してPEを架橋せしめる(ゲル分率55%)。
Next, this dielectric base material is irradiated with an electron beam of 6.5 M rad to crosslink PE (gel fraction 55%).

一方、これとは別に分子4773100万のUHPEか
ら成形された厚さ130μ惟のUHP Eシートに、3
Mradの電子線を照射して架橋する(ゲル分率98%
)。
On the other hand, in addition to this, a UHP E sheet with a thickness of 130μ made from UHPE with 477.31 million molecules was
Crosslink by irradiating with Mrad electron beam (gel fraction 98%)
).

その後、PEを架橋せしめた誘電体基材2枚を重ね合わ
せ、この重ね合わされた基材の両面に前記の架橋UHP
Eフィルムおよび厚さ35μ惰の電解銅箔(粗面の表面
粗さ3μ惰)を、該銅箔の粗面がUHPEフィルム側に
なるように順次配置せしめる。
Thereafter, two dielectric base materials cross-linked with PE are superimposed, and the cross-linked UHP is applied to both sides of the superimposed base materials.
An E film and an electrolytic copper foil having a thickness of 35 μm (surface roughness of the rough surface is 3 μm) are sequentially arranged so that the rough surface of the copper foil faces the UHPE film.

なお、前記誘電体基材間には、密度0.92の前記PK
から成形し、5Mrad O電子線照射により架橋せし
めた厚さ200μ惟、ゲル分率48%のフイIレムを介
在せしめた。
Note that the PK having a density of 0.92 is provided between the dielectric base materials.
A film having a thickness of 200 .mu.m and a gel fraction of 48% was interposed therebetween, and was cross-linked by 5 Mrad O electron beam irradiation.

次いで、これらをラミネーションプレス機によシ、温度
170℃、圧力15kl?/I4の条件で30分間加熱
加圧し、基材同志および基材と銅箔を接合せしめて誘電
体基板(試料番号l)を得た。
Next, these were put into a lamination press machine at a temperature of 170°C and a pressure of 15 kl. The substrates were heated and pressurized for 30 minutes under the conditions of /I4 to bond the substrates together and the substrate and the copper foil to obtain a dielectric substrate (sample number 1).

なお、電解銅箔の表面粗さは、株式会社三豊製作所製の
超1ラサ検査機、AB−2形にて測定した。
Note that the surface roughness of the electrolytic copper foil was measured using a Super 1 Rasa inspection machine, model AB-2, manufactured by Mitoyo Seisakusho Co., Ltd.

この誘電体基板の比誘電率、誘電正接、該基板における
銅箔と架橋UHP E層との間の接着力および動作利得
を測定して得た結果を、下記第1表に示す。
The results obtained by measuring the dielectric constant, dielectric loss tangent, adhesive force between the copper foil and crosslinked UHP E layer of the dielectric substrate, and the operational gain of this dielectric substrate are shown in Table 1 below.

比誘電率および誘電正接の測定周波数はIMHzである
The measurement frequency of the dielectric constant and dielectric loss tangent is IMHz.

また、接着力は温度25℃、剥離速度50H/minの
条件で、180ピーリング法によシ測定した。
Further, the adhesive strength was measured by the 180 peeling method under the conditions of a temperature of 25° C. and a peeling rate of 50 H/min.

動作利得の測定に際しては、誘電体基板における一方の
銅箔をエツチングしてパターン形成してマイクロ波受信
平面アンテナを得、このアンテナの動作利得(G)を測
定した。このアンテナは446×436−1素子数=1
6素子X32列とした。
To measure the operating gain, one copper foil of the dielectric substrate was etched to form a pattern to obtain a microwave receiving planar antenna, and the operating gain (G) of this antenna was measured. This antenna is 446×436-1 number of elements = 1
There were 6 elements x 32 rows.

この測定には標準アンテナと比較する方法を用いた。For this measurement, a method of comparison with a standard antenna was used.

第3図に示す如く、発信機(CW発振)に送信アンテナ
6を接続し、一方受信機に利得Ga(dBi)の標準ア
ンテナ7を接続し、送信波は1KHzのAM変調をかけ
、送信アンテナを適当に回転させることによシ、垂直・
水平偏波を送信して、標準アンテナの振幅比を測定する
。次に、標準アンテナに代え、平面アンテナを受信機に
接続し、同様の操作によシ、平面アンテナの振幅比を測
定する。
As shown in Fig. 3, a transmitting antenna 6 is connected to the transmitter (CW oscillation), and a standard antenna 7 with a gain of Ga (dBi) is connected to the receiver. By appropriately rotating the
Transmit horizontally polarized waves and measure the amplitude ratio of a standard antenna. Next, a planar antenna is connected to the receiver instead of the standard antenna, and the amplitude ratio of the planar antenna is measured in the same manner.

