JPS61277030A - Apparatus for calibrating vacuum gauge - Google Patents

Apparatus for calibrating vacuum gauge

Info

Publication number
JPS61277030A
JPS61277030A JP11883085A JP11883085A JPS61277030A JP S61277030 A JPS61277030 A JP S61277030A JP 11883085 A JP11883085 A JP 11883085A JP 11883085 A JP11883085 A JP 11883085A JP S61277030 A JPS61277030 A JP S61277030A
Authority
JP
Japan
Prior art keywords
vacuum
pressure
calibration
thin film
vacuum gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11883085A
Other languages
Japanese (ja)
Inventor
Nobuyuki Isogai
磯貝 暢之
Yoshinori Mae
前 良典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP11883085A priority Critical patent/JPS61277030A/en
Publication of JPS61277030A publication Critical patent/JPS61277030A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform the calibration and capacity measurement of a vacuum gauge in a pressure region lower than 10<-4>Torr with good accuracy, by correlating the hydrogen transmissivity of a nickel membrane with the temp. dependency of hydrogen transmissivity. CONSTITUTION:A current is supplied to a heater 16 to adjust the temp. T of a nickel membrane to predetermined one and, after said temp. T reached the predetermined one, the opening degree of a flow control valve 17 is regulated to allow the pressure of the calibration gas in a heating chamber to reach predetermined one on the basis of the indication of a pressure gauge 38 and, thereafter, a flow control valve 17 is closed and the flow control valve 18 and check valve 19 in the side of a vacuum chamber 17 are perfectly closed. Next, the hydrogen partial pressure P1 of the calibration gas in the heating chamber is calculated by a static equilibrium method and the calibration of a high pressure gauge to be calibrated is subsequently performed. After preparation has been finished, the calibration of the high vacuum gauge 1 to be calibrated is performed. An ion pump 26 is started and the flow control valve 18 is opened to set the vacuum chamber 7 to a dynamic equilibrium state, that is, a state having the flow of gas. Next, when the temp. T of the nickel membrane is changed while the vacuum chamber is held to a dynamic state, calibration is enabled by the pressure P3 of the vacuum gauge part to be calibrated and the output of the high vacuum gauge 1 to be calibrated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、10″3Torrよりもよい高真空を測定で
きる真空測定計器に係り、特に高真空測定用真空測定計
器の自動校正、性能測定に好適な真空計自動校正装置に
関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a vacuum measurement instrument that can measure high vacuums better than 10"3 Torr, and is particularly suitable for automatic calibration and performance measurement of vacuum measurement instruments for high vacuum measurements. This article relates to an automatic vacuum gauge calibration device.

〔発明の背景〕[Background of the invention]

従来の方法は、JISZ−8750,28752km記
載のように、測定部に流入する校正用ガス流量を流調弁
で調節して所定圧力を得ていた。しかし上記方法では、
流調弁の開度変化に比べて流量の変化量が大きく、測定
部が所定の圧力となるよう流調弁を調節するのが困難で
あった。
In the conventional method, as described in JISZ-8750, 28752km, a predetermined pressure was obtained by adjusting the flow rate of the calibration gas flowing into the measuring section using a flow control valve. However, in the above method,
The amount of change in the flow rate is larger than the change in the opening degree of the flow control valve, and it is difficult to adjust the flow control valve so that the measuring section has a predetermined pressure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来精度より校正が困難であったl 
0−4Torrより小さい圧力領域での真空計もしくは
圧力計の校正及び性能測定を、精度よく自動的に行える
装置を提供することにある。
The purpose of the present invention is to improve the accuracy of l
It is an object of the present invention to provide a device that can automatically and accurately calibrate and measure the performance of a vacuum gauge or a pressure gauge in a pressure region smaller than 0-4 Torr.

〔発明の概要〕[Summary of the invention]

10−’Torrより小さい領域の圧力を測定する真空
計の校正における問題点は、校正に必要な一所定圧力を
任意に作れないことが問題であった。
A problem in calibrating a vacuum gauge that measures pressure in a region smaller than 10-' Torr is that a predetermined pressure required for calibration cannot be created arbitrarily.

ところで、ニッケル薄膜の水素透過性を用いである流体
中の水素分圧を測定する方法があるが、これはニッケル
薄膜の片側に水素を含む流体を導きもう片側を真空とし
ニッケル薄膜を透過してくる水素による真空側圧力を真
空計にて測定することにより水素分圧を求める方法であ
る。ここでニッケル薄膜の水素透過率には温度依存性が
あるため、その温度を変えることにより水素の透過膜を
変え真空側の圧力を制御することが可能である。
By the way, there is a method to measure the hydrogen partial pressure in a fluid using the hydrogen permeability of a nickel thin film, but this involves introducing a fluid containing hydrogen onto one side of the nickel thin film, leaving the other side in a vacuum, and then passing through the nickel thin film. This method determines the hydrogen partial pressure by measuring the pressure on the vacuum side due to the hydrogen coming in with a vacuum gauge. Here, since the hydrogen permeability of the nickel thin film has temperature dependence, by changing the temperature, it is possible to change the hydrogen permeable membrane and control the pressure on the vacuum side.

