JPS59185772A - Control device for flow rate of evaporating gas in high melting metallic compound - Google Patents

Control device for flow rate of evaporating gas in high melting metallic compound

Info

Publication number
JPS59185772A
JPS59185772A JP5972583A JP5972583A JPS59185772A JP S59185772 A JPS59185772 A JP S59185772A JP 5972583 A JP5972583 A JP 5972583A JP 5972583 A JP5972583 A JP 5972583A JP S59185772 A JPS59185772 A JP S59185772A
Authority
JP
Japan
Prior art keywords
carrier gas
gas
flow rate
tank
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5972583A
Other languages
Japanese (ja)
Other versions
JPH0362790B2 (en
Inventor
Isamu Komiya
勇 小宮
Masaru Izumida
泉田 勝
Michio Arai
三千男 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TAIRAN KK
Original Assignee
NIPPON TAIRAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TAIRAN KK filed Critical NIPPON TAIRAN KK
Priority to JP5972583A priority Critical patent/JPS59185772A/en
Publication of JPS59185772A publication Critical patent/JPS59185772A/en
Publication of JPH0362790B2 publication Critical patent/JPH0362790B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Abstract

PURPOSE:To perform control with high accuracy by providing a measuring part for the concn. of carrier gas and metallic evaporating gas in a thermostatic oven, and controlling the flow rate of the carrier gas and the amt. of the metallic evaporating gas to be generated. CONSTITUTION:A thermostatic oven 1, a source tank 2 which is provided therein and contains a high melting metallic compd. 3 to be evaporated, a feed pipe 5 which is connected thereto and feeds the carrier gas from a supplying source 4 to the tank 2, a delivery pipe 6 which delivers the gaseous mixture composed of the evaporating gas of the compd. 3 generated in the tank 2 and the carrier gas to the outside of the oven 1, a sensor 10 for measuring the concn. of the carrier gas and a sensor 12 for measuring the concn. of the gaseous mixture which are attached respectively in the pipe 5 and the pipe 6 and measure the concn. of the carrier gas and the gaseous mixture flowing in the respective pipes, and a control device 19 which controls the flow rate of the carrier gas and the evaporating rate of the compd. 3 in accordance with the concn. measuring signal therefrom are provided.

Description

【発明の詳細な説明】 本発明は、高融点金属化合物を気相化させて搬送する場
合に、その流量を高精度に制御することのできる流量制
御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow rate control device that is capable of controlling the flow rate of a high melting point metal compound with high accuracy when the compound is vaporized and transported.

例えば、超LSIの製造に当り、抵抗率の低いゲート材
料としての高融点“金属化合物を加熱蒸発させ、得られ
た蒸発ガスを反応炉内で気相反応によシ半導体つェハ上
に堆積させる場合、蒸発ガスの流量制御を精度良く行う
ことが高品質の製品を得る上で非常に重要である。
For example, in the production of VLSIs, a high melting point metal compound used as a gate material with low resistivity is heated and evaporated, and the resulting evaporated gas is deposited on a semiconductor wafer through a gas phase reaction in a reactor. In this case, it is very important to accurately control the flow rate of evaporated gas in order to obtain high-quality products.

この種の流量制御を行う場合、一般には、キャリヤガス
制御方式が採用されている。この方式は材料物質の加熱
温度を一定に保つことで蒸気圧を一定に保持すると共に
、蒸発ガス搬送用のキャリヤガスの流量を一定にコント
ロールすることによって一定量の蒸発ガスを得るもので
あるが、この方式では、蒸発ガスの流量を、加熱温度と
キャリヤガスの流量との関数として推定することはでき
ても、直接それを測定することは不可能であり、そのた
め、材料物質表面の経時的変化や、蒸発に伴う温度変化
等による蒸発量の変化を管理、制御することはできない
When performing this type of flow rate control, a carrier gas control method is generally employed. This method maintains the vapor pressure constant by keeping the heating temperature of the material constant, and also obtains a constant amount of evaporated gas by controlling the flow rate of the carrier gas for transporting the evaporated gas. , in this method, although it is possible to estimate the flow rate of evaporated gas as a function of heating temperature and carrier gas flow rate, it is impossible to directly measure it; It is not possible to manage or control changes in the amount of evaporation due to changes in temperature or changes in temperature associated with evaporation.