平面アンテナの動作利得G(dBl)は次式で求められ
る。
The operating gain G (dBl) of the planar antenna is determined by the following equation.

G = Gs + (平面アンテナの振幅比(dB))
−〔標準アンテナの振幅比(dB))+C円偏波に対す
る補正(dB)) 上記式中の円偏波に対する補正値は3dBである。
G = Gs + (amplitude ratio of planar antenna (dB))
- [Amplitude ratio of standard antenna (dB)) + Correction for C circular polarization (dB)) The correction value for circular polarization in the above formula is 3 dB.

粗面の表面粗さが1.5μ漢4.5μ愼および10μ鵠
の電解銅箔を用いる以外は全て実施例1と同様に作業し
て、試料番号2.3および4の誘電体基板を得た。これ
ら基板の特性を第1表に示す。
Dielectric substrates of sample numbers 2.3 and 4 were obtained in the same manner as in Example 1 except that electrolytic copper foils with rough surfaces of 1.5 μm, 4.5 μm, and 10 μm were used. Ta. The characteristics of these substrates are shown in Table 1.

実施例3 誘電体基材に対する電子線照射量を2.5 Mradお
よび12Mradとし、PEのゲル分率を20%および
70%とする以外は全て実施例1と同様に作業して、試
料番号5および6の誘電体基板を得た。
Example 3 Sample No. 5 was prepared in the same manner as in Example 1 except that the electron beam irradiation amount to the dielectric base material was 2.5 Mrad and 12 Mrad, and the gel fraction of PE was 20% and 70%. and 6 dielectric substrates were obtained.

(発明の効果) 本発明は上記のように構成され、実施例からも判るよう
に、ガラスクロスにPEを含浸せしめると共に該クロス
の表面を薄層状に覆って、誘電体基材としているので、
誘電率、誘電正接が小さ諭という特徴がある。
(Effects of the Invention) The present invention is constructed as described above, and as can be seen from the examples, a glass cloth is impregnated with PE and the surface of the cloth is covered in a thin layer to serve as a dielectric base material.
It is characterized by low dielectric constant and dielectric loss tangent.

また、本発明の製造法においては、ガラスクロスの両面
にPEフィルムを配置し、これを加熱加圧して誘電体基
材を得るようにしたので、ガラスクロス内へのPEの浸
透が確実且つ充分にでき、また誘電体基材の構成成分で
あるポリエチレンを架橋し、その後基材同志を接合せし
めるようにしたので、ポリエチレンフィルムとガラスク
ロスとの密着力が向とするという特徴を有する。
In addition, in the manufacturing method of the present invention, PE films are placed on both sides of the glass cloth, and the dielectric base material is obtained by heating and pressing the films, so that the penetration of PE into the glass cloth is ensured and sufficient. Moreover, since the polyethylene, which is a component of the dielectric base material, is cross-linked and then the base materials are bonded together, the adhesive strength between the polyethylene film and the glass cloth is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る誘電体基板の実例を示す正面図、
。第2図は銅箔の表面粗さを示す模式図、第3図は動作
利得測定のための回路図である。
FIG. 1 is a front view showing an example of a dielectric substrate according to the present invention;
. FIG. 2 is a schematic diagram showing the surface roughness of copper foil, and FIG. 3 is a circuit diagram for measuring the operating gain.

Claims (5)