上にあげた2項目を結びつけて本装置を発明した。This device was invented by combining the two items listed above.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図はその実例1である。実例1では、校正用ガスと
して水素とアルゴンの混合気体を、そして透過膜として
ニッケル薄膜を用いている。なお校正用気体は、他の気
体との相対感度が既知でその気体のみを透過する透過膜
が存在する気体なら何でもよい、また水素透過膜として
は、ニッケルに限らずパラジウム等水素を透過する膜な
ら何でもよい。
FIG. 1 shows the first example. In Example 1, a mixed gas of hydrogen and argon is used as the calibration gas, and a nickel thin film is used as the permeable membrane. Note that the calibration gas may be any gas as long as its relative sensitivity with other gases is known and there is a permeable membrane that allows only that gas to pass through.The hydrogen permeable membrane is not limited to nickel, but may also be a membrane that permeates hydrogen such as palladium. Anything is fine.

以下第1図における各機器の機能を説明する。The functions of each device in FIG. 1 will be explained below.

被校正用真空ゲージ1は、本装置を用いて校正される高
真空用真空ゲージであり、低真空用真空ゲージ2は、加
熱室内水素分圧の絶対値を測定するための基準用真空ゲ
ージである。これらのゲージの信号は、伝送路4,5を
通して計算機29に入力される。被校正用高真空ゲージ
1を校正するための所定圧力を設定する真空室7には、
排気用ポンプとして排気用ポンプ24とイオンポンプ2
6が設置され、イオンポンプ26の前には流調弁18が
設置されモータ駆動により計算機29で開度を調整でき
る0校正用混合気体が直接注入される加熱室6は、真空
室7とは水素のみを透過するニッケル薄膜8により隔て
られている。ニッケル薄膜8にはその温度検出用として
温度測定子9が設置され、その信号は温度伝送器10を
通して加、算器11と計算機29に入力される。加算器
11;:b出力は、PID制御器12、APPS13を
通して電力調節器14に入力されるが加熱室内のヒータ
16の出力制御を行って加熱室内気体及びニッケル薄膜
8の温度を制御する。なおニッケル薄膜温度は、計算機
29からの目標値設定により任意温度に設定可能である
。またヒータ電源15はヒータ16の電源である。加熱
室6には、校正用気体注入部と内部排気部が設置される
。校正用気体注入部は、水素ガス容器30.アルゴンガ
ス容器31及び水素ガスとアルゴンガスを適量混合して
校正用ガスを作成する校正用ガス調整室28、その中の
圧力を測定する圧力計3、校正用ガス調整室28から加
熱室6に挿入される気体の量を調整する流調弁17より
構成される。内部排気部は。
The vacuum gauge 1 to be calibrated is a high vacuum vacuum gauge that is calibrated using this device, and the low vacuum vacuum gauge 2 is a reference vacuum gauge for measuring the absolute value of hydrogen partial pressure in the heating chamber. be. These gauge signals are input to the computer 29 through transmission lines 4 and 5. The vacuum chamber 7 for setting a predetermined pressure for calibrating the high vacuum gauge 1 to be calibrated includes:
Exhaust pump 24 and ion pump 2 as exhaust pumps
6 is installed, a flow control valve 18 is installed in front of the ion pump 26, and the opening degree can be adjusted by a computer 29 by driving a motor.The heating chamber 6 is directly injected with a zero calibration mixed gas, which is different from the vacuum chamber They are separated by a thin nickel film 8 that transmits only hydrogen. A temperature probe 9 is installed on the nickel thin film 8 to detect its temperature, and its signal is inputted to an adder 11 and a calculator 29 through a temperature transmitter 10. The output of the adder 11;:b is input to the power controller 14 through the PID controller 12 and the APPS 13, which controls the output of the heater 16 in the heating chamber to control the temperature of the gas in the heating chamber and the nickel thin film 8. Note that the nickel thin film temperature can be set to any desired temperature by setting a target value from the computer 29. Further, the heater power source 15 is a power source for the heater 16. The heating chamber 6 is provided with a calibration gas injection section and an internal exhaust section. The calibration gas injection part is a hydrogen gas container 30. An argon gas container 31, a calibration gas adjustment chamber 28 that mixes appropriate amounts of hydrogen gas and argon gas to create a calibration gas, a pressure gauge 3 that measures the pressure therein, and a heating chamber 6 from the calibration gas adjustment chamber 28. It is composed of a flow control valve 17 that adjusts the amount of gas inserted. The internal exhaust section.

排気ポンプ25とイオンポンプ27より構成される。ま
た加熱室には内部圧力測定のため圧力計38も設置され
る。
It is composed of an exhaust pump 25 and an ion pump 27. A pressure gauge 38 is also installed in the heating chamber to measure internal pressure.

以下本装置による校正の原理及び校正方法を述べろ。本
装置の基本原理は、ニッケル薄膜の水素透過率に温度依
存性があるため温度を制御することにより水素の透過量
を制御でき、ニッケル薄膜前後の圧力を任意に設定でき
ることにある。以下その詳細を第3図により説明する。
Describe the principle and method of calibration using this device below. The basic principle of this device is that since the hydrogen permeability of the nickel thin film is temperature dependent, the amount of hydrogen permeation can be controlled by controlling the temperature, and the pressure before and after the nickel thin film can be set arbitrarily. The details will be explained below with reference to FIG.

第3図下部は、第1図主要部を簡略化したもので、第3
図上部はその内部の水素の圧力分布をグラフ化したもの
である。第3図下部のモデルでは以下の式が成立する。
The lower part of Figure 3 is a simplified version of the main part of Figure 1.
The upper part of the figure is a graph of the hydrogen pressure distribution inside. In the model shown in the lower part of Figure 3, the following equation holds.