本発明は、蒸発ガスの流量を高精度に制御することので
きる流量制御装置の提供を目的とするものである。
An object of the present invention is to provide a flow rate control device that can control the flow rate of evaporative gas with high precision.

上記目的を達成するため、本発明の流量制御装置は、内
部温度を任意の高温に設定可能な恒温槽と、該恒温槽内
に設置され、蒸発させるべき高融点金属化合物を収容す
るためのソースタンクと、該ソースタンクに接続され、
供給源からのキャリヤガスを該ソースタンクに送入する
送入管と、上記ソースタンク内で蒸発した高融点金属化
合物の蒸発ガスとキャリヤガスとの混合ガスを該ソース
タンクから恒温槽外に送出するための送出管と、恒温槽
内において上記送入管及び送出管にそれぞれ取付けられ
、各管内を流れるキャリヤガス及び混合ガスの濃度を測
定するキャリヤガス濃度測定用熱動センサ及び混合ガス
濃度測定用熱動センサと、上記センサにおける濃度測定
信号に基づいてキャリヤガスの流量または高融点金属化
合物の蒸発量をコントロールする制御装置とによって構
成している。
In order to achieve the above object, the flow rate control device of the present invention includes a constant temperature bath whose internal temperature can be set to an arbitrary high temperature, and a source installed in the constant temperature bath to accommodate a high melting point metal compound to be evaporated. a tank, and connected to the source tank;
A feed pipe that sends a carrier gas from a supply source to the source tank, and a mixed gas of the carrier gas and the evaporated gas of the high melting point metal compound evaporated in the source tank from the source tank to the outside of the constant temperature chamber. A thermal dynamic sensor for measuring the carrier gas concentration and a mixed gas concentration measurement sensor that is attached to the above-mentioned inlet pipe and the outlet pipe respectively in a thermostatic chamber and measures the concentration of the carrier gas and mixed gas flowing in each pipe. A control device that controls the flow rate of the carrier gas or the amount of evaporation of the high melting point metal compound based on the concentration measurement signal from the sensor.

以下、本発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図において、1は恒温槽であって、該恒温槽1は、
内部温度を任意の高温に設定可能に構成している。
In FIG. 1, 1 is a constant temperature bath, and the constant temperature bath 1 is
The internal temperature can be set to any desired high temperature.

上記恒温槽lの内部には、蒸発させるべき高融点金属化
合物3を収容した密閉形のソースタンク2を配設し、該
ソースタンク2には、供給源4からのキャリヤガスを送
入するだめの送入管5と、該ソースタンク2内で蒸発し
た高融点金属化合物3の蒸発ガスと上記キャリヤガスと
の混合ガスを反応炉7へ供給するための送出管6とを接
続し、上記送入管5には、恒温槽1外に位置する部分に
バルブ8とキャリヤガス流量センサ9とを設けると共に
、恒温槽1内に位置する部分にキャリヤガスの濃度を測
定するための熱動センサ11を設け、一方、送出管6に
は、恒温槽1内に位置する部分に上記混合ガスの濃度を
測定するための熱動センサセを設け、恒温槽1外に位置
する部分に蒸発ガス凝縮防止用のヒータ13を付設して
いる。
A closed source tank 2 containing a high melting point metal compound 3 to be evaporated is disposed inside the constant temperature bath 1, and a carrier gas from a supply source 4 is fed into the source tank 2. The feed pipe 5 is connected to the feed pipe 6 for supplying the mixed gas of the high melting point metal compound 3 evaporated in the source tank 2 and the carrier gas to the reactor 7. The inlet pipe 5 is provided with a valve 8 and a carrier gas flow rate sensor 9 in a portion located outside the constant temperature chamber 1, and a thermal sensor 11 for measuring the concentration of carrier gas in a portion located inside the constant temperature chamber 1. On the other hand, the delivery pipe 6 is provided with a thermal sensor for measuring the concentration of the mixed gas in the part located inside the thermostatic oven 1, and a thermodynamic sensor for preventing condensation of evaporated gas is provided in the part located outside the thermostatic oven 1. A heater 13 is attached.