【特許請求の範囲】[Claims] (1)ガラスクロスと、このガラスクロスに含浸され且
つ表面を覆う架橋ポリエチレン層とから成る誘電体基材
の両面に、架橋された超高分子量ポリエチレン層を介し
て電解銅箔が接合されており、該銅箔はその鏡面の反対
面が超高分子量ポリエチレン層と接していることを特徴
とする誘電体基材。
(1) Electrolytic copper foil is bonded to both sides of a dielectric base material consisting of a glass cloth and a crosslinked polyethylene layer impregnated into the glass cloth and covering the surface through a crosslinked ultra-high molecular weight polyethylene layer. , a dielectric substrate characterized in that the opposite surface of the copper foil is in contact with an ultra-high molecular weight polyethylene layer.
(2)誘電体基材が2枚以上重ね合わされている特許請
求の範囲第1項記載の誘電体基板。
(2) The dielectric substrate according to claim 1, wherein two or more dielectric substrates are stacked on top of each other.
(3)超高分子量ポリエチレン層と接している電解銅箔
面の表面粗さが1〜4.5μmである特許請求の範囲第
1項または第2項記載の誘電体基板。
(3) The dielectric substrate according to claim 1 or 2, wherein the surface of the electrolytic copper foil in contact with the ultra-high molecular weight polyethylene layer has a surface roughness of 1 to 4.5 μm.
(4)ガラスクロスの両面にポリエチレンフィルムを配
置して加熱加圧することにより、ポリエチレンをガラス
クロスに含浸せしめると共にポリエチレンフィルムとガ
ラスクロスを熱圧着せしめて誘電体基材を得、次いで該
基材におけるポリエチレンを架橋し、その後該基材の画
面に架橋せしめた超高分子量ポリエチレンフィルムおよ
び電解銅箔を、該銅箔の鏡面の反対面が該超高分子量ポ
リエチレンフィルムと接するように順次重ね合わせ、次
いで加熱加圧することにより、基材と電解銅箔を接合す
ることを特徴とする誘電体基板の製造法。
(4) By placing polyethylene films on both sides of the glass cloth and applying heat and pressure, the glass cloth is impregnated with polyethylene, and the polyethylene film and the glass cloth are bonded under heat and pressure to obtain a dielectric base material. Cross-linked polyethylene and then cross-linked ultra-high molecular weight polyethylene film and electrolytic copper foil on the screen of the base material are sequentially stacked so that the opposite mirror surface of the copper foil is in contact with the ultra-high molecular weight polyethylene film, and then A method for manufacturing a dielectric substrate, characterized by joining a base material and electrolytic copper foil by applying heat and pressure.
(5)誘電体基材に放射線を照射してポリエチレンを架
橋し、次にかようにしてポリエチレンを架橋せしめた誘
電体基材の2枚以上を重ね合わせて用いる特許請求の範
囲第4項記載の誘電体基板の製造法。
(5) A dielectric base material is irradiated with radiation to cross-link polyethylene, and then two or more dielectric base materials cross-linked with polyethylene in this manner are stacked together as described in claim 4. A method for manufacturing a dielectric substrate.
JP60119253A 1985-05-31 1985-05-31 Dielectric substrate and its production Pending JPS61277208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60119253A JPS61277208A (en) 1985-05-31 1985-05-31 Dielectric substrate and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60119253A JPS61277208A (en) 1985-05-31 1985-05-31 Dielectric substrate and its production

Publications (1)

Publication Number Publication Date
JPS61277208A true JPS61277208A (en) 1986-12-08

Family

ID=14756748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60119253A Pending JPS61277208A (en) 1985-05-31 1985-05-31 Dielectric substrate and its production

Country Status (1)

Country Link
JP (1) JPS61277208A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119404A (en) * 1988-10-28 1990-05-07 Dx Antenna Co Ltd Planer antenna
JPH04192701A (en) * 1990-11-27 1992-07-10 Hitachi Ltd Electronic circuit board, manufacture and use of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119404A (en) * 1988-10-28 1990-05-07 Dx Antenna Co Ltd Planer antenna
JPH04192701A (en) * 1990-11-27 1992-07-10 Hitachi Ltd Electronic circuit board, manufacture and use of the same

Similar Documents

Publication Publication Date Title
US4824511A (en) Multilayer circuit board with fluoropolymer interlayers
FI83712B (en) KOMPOSITIONER, VILKA AER OMFORMADE TILL FOERSTAERKTA, LEDANDE KOMPONENTER OCH FOEREMAOL FOERENADE MED DESSA.
KR101165935B1 (en) Method for manufacturing laminated board, and laminated board
US20040166297A1 (en) Porous insulating film and its laminates
US5541366A (en) Foam printed circuit substrates
US4751136A (en) Substrate for high-frequency circuit and process for making the same
KR102410233B1 (en) Strong adhesive and high porous separator for secondary batteries and method of manufacturing the same
KR20000047687A (en) Method of vacuum-laminating adhesive film
JPS63119285A (en) Manufacture of metallized substrate for printed circuit
JPS61277208A (en) Dielectric substrate and its production
JPS61277207A (en) Dielectric substrate and its production
EP0642412B1 (en) Printed circuit substrates
JPS61108202A (en) Dielectric base and its production
JPS60253528A (en) Manufacture of dielectric base board
JPS6189032A (en) Manufacture of laminate
JPS6021220A (en) Manufacture of chemical plating laminated sheet
JP2003033997A (en) Method for manufacturing laminated sheet
KR102034135B1 (en) Composite material, Manufacturing method thereof and electromagnetic wave shielding material
JPH06232517A (en) Manufacture of dielectric sheet for electric circuit board and manufacture of electric circuit board using thereof
JPH06344501A (en) Production of laminated sheet
JP4238492B2 (en) Laminate production method
JPH05212824A (en) Laminated board with metal clad surfaces and its manufacture
KR20220154253A (en) Separator member for fuel cell and manufacturing method thereof
JP3145915B2 (en) Prepreg for manufacturing metal foil-clad laminates
JPS61102243A (en) Dielectric substrate