Qvr= ’Tm+ ’ A = −(P t””  
P z””)・A・・・(1)q、;ニッケル薄膜単位
面積あたりの水素透過量(Torr 6cxl / s
ac 、 cxl )A ;ニッケル薄膜面積(al) K ;ニッケル薄膜水素透過率(Torr−al/5e
e) d ;ニッケル薄膜厚さく口) QweP1#P2;図記号説明参照 また真空ゲージ部、イオンポンプ部での単位時間水素流
量は等しいから Q m = S 3・p、=s4・P4     ・・
・(2)S、、p、、S、、P、:図記号説明参照同様
にしてニッケル薄膜−真空ゲージ間水素流量と真空ゲー
ジ−イオンポンプ間水素流量はQ、に等しいから QW =css (pi  p−) =034 (Pa −P4 )      ・・・(3
)C2s * C34:図記号説明参照 以上の(1)、(2)、(3)式より下記式が導かれる Cps (C34+S4J ここでA、d、S、、C2,、C,、は定数であり、P
□を一定とすればニッケル薄膜水素透過率Kを変えるこ
とにより第3図上部に示すように真空ゲージ部圧力P3
をP、′と弯えることが可能となる。
Qvr='Tm+'A=-(Pt""
P z"")・A...(1)q, ;Hydrogen permeation amount per unit area of nickel thin film (Torr 6cxl/s
ac, cxl) A; Nickel thin film area (al) K; Nickel thin film hydrogen permeability (Torr-al/5e
e) d; Nickel thin film thickness opening) QweP1#P2; Refer to figure symbol explanation Also, since the hydrogen flow rates per unit time in the vacuum gauge part and the ion pump part are equal, Q m = S3・p, = s4・P4...
・(2) S,,p,,S,,P,: See diagram symbol explanation Similarly, the hydrogen flow rate between the nickel thin film and the vacuum gauge and the hydrogen flow rate between the vacuum gauge and the ion pump are equal to Q, so QW = css ( pi p-) = 034 (Pa - P4) ... (3
) C2s * C34: Refer to figure symbol explanation The following formula is derived from the above formulas (1), (2), and (3) Cps (C34+S4J Here, A, d, S,, C2,, C,, are constants. Yes, P
If □ is constant, by changing the nickel thin film hydrogen permeability K, the vacuum gauge part pressure P3 can be changed as shown in the upper part of Figure 3.
can be expressed as P,'.

一方には温度の関数で下記式で表現できる。On the one hand, it is a function of temperature and can be expressed by the following formula.

K= a −exp (−E/ RT)  ・b−P、
””=45)R;気体定数(cal /mo12−k)
T;ニッケル薄膜温度(K) E;活性化エネルギー(cal / mo Q )a;
定数 b 、 rrt;圧力依存性に関する定数(4)、(5
)式より真空ゲージ部圧力P3は、ニッケル薄膜温度T
により制御できることがわかる。
K= a −exp (−E/ RT) ・b−P,
""=45)R; gas constant (cal/mo12-k)
T: Nickel thin film temperature (K) E: Activation energy (cal/mo Q)a;
Constant b, rrt; constants (4), (5) related to pressure dependence
) From the formula, the vacuum gauge part pressure P3 is determined by the nickel thin film temperature T.
It can be seen that it can be controlled by

以下本装置での真空ゲージの具体的校正手順を第1図で
説明する。
The specific procedure for calibrating the vacuum gauge in this device will be explained below with reference to FIG.

校正前にd、A、C,、、C,4,S4.b、mの各定
数を測定しておく。特にす、mはニッケル薄膜により器
差があるため、本装置に校正済の高真空ゲージを用いて
正確な圧力P、を測定し、(4)。
Before calibration, d, A, C, , C, 4, S4. Measure the constants b and m in advance. In particular, since there is an instrumental error in P due to the nickel thin film, a calibrated high vacuum gauge is used in this device to accurately measure the pressure P. (4).

(5)式より使用するニッケル薄膜のす、mを求めてお
く。またd、A、C,、、C,、は機械的に定まり、S
4もオリフィスと高真空用ゲージを用いたオリフィス法
で測定可能である。以下校正手順を示す。
From formula (5), calculate the values of m and m of the nickel thin film to be used. Also, d, A, C, ,C,, are determined mechanically, and S
4 can also be measured by the orifice method using an orifice and a high vacuum gauge. The calibration procedure is shown below.

1、止め弁、20.21は閉とし、流調弁17゜止め弁
22,23を開とし加熱室6内を排気ポンプ25.イオ
ンポンプ27により排気しさらに充分ベーキングして壁
面の脱ガスを図る。
1. Close the stop valves 20 and 21, open the flow control valve 17 and the stop valves 22 and 23, and exhaust the inside of the heating chamber 6 with the exhaust pump 25. The ion pump 27 is used to exhaust the air, and the wall is thoroughly baked to degas the wall surface.

2、同様に真空室7内も排気、ベーキングを行い高真空
を保つ。
2. Similarly, vacuum chamber 7 is evacuated and baked to maintain a high vacuum.

3、止め弁20,21を操作して校正用ガス調整室内に
校正用のガスを貯蔵する。
3. Store the calibration gas in the calibration gas adjustment chamber by operating the stop valves 20 and 21.