上記熱動センサ11 、12は、ガスの熱伝導度が成分
によって異なることを利用し、その変化分を抵抗値の変
化として検出するようにしたものである。
The thermal sensors 11 and 12 utilize the fact that the thermal conductivity of gas differs depending on its components, and detect the change as a change in resistance value.

そして、例えば、膜成長をさせる減圧形気相成長装置の
場合には、反応炉7に、混合ガス中の蒸発ガスを還元す
るための還元ガスの供給源14を流量調整器15を介し
て接続し、さらに、反応炉7内を減圧状態に保持させる
だめの真空ポンプ16を接続している。なお、図中17
は真空計、18は還元ガスによシ蒸発物を気相成長させ
るための反応炉加熱ヒータである。
For example, in the case of a reduced pressure type vapor phase growth apparatus for film growth, a reducing gas supply source 14 for reducing evaporated gas in the mixed gas is connected to the reactor 7 via a flow rate regulator 15. Furthermore, a vacuum pump 16 is connected to keep the inside of the reactor 7 in a reduced pressure state. In addition, 17 in the figure
18 is a vacuum gauge, and 18 is a reactor heater for vapor phase growth of evaporated matter using reducing gas.

また、上記熱動センサ11 、12が接続された制御装
置19け、各熱動センサ11 、12をブリッジ結合す
ることによシキャリャガスと混合ガスとの濃度比を求め
るブリッジ回路加と、該ブリッジ回路加からの濃度比信
号とキャリヤガス流量センサ9がらの流量信号とに基づ
いて蒸発ガスの流量を算出する演算回路21と、算出さ
れた蒸発ガス流量を表示する表示器匹と、上記演算回路
mがらの蒸発ガス流量信号を設定器Uにおける設定値と
比較し、それらの差に応じてバルブ8を開閉することに
ょシキャリャガスの流量をコントロールする制御回路乙
とを備えている。
Further, the control device 19 to which the thermal sensors 11 and 12 are connected is connected to a bridge circuit for determining the concentration ratio of the carrier gas and the mixed gas by bridge-coupling the thermal sensors 11 and 12, and the bridge circuit an arithmetic circuit 21 that calculates the flow rate of evaporated gas based on the concentration ratio signal from the carrier gas flow rate sensor 9 and a flow rate signal from the carrier gas flow rate sensor 9, a display unit that displays the calculated evaporative gas flow rate, and the arithmetic circuit m The control circuit B compares the evaporative gas flow rate signal of the carrier gas with the set value in the setting device U, opens and closes the valve 8 according to the difference therebetween, and controls the flow rate of the carrier gas.

次に、上記構成を有する流量制御装置の作用について説
明する。
Next, the operation of the flow rate control device having the above configuration will be explained.

その使用に肖っては、ソースタンク2内に高純度の超微
粉状高融点金属化合物(例えば五塩化モリブデン、六塩
化タングステン等)を収容し、恒温槽1の温度を上記金
属の蒸発が十分生じる程度にまで上昇させる。
In its use, a high-purity ultrafine powdered high-melting metal compound (for example, molybdenum pentachloride, tungsten hexachloride, etc.) is stored in the source tank 2, and the temperature of the constant temperature bath 1 is set so that the above-mentioned metal evaporates. Raise the temperature to a level where it is sufficiently generated.

この状態で、供給源4からアルゴン、ヘリウム等の不活
性のキャリヤガスを送入管5を通じてソースタンク2内
に送入すると、該ソースタンク2内で発生した蒸発ガス
はこのキャリヤガスと混合し、送出管6を通じて反応炉
7へ搬送される。この場合、送入管5を通じて恒温槽1
内に流入した低温のキャリヤガスは、該恒温槽1内にお
いて槽内温度にまで加熱され、ソースタンク2へ流入す
る前にその濃度が熱動センサ11によシ測定され、一方
、送出管6内を流れる混合ガスは、熱動センサシによシ
その濃度が測定され、これらの熱動センサ11 、12
からの濃度測定信号は、ブリッジ回路加において濃度比
信号に変換され、キャリヤガス流量センサ9からの流量
信号と共に演算回路21に入力されて蒸発ガスの流量が
算出される。そして、算出された流量信号は表示器n及
び制御回路乙にそれぞれ入力され、表示器乙においては
蒸発ガス流量として表示され、制御回路においては、そ
の蒸発ガス流量が設定器列における設定値と比較される
と共に、それらの差が零になるようにパルプ8のコント
ロールによりキャリヤガスの流量が調整され、これによ
って送出管6内における蒸発ガスの流量が設定値に保持
される。このとき、ガス濃度比信号のO基準点を一定に
保つため、上記送入管5と送出管6とにおけるガス湿度
は等しくするのが望ましく、また、蒸発ガスの凝縮を防
止するには、送出管6内における混合ガス温度をソース
タンクよシ高くする必要がある。そこで、送入管5側に
温度センサを取付けると共に送出管6側にヒータを設け
、送入管5側のキャリヤガスの温度に基づいて送出管6
@の混合ガスの温度を制御するように構成℃てもよい。
In this state, when an inert carrier gas such as argon or helium is fed into the source tank 2 from the supply source 4 through the feed pipe 5, the evaporated gas generated in the source tank 2 mixes with this carrier gas. , and transported to the reactor 7 through the delivery pipe 6. In this case, the constant temperature chamber 1 is
The low-temperature carrier gas that has flowed into the chamber is heated to the chamber temperature in the thermostatic chamber 1, and its concentration is measured by a thermal sensor 11 before flowing into the source tank 2. The concentration of the mixed gas flowing through the interior is measured by thermal sensors 11 and 12.
The concentration measurement signal from the carrier gas flow rate sensor 9 is converted into a concentration ratio signal by the bridge circuit, and is input to the calculation circuit 21 together with the flow rate signal from the carrier gas flow rate sensor 9 to calculate the flow rate of the evaporated gas. The calculated flow rate signal is then input to display n and control circuit B, where it is displayed as an evaporated gas flow rate, and in the control circuit, the evaporated gas flow rate is compared with the set value in the setter row. At the same time, the flow rate of the carrier gas is adjusted by controlling the pulp 8 so that the difference between them becomes zero, and thereby the flow rate of the vaporized gas in the delivery pipe 6 is maintained at the set value. At this time, in order to keep the O reference point of the gas concentration ratio signal constant, it is desirable that the gas humidity in the inlet pipe 5 and the outlet pipe 6 be equal. It is necessary to make the mixed gas temperature in the tube 6 higher than that in the source tank. Therefore, a temperature sensor is attached to the inlet pipe 5 side, and a heater is provided to the outlet pipe 6 side, and the temperature of the carrier gas on the inlet pipe 5 side is determined based on the temperature of the carrier gas.
It may be configured to control the temperature of the mixed gas at °C.

ヒータ13で保温された後反応炉7内に流入した上記混
合ガスは、流量調整器15を介して該反応炉7内に供給
された水素等の還元ガスと共にヒータ18で加熱され、
ここで気相反応を生じて半導体ウェハ等の表面へ堆積付
着する。このとき、反応炉7内は、一般に気相反応を良
好にするため真空ポンプにより減圧状態にしておく。
The mixed gas that has been kept warm by the heater 13 and has flowed into the reactor 7 is heated by the heater 18 together with a reducing gas such as hydrogen that is supplied into the reactor 7 via the flow rate regulator 15.
Here, a gas phase reaction occurs and the material is deposited on the surface of a semiconductor wafer or the like. At this time, the inside of the reactor 7 is generally kept under reduced pressure by a vacuum pump in order to improve the gas phase reaction.

なお、反応炉7内を通過した未反応混合ガスは、上記真
空ポンプ16を通じて排出される。
Note that the unreacted mixed gas that has passed through the reactor 7 is exhausted through the vacuum pump 16.