4、止め弁22,23、流調弁17を閉としたまま加熱
器16に通電し、ニッケル薄膜温度Tを所定温度として
おく。
4. With the stop valves 22 and 23 and the flow control valve 17 closed, the heater 16 is energized to keep the nickel thin film temperature T at a predetermined temperature.

5、所定温度到達後流調弁17の開度を調節して圧力計
38の指示により加熱室内の校正ガス圧力が所定圧力と
なるようにする。ただし真空室で被校正用高真空ゲージ
の校正に関与するのは校正ガス中の水素のみであるため
、校正ガス中のアルゴンに対する水素の分圧比を1/1
00か61/1000となるようにし、さらにニッケル
薄膜の後前では圧力比を1/10” から1/10’ 
までとれることから、加熱室内に注入する校正ガスの目
標圧力は大気圧より大きくすることも可能となる。また
校正用圧力の精度よい設定は、ニッケル薄膜の水素透過
量制御により行うため高精度の必要はなく、ある範囲内
にはいっていればよい。
5. After reaching the predetermined temperature, adjust the opening degree of the flow control valve 17 so that the calibration gas pressure in the heating chamber becomes the predetermined pressure according to the indication from the pressure gauge 38. However, since only the hydrogen in the calibration gas is involved in the calibration of the high vacuum gauge to be calibrated in the vacuum chamber, the partial pressure ratio of hydrogen to argon in the calibration gas is reduced to 1/1.
00 or 61/1000, and furthermore, the pressure ratio should be 1/10" to 1/10' before and after the nickel thin film.
The target pressure of the calibration gas injected into the heating chamber can also be made higher than atmospheric pressure. Further, since the accurate setting of the calibration pressure is performed by controlling the amount of hydrogen permeation through the nickel thin film, high accuracy is not required, and it is sufficient that the pressure is within a certain range.

6、校正ガス圧力が所定圧力に達したら流調弁17を閉
とする。
6. When the calibration gas pressure reaches a predetermined pressure, close the flow control valve 17.

7、この時真空室7側の流調弁18.止め弁19は全開
としておく。
7. At this time, the flow control valve 18 on the vacuum chamber 7 side. The stop valve 19 is left fully open.

8、以下加熱室内校正ガス中の水素分圧P1を静的平衡
法により求めた後、被校正用高真空ゲージの校正を行う
、ここで静的平衡法とは、上記7の状態で静置すると加
熱室6内校正ガス中水素分圧と真空室7内の水素分圧が
平衡に達しP、=P、、=P□となるためP3 の測定
によりPlが測定できるという方法である。なおここで
の静的平衡圧力は1〜I X 10 ”Torrの領域
であり、この領域を測定対象とする真空計なら従来の方
法にて高精度に校正可能であり、よって加熱室内水素分
圧測定の精度もあがる。
8. After determining the hydrogen partial pressure P1 in the calibration gas in the heating chamber by the static equilibrium method, the high vacuum gauge to be calibrated is calibrated. Then, the partial pressure of hydrogen in the calibration gas in the heating chamber 6 and the partial pressure of hydrogen in the vacuum chamber 7 reach equilibrium and become P, =P, , =P□, so Pl can be measured by measuring P3. Note that the static equilibrium pressure here is in the range of 1 to I x 10 Torr, and a vacuum gauge that measures this range can be calibrated with high accuracy using conventional methods, so the hydrogen partial pressure in the heating chamber can be calibrated with high accuracy. The accuracy of measurement also increases.

9、以上の準備を終えた後被校正用高真空ゲージ1の校
正を行う。まずイオンポンプ26を起動し流調弁18を
開とし真空室7を動的平衡状態、すなわち気体の流れが
ある状態とする。すると第3図上部のグラフに示すよう
な圧力分布が真空室内に生じる。なおこの時の流調弁1
8の開度は、コンダクタスフC34がわかる開度ならど
のような開度でもよく、さらにオリフィスを用いて排気
速度を安定化させることも考えられる。
9. After completing the above preparations, calibrate the high vacuum gauge 1 to be calibrated. First, the ion pump 26 is activated and the flow control valve 18 is opened to bring the vacuum chamber 7 into a dynamic equilibrium state, that is, a state where gas flows. Then, a pressure distribution as shown in the graph at the top of FIG. 3 occurs in the vacuum chamber. In addition, flow control valve 1 at this time
The opening degree of No. 8 may be any opening degree as long as the conductor tube C34 can be determined, and it is also possible to stabilize the exhaust speed by using an orifice.

また真空室内水素ガスが排気されるため、真空室に水素
を供給している加熱室内水素の分圧が低下することが考
えられるため、分圧低下が校正精度に影響しない程度に
真空室に対する加熱室の溶精比を大きくしておく。ある
いは流調弁17の開度をうまく調整するかオリフィスを
設置して加熱室内に校正ガスが一定割合で補充されてP
lが変化しないようにすることも考えられる。さらに真
空室内の外乱要因を除去するため、低真空用真空ゲージ
2は停止しておく。
In addition, since the hydrogen gas in the vacuum chamber is exhausted, the partial pressure of the hydrogen in the heating chamber that supplies hydrogen to the vacuum chamber may decrease. Increase the melting ratio in the chamber. Alternatively, adjust the opening of the flow control valve 17 or install an orifice to replenish the heating chamber with calibration gas at a constant rate.
It is also possible to prevent l from changing. Further, in order to remove disturbance factors in the vacuum chamber, the low vacuum vacuum gauge 2 is stopped.

10、真空室内を動的状態にしたままニッケル薄膜温度
Tを変化させると、(4)、(5)式より定まる被校正
用真空ゲージ部圧力P3と被校正用高真空ゲージ1の出
力により校正が可能となる。
10. When the nickel thin film temperature T is changed while the vacuum chamber is kept in a dynamic state, calibration is performed using the pressure P3 of the vacuum gauge part to be calibrated determined from equations (4) and (5) and the output of the high vacuum gauge 1 to be calibrated. becomes possible.

さらに、上記1〜10までの手順を計算機29で自動化
した場合のフローチャートを第4図に示す、なお計算機
29は演算可能な装置ならどのようなものでもよい。
Further, FIG. 4 shows a flowchart in the case where the steps 1 to 10 above are automated by a computer 29. Note that the computer 29 may be any type of device that can perform calculations.

以上具体的校正手順を詳細に述べてきたが、本校正法に
よる長所を以下に記す。
Although the specific calibration procedure has been described in detail above, the advantages of this calibration method are described below.

1、真空室内圧力は、ニッケル薄膜温度のみで制御可能
なため校正を容易に自動化することができる。
1. The pressure inside the vacuum chamber can be controlled only by the temperature of the nickel thin film, so calibration can be easily automated.

2、加熱室内水素分圧を固定すれば、真空室内圧力とニ
ッケル薄膜温度は1対1で対応する。このため真空計の
繰り返し性の測定も容易であり、さらに温度変化量を小
さくすれば真空室内圧力の変化量も小さくでき、真空計
の不感帯の測定も可能となる。
2. If the hydrogen partial pressure in the heating chamber is fixed, there is a one-to-one correspondence between the pressure in the vacuum chamber and the temperature of the nickel thin film. Therefore, it is easy to measure the repeatability of the vacuum gauge, and furthermore, by reducing the amount of temperature change, the amount of change in the pressure in the vacuum chamber can also be reduced, making it possible to measure the dead zone of the vacuum gauge.

3、真空室内を動的状態とし内部が常に排気されている
状態で校正を行うため、壁面放出ガスの蓄積効果による
校正誤差を小さくできる。
3. Calibration is performed while the vacuum chamber is in a dynamic state and the inside is constantly evacuated, so calibration errors due to the accumulation effect of gas emitted from the walls can be reduced.

なお以上の記述内で加熱室、真空室の高真空部での排気
に使用しているイオンポンプは、1O−4Torr以下
の領域で使用可能なポンプならどのようなポンプでもよ
い。また校正用ガスは、水素のみでもよくあるいは最初
からアルゴン等のガスと水準ガスを使用してもよい。
In the above description, the ion pump used for evacuation in the high vacuum part of the heating chamber and the vacuum chamber may be any pump that can be used in the region of 10-4 Torr or less. Further, the calibration gas may be only hydrogen, or a gas such as argon and a level gas may be used from the beginning.

第2図は、本装置の応用例の1つで、校正用ガスの代り
に液体金属を用いその中に不純物として含まれる水素を
用いて真空計の校正を行うものである。以下第2図を用
いて装置構成を説明する。
FIG. 2 shows one example of the application of this device, in which a vacuum gauge is calibrated using liquid metal instead of the calibration gas and hydrogen contained therein as an impurity. The configuration of the apparatus will be explained below using FIG. 2.

真空室7には実例1と同様に真空用ゲージ、伝送器及び
排気ポンプが具備される。一方ニッケル薄膜8により真
空室7と隔てられる加熱室6は、液体金属により満たさ
れる。ニッケル薄膜8の加熱室側には温度測定子9が設
定され、その温度信号は、伝送路10を介して計算機2
9に入力されるとともにトーク16の出力制御に使用さ
れる。加熱室6は、液体金厘用止め弁33.34を介し
て液体金属ループ37と接続される。液体金属ループに
は、液体金属内溶解水素の量を飽和温度により制御する
コールドトラップ36と液体金属循環用ポンプ35が具
備される。コールドトラップは、液体金属中への水素の
溶解量が飽和温度により変化することを利用して溶解水
素量をすなわち液体金属中の水素分圧P□を制御する装
置で、温度測定子9とその伝送器10.コールドトラッ
プ温度制御用ヒータ39とその電源40及びコールドト
ラップ温度制御器41が具備され、伝送器1oからの温
度信号は、温度制御器41に入力される他計算機29に
入力され下記式により液体金属中の水素分圧P1を計算
するのに用いられる。
The vacuum chamber 7 is equipped with a vacuum gauge, a transmitter, and an exhaust pump as in Example 1. On the other hand, the heating chamber 6 separated from the vacuum chamber 7 by the nickel thin film 8 is filled with liquid metal. A temperature probe 9 is set on the heating chamber side of the nickel thin film 8, and the temperature signal is sent to the computer 2 via a transmission line 10.
9 and is used to control the output of talk 16. The heating chamber 6 is connected to the liquid metal loop 37 via a liquid metal stop valve 33,34. The liquid metal loop is equipped with a cold trap 36 and a liquid metal circulation pump 35 for controlling the amount of hydrogen dissolved in the liquid metal according to the saturation temperature. The cold trap is a device that controls the amount of dissolved hydrogen, that is, the hydrogen partial pressure P□ in the liquid metal, by utilizing the fact that the amount of hydrogen dissolved in the liquid metal changes depending on the saturation temperature. Transmitter 10. A cold trap temperature control heater 39, its power source 40, and a cold trap temperature controller 41 are provided, and the temperature signal from the transmitter 1o is input to the temperature controller 41 and also to the computer 29, and the liquid metal is It is used to calculate the hydrogen partial pressure P1 inside.