上記実施例では、パルプ8の開閉によるキャリヤガスの
atコントロールによって蒸発ガスの流量制御を行うよ
うにしているが、制御回路ηを介してソースタンク2の
加熱湯度をコントロールすることによって蒸発ガスの蒸
発量を制御するようにしてもよい。
In the above embodiment, the flow rate of the evaporated gas is controlled by AT control of the carrier gas by opening and closing the pulp 8, but the flow rate of the evaporated gas is controlled by controlling the heating temperature of the source tank 2 via the control circuit η. The amount of evaporation may be controlled.

上述した本発明の流量制御装置によれば、次に列挙する
ように顕著な効果がある。
According to the flow rate control device of the present invention described above, there are remarkable effects as listed below.

(1)  ソースタンクから送出される混合ガスの濃度
を直接測定して蒸発ガスの流量を制御するようにしたの
で、劇料物質表面の経時的変化や蒸発に伴う温度変化等
による蒸発量の変化にも拘らず、蒸発ガスの流量を高精
度に制御することができる。
(1) The flow rate of evaporated gas is controlled by directly measuring the concentration of the mixed gas sent out from the source tank, so the amount of evaporation changes due to changes in the surface of the harmful substance over time, temperature changes accompanying evaporation, etc. Nevertheless, the flow rate of evaporated gas can be controlled with high precision.

(2)蒸発ガスの発生及びその流量制御のだめの濃度検
出部分を恒温槽内に設け、ここで所定流量に制御された
蒸発ガスを次工程へ送給するようにしたので、再現性の
良い良質な膜成長を行わせることができる。
(2) The concentration detection part for generating evaporated gas and controlling its flow rate is installed in a thermostatic chamber, and the evaporated gas controlled at a predetermined flow rate is sent to the next process, resulting in high quality with good reproducibility. film growth can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る流量制御装置の構成図である。 1・・・恒温槽、    2・・・ソースタンク、3・
・・低圧蒸気物質、4・・・供給源、5・・・送入管、
    6・・・送出管、11. 、12・・・熱動セ
ンサ、 19・・・制御装置。 特許出願人 日本タイラン株式会社
FIG. 1 is a configuration diagram of a flow rate control device according to the present invention. 1... Constant temperature bath, 2... Source tank, 3...
...Low pressure vapor substance, 4... Supply source, 5... Feed pipe,
6... Delivery pipe, 11. , 12... Thermal sensor, 19... Control device. Patent applicant Nippon Tailan Co., Ltd.

Claims (1)

【特許請求の範囲】 1 内部温度を任意の高温に設定可能な恒温槽属化合物
を収容するためのソスタンクと、該ソースタンクに接続
され、供給源からのキャリヤガスを該ソースタンクに送
入する送入管と、上記ソースタンク内で蒸発した高融点
金属化合物の蒸発ガスとキャリヤガスとの混合ガスを該
ソースタンクから恒温槽外に送出するための送出管と、 恒温槽内において上記送入管及び送出管にそれぞれ取付
けられ、各管内を流れるキャリヤガス及び混合ガスの濃
度を測定するキャリヤガス濃度測定用熱動センサ及び混
合ガス濃度測定用熱動センサと、 上記センサにおける濃度測定信号に基づいてキャリヤガ
スの流量または高融点金属化合物の蒸発量をコントロー
ルする制御装置と、 を備えたことを特徴とする高融点金属化合物における蒸
発ガスの流量制御装置。
[Claims] 1. A Sos tank for accommodating a constant-temperature bath compound whose internal temperature can be set to an arbitrary high temperature, and a SoS tank connected to the source tank and supplying a carrier gas from a supply source to the source tank. a delivery pipe for delivering a mixed gas of the vaporized gas of the high melting point metal compound evaporated in the source tank and a carrier gas from the source tank to the outside of the thermostatic chamber; A thermal dynamic sensor for measuring carrier gas concentration and a thermal dynamic sensor for measuring mixed gas concentration, which are attached to the pipe and the delivery pipe, respectively, and measure the concentration of the carrier gas and mixed gas flowing in each pipe, and based on the concentration measurement signal in the sensor. A control device for controlling the flow rate of a carrier gas or the amount of evaporation of a high melting point metal compound using a high melting point metal compound.
JP5972583A 1983-04-05 1983-04-05 Control device for flow rate of evaporating gas in high melting metallic compound Granted JPS59185772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5972583A JPS59185772A (en) 1983-04-05 1983-04-05 Control device for flow rate of evaporating gas in high melting metallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5972583A JPS59185772A (en) 1983-04-05 1983-04-05 Control device for flow rate of evaporating gas in high melting metallic compound