Cw=に1・P、1″        ・・・(6)C
ヨ ;液体金属中水製濃度(ppm)K、  ; 5i
everts定数 (ppm/ Torr L4)PI
III;液体金属中水製分圧(Torr)QOgloK
、= 0.86−122.0/T・−(7)T ;ニッ
ケル薄膜温度(K) 41 og、。C,l= 6.067−2880/1−
(8)t ;コールドトラップ内飽和温度 (K) 以上より り、=(10(s、osv−2sso/切/10 (0
,Il!−1210/T) )2 、、、 (9)ここ
で液体金属中水製分圧pHlは加熱室内水素分圧に相当
するので P * w = P 1 とみなすことができる。よって式(9)より加熱室と真
空室の静的平衡圧力P□を求めることができる。以下実
例1と同様の手順で被校正用高真空ゲージの校正を行う
ことができる。なお実例2での液体金属は、ナトリウム
、Na等不純物として水素を含むものなら何でもよい。
Cw=1・P, 1″...(6)C
YO; Concentration of liquid metal in water (ppm) K; 5i
everts constant (ppm/Torr L4)PI
III; Water in liquid metal partial pressure (Torr) QOgloK
, = 0.86-122.0/T・-(7)T; Nickel thin film temperature (K) 41 og. C, l = 6.067-2880/1-
(8) t ; Saturation temperature inside the cold trap (K) From the above, = (10 (s, osv-2sso/off/10 (0
, Il! -1210/T) )2 , (9) Here, since the water-in-liquid metal partial pressure pHl corresponds to the hydrogen partial pressure in the heating chamber, it can be regarded as P*w=P1. Therefore, the static equilibrium pressure P□ of the heating chamber and the vacuum chamber can be determined from equation (9). The high vacuum gauge to be calibrated can be calibrated in the same manner as in Example 1 below. Note that the liquid metal in Example 2 may be any metal containing hydrogen as an impurity, such as sodium or Na.

C発明の効果〕 以上詳述したように、本発明によれば1O−4Torr
の高真空領域でも真空計を精度よく校正することが可能
になる。さらに制御対象が外乱が少なく制御容易な滞留
している流体の温度であるため目標温度±0.5℃の設
定及び1℃きざみの温度)変化が可能であり、よって目
標圧力設定も±0.5%の精度が可能となり、また基準
圧力±1%の細かな圧力変化も可能となる。このため従
来測定不可能であった繰り返し性、不感帯といった計器
性能も測定可能になる。また電気ヒータを用いた温度制
御で圧力設定を行うため自動化も容易となる。
C. Effects of the Invention] As detailed above, according to the present invention, 1O-4Torr
This makes it possible to calibrate vacuum gauges with high accuracy even in high vacuum areas. Furthermore, since the object to be controlled is the temperature of the stagnant fluid, which has few disturbances and is easy to control, it is possible to set the target temperature within ±0.5°C and change the temperature in 1°C increments.Therefore, the target pressure can also be set within ±0.5°C. Accuracy of 5% is possible, and fine pressure changes of ±1% of the reference pressure are also possible. This makes it possible to measure instrument performance such as repeatability and dead zone, which were previously impossible to measure. Furthermore, automation is easy because the pressure is set by temperature control using an electric heater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の真空計自動校正装置システム構
成図、第2図は他の実施例の真空計自動校正装置システ
ム構成図、第3図は装置内の圧力分布及び装置の簡略化
モデルを示す図、第4図は自動校正フローチャートであ
る。 1・・・被校正用高真空ゲージ、2・・・低真空用真空
ゲージ、3・・・圧力計、4・・・被校正用高真空ゲー
ジ伝送器、5・・・低真空用真空ゲージ伝送器、6・・
・加熱室、7・・・真空室、8・・・透過膜、9・・・
温度測定子、10・・・温度伝送器、11・・・加熱器
、12・・・PID制御器、13・・・APPS、14
・・・電力調節器、15・・・ヒータ電源、16・・・
ヒータ、17・・・流調弁。 ・、18・・・流調弁、19・・・止め弁、20・・・
止め弁、21・・・止め弁、22・・・止め弁、23・
・・止め弁、24・・・排気ポンプ、25・・・排気ポ
ンプ、26・・・イオンポンプ、27・・・イオンポン
プ、28・・・校正用ガス調整室、29・・・計算機、
30・・・水素ガス容器。 31・・・アルゴンガス容器、32・・・液体金属用止
め弁、33・・・液体金属用止め弁、34・・・液体金
属用止め弁、35・・・液体金属循環用ポンプ、36・
・・コールドトラップ、37・・・液体金属ループ、3
8・・・圧力計、39・・・コールドトラップ用ヒータ
、40・・・コールドシラツブ用ヒータ電源、41・・
・コールドトラップ用温度制御器、Pl・・・加熱室内
水素分圧(Torr) 、Pg ・・・真空室側ニッケ
ル薄膜部圧力(Torr) 、 Pa ・・・被校正用
真空ゲージ部圧力(Torr) 、P、−イオンポンプ
部圧力(Torr)、S3・・・被校正用真空ゲージ部
排気速度(CiI/5ac)S4・・・イオンポンプ部
排気速度(al?/see )、C23・・・ニッケル
薄膜−真空ゲージ間コンダクタンス(ad/sec )
 、C34・・・真空ゲージ−イオンポンプ間コンダク
タンス(aJ/ssc ) 、 Q−・・・ニッケル薄
膜水素透過量(Torr−cxl / see )。
Fig. 1 is a system configuration diagram of a vacuum gauge automatic calibration device according to an embodiment of the present invention, Fig. 2 is a system configuration diagram of a vacuum gauge automatic calibration device of another embodiment, and Fig. 3 is a diagram showing the pressure distribution within the device and simplification of the device. A diagram showing the model, FIG. 4, is an automatic calibration flowchart. 1... High vacuum gauge for calibration, 2... Vacuum gauge for low vacuum, 3... Pressure gauge, 4... High vacuum gauge transmitter for calibration, 5... Vacuum gauge for low vacuum Transmitter, 6...
・Heating chamber, 7... Vacuum chamber, 8... Permeable membrane, 9...
Temperature measuring element, 10... Temperature transmitter, 11... Heater, 12... PID controller, 13... APPS, 14
...Power regulator, 15...Heater power supply, 16...
Heater, 17...Flow control valve.・, 18...Flow control valve, 19...Stop valve, 20...
Stop valve, 21... Stop valve, 22... Stop valve, 23.
... Stop valve, 24 ... Exhaust pump, 25 ... Exhaust pump, 26 ... Ion pump, 27 ... Ion pump, 28 ... Calibration gas adjustment room, 29 ... Calculator,
30...Hydrogen gas container. 31... Argon gas container, 32... Stop valve for liquid metal, 33... Stop valve for liquid metal, 34... Stop valve for liquid metal, 35... Pump for liquid metal circulation, 36.
...cold trap, 37...liquid metal loop, 3
8...Pressure gauge, 39...Heater for cold trap, 40...Heater power supply for cold syrup, 41...
・Temperature controller for cold trap, Pl... Hydrogen partial pressure in the heating chamber (Torr), Pg... Pressure at the nickel thin film part on the vacuum chamber side (Torr), Pa... Pressure at the vacuum gauge part to be calibrated (Torr) , P, - Ion pump part pressure (Torr), S3... Vacuum gauge part pumping speed for calibration (CiI/5ac) S4... Ion pump part pumping speed (al?/see), C23... Nickel Conductance between thin film and vacuum gauge (ad/sec)
, C34... Vacuum gauge-ion pump conductance (aJ/ssc), Q-... Nickel thin film hydrogen permeation amount (Torr-cxl/see).

Claims (1)

【特許請求の範囲】 1、温度制御部と流量制御部をもつ容器においてある特
定元素を透過させる薄膜と前記薄膜を含む真空室と前記
薄膜を透過した元素を排気する真空導管及び真空ポンプ
と前記真空室内の圧力を測定する真空測定計器より成る
真空系と、前記真空系内薄膜の真空室と反対側に流体を
導く流体導管と、流体中の特定元素の量を調節できる純
度調節部と、特定元素を注入可能な注入部とを具備する
ことを特徴とする真空計校正装置。 2、前記真空計校正装置において、純度調節部と注入部
を制御することにより流体中の特定元素の濃度を調節し
その濃度に対応する真空室内絶対平衡圧力を変化させる
ことにより真空室内真空測定計器の絶対校正を可能とし
たことを特徴とする特許請求の範囲第1項記載の真空計
校正装置。 3、真空系薄膜の温度を変化させることにより真空室内
の圧力を変化させ、これにより真空測定計器の精度よい
校正及び性能測定を可能としたことを特徴とする特許請
求の範囲第2項記載の真空計校正装置。 4、測定モード及び真空測定計器出力等に対応して流体
温度、真空系バルブを制御して自動的に目的測定量を測
定可能としたことを特徴とする特許請求の範囲第2項ま
たは第3項記載の真空計校正装置。
[Scope of Claims] 1. A thin film that transmits a certain element in a container having a temperature control section and a flow rate control section, a vacuum chamber containing the thin film, a vacuum conduit and a vacuum pump that exhaust the element that has passed through the thin film, and the a vacuum system consisting of a vacuum measuring instrument for measuring the pressure inside the vacuum chamber; a fluid conduit that guides fluid to the opposite side of the vacuum chamber of the thin film in the vacuum system; and a purity adjustment section that can adjust the amount of a specific element in the fluid; A vacuum gauge calibration device characterized by comprising an injection part capable of injecting a specific element. 2. In the vacuum gauge calibration device, the concentration of a specific element in the fluid is adjusted by controlling the purity adjustment section and the injection section, and the absolute equilibrium pressure in the vacuum chamber corresponding to the concentration is changed, thereby making the vacuum measurement instrument in the vacuum chamber. 2. The vacuum gauge calibration device according to claim 1, wherein absolute calibration of the vacuum gauge is possible. 3. The pressure in the vacuum chamber is changed by changing the temperature of the vacuum thin film, thereby making it possible to calibrate and measure the performance of a vacuum measuring instrument with high precision. Vacuum gauge calibration device. 4. The target measurement quantity can be automatically measured by controlling the fluid temperature and the vacuum system valve in accordance with the measurement mode, vacuum measurement instrument output, etc. Vacuum gauge calibration device as described in section.
JP11883085A 1985-06-03 1985-06-03 Apparatus for calibrating vacuum gauge Pending JPS61277030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11883085A JPS61277030A (en) 1985-06-03 1985-06-03 Apparatus for calibrating vacuum gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11883085A JPS61277030A (en) 1985-06-03 1985-06-03 Apparatus for calibrating vacuum gauge