Publications (2)

Publication Number Publication Date
JPS59185772A true JPS59185772A (en) 1984-10-22
JPH0362790B2 JPH0362790B2 (en) 1991-09-27

Family

ID=13121460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5972583A Granted JPS59185772A (en) 1983-04-05 1983-04-05 Control device for flow rate of evaporating gas in high melting metallic compound

Country Status (1)

Country Link
JP (1) JPS59185772A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102251U (en) * 1983-12-14 1985-07-12 日本電気株式会社 Vapor phase growth equipment
JPS6191301U (en) * 1984-11-17 1986-06-13
EP0382987A1 (en) * 1989-02-13 1990-08-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas supplying apparatus
US6802419B2 (en) 2002-10-11 2004-10-12 Bert Co Industries, Inc. Package form and method of making a package
US6899223B2 (en) 2002-05-09 2005-05-31 Bert-Co Industries, Inc. Form for a package and method of making same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513737U (en) * 1974-06-24 1976-01-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513737U (en) * 1974-06-24 1976-01-12

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102251U (en) * 1983-12-14 1985-07-12 日本電気株式会社 Vapor phase growth equipment
JPS6191301U (en) * 1984-11-17 1986-06-13
EP0382987A1 (en) * 1989-02-13 1990-08-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas supplying apparatus
US6899223B2 (en) 2002-05-09 2005-05-31 Bert-Co Industries, Inc. Form for a package and method of making same
US6802419B2 (en) 2002-10-11 2004-10-12 Bert Co Industries, Inc. Package form and method of making a package

Also Published As

Publication number Publication date
JPH0362790B2 (en) 1991-09-27

Similar Documents

Publication Publication Date Title
US4717596A (en) Method for vacuum vapor deposition with improved mass flow control
JP5647083B2 (en) Raw material vaporization supply device with raw material concentration detection mechanism
US4640221A (en) Vacuum deposition system with improved mass flow control
US4393013A (en) Vapor mass flow control system
US5645642A (en) Method for in-situ liquid flow rate estimation and verification
US6038919A (en) Measurement of quantity of incompressible substance in a closed container
US5968588A (en) In-situ liquid flow rate estimation and verification by sonic flow method
US20190284684A1 (en) Sublimated gas supply system and sublimated gas supply method
JP2013033782A (en) Raw material vaporization supply apparatus
US5575854A (en) Semiconductor treatment apparatus
TWI568872B (en) Evaporation apparatus
US5431733A (en) Low vapor-pressure material feeding apparatus
JP2646788B2 (en) Steam flow rate measuring device
JPS5934420B2 (en) chemical vapor distribution system
US5731508A (en) Calibrating gas generator
JPH05228361A (en) Device for vaporizing and supplying liquid material
JPS59185772A (en) Control device for flow rate of evaporating gas in high melting metallic compound
JPH02217474A (en) Chemical metallizing apparatus
JPS61279678A (en) Control device for flow rate
JPH0642938B2 (en) Vaporized gas flow controller
JPH05305228A (en) Quantitative evaporating supply apparatus
JP2934883B2 (en) Gas generator by vaporization method
JPS60244332A (en) Apparatus for gasification supply of condensible material
Yamamoto et al. Reproducible growth of metalorganic chemical vapor deposition derived YBa2Cu3Ox thin films using ultrasonic gas concentration analyzer
JPH0222472A (en) Device for feeding gas of liquid starting material for vapor growth