Publications (1)

Publication Number Publication Date
JPS61277030A true JPS61277030A (en) 1986-12-08

Family

ID=14746207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11883085A Pending JPS61277030A (en) 1985-06-03 1985-06-03 Apparatus for calibrating vacuum gauge

Country Status (1)

Country Link
JP (1) JPS61277030A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938456B2 (en) * 2001-08-31 2005-09-06 Siemens Vdo Automotive Inc. Vacuum generating method and device including a charge valve and electronic control
KR100805926B1 (en) 2006-08-22 2008-02-21 한국표준과학연구원 Integral calibration apparatus for low vacuum gauge and high vacuum gauge
CN100395531C (en) * 2006-06-15 2008-06-18 中国航天科技集团公司第五研究院第五一○研究所 Bypass type ultrahigh and extreme-high vacuum gauge calibrating device and method thereof
CN103364137A (en) * 2013-07-03 2013-10-23 淮南矿业(集团)有限责任公司 Pressure sensor adjusting device
CN106289639A (en) * 2016-08-31 2017-01-04 兰州空间技术物理研究所 A kind of measuring method of vacuum partial pressure based on ion gauge
JP2017062119A (en) * 2015-09-22 2017-03-30 株式会社日本自動車部品総合研究所 Hydrogen pressure measuring device
CN114674489A (en) * 2022-03-25 2022-06-28 中国工程物理研究院材料研究所 Multifunctional high-vacuum measurement comparison and calibration device and calibration method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6938456B2 (en) * 2001-08-31 2005-09-06 Siemens Vdo Automotive Inc. Vacuum generating method and device including a charge valve and electronic control
CN100395531C (en) * 2006-06-15 2008-06-18 中国航天科技集团公司第五研究院第五一○研究所 Bypass type ultrahigh and extreme-high vacuum gauge calibrating device and method thereof
KR100805926B1 (en) 2006-08-22 2008-02-21 한국표준과학연구원 Integral calibration apparatus for low vacuum gauge and high vacuum gauge
CN103364137A (en) * 2013-07-03 2013-10-23 淮南矿业(集团)有限责任公司 Pressure sensor adjusting device
CN103364137B (en) * 2013-07-03 2015-07-29 淮南矿业(集团)有限责任公司 Pressure transducer calibration apparatus
JP2017062119A (en) * 2015-09-22 2017-03-30 株式会社日本自動車部品総合研究所 Hydrogen pressure measuring device
CN106289639A (en) * 2016-08-31 2017-01-04 兰州空间技术物理研究所 A kind of measuring method of vacuum partial pressure based on ion gauge
CN114674489A (en) * 2022-03-25 2022-06-28 中国工程物理研究院材料研究所 Multifunctional high-vacuum measurement comparison and calibration device and calibration method thereof
CN114674489B (en) * 2022-03-25 2023-05-12 中国工程物理研究院材料研究所 Multifunctional high-vacuum measurement comparison calibration device and calibration method thereof

Similar Documents

Publication Publication Date Title
US5645642A (en) Method for in-situ liquid flow rate estimation and verification
JP5647083B2 (en) Raw material vaporization supply device with raw material concentration detection mechanism
US8667830B2 (en) Method and apparatus for in situ testing of gas flow controllers
US4341107A (en) Calibratable system for measuring fluid flow
JP6916964B2 (en) Pulse gas supply method and equipment using a shutoff valve
KR101626619B1 (en) Material gas concentration control system
US5865205A (en) Dynamic gas flow controller
CN108194343B (en) A kind of vacuum pump test macro and test method
US5968588A (en) In-situ liquid flow rate estimation and verification by sonic flow method
JPH05288737A (en) Gas chromatograph apparatus
US5190726A (en) Apparatus for measuring the flow rate of water vapor in a process gas including steam
JPS61277030A (en) Apparatus for calibrating vacuum gauge
JP3775541B2 (en) Calibration method for chromatography columns
US5731508A (en) Calibrating gas generator
JP2000039347A (en) Flowrate inspection device
US20130092084A1 (en) Systems and Methods for Measuring, Monitoring and Controlling Ozone Concentration
JPH0747119B2 (en) Device for injecting low vapor pressure substances into low pressure or vacuum systems
US3400585A (en) Method of measuring the output of a source of a certain gas
JPS6243133B2 (en)
CA2370154C (en) Method of determining the salt content of liquids and device for practicing the method
JPS59185772A (en) Control device for flow rate of evaporating gas in high melting metallic compound
JPH0642938B2 (en) Vaporized gas flow controller
JPH05333013A (en) Gas chromatograph
JPH04164236A (en) Method of measuring volume of absorption and desorption
JPS62106344A (en) Apparatus for measuring surface area