JPH0747119B2 - Device for injecting low vapor pressure substances into low pressure or vacuum systems - Google Patents

Device for injecting low vapor pressure substances into low pressure or vacuum systems

Info

Publication number
JPH0747119B2
JPH0747119B2 JP63053408A JP5340888A JPH0747119B2 JP H0747119 B2 JPH0747119 B2 JP H0747119B2 JP 63053408 A JP63053408 A JP 63053408A JP 5340888 A JP5340888 A JP 5340888A JP H0747119 B2 JPH0747119 B2 JP H0747119B2
Authority
JP
Japan
Prior art keywords
pressure
control valve
pipe
low
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63053408A
Other languages
Japanese (ja)
Other versions
JPS63236530A (en
Inventor
ハインリツヒ、シユレツテラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPS63236530A publication Critical patent/JPS63236530A/en
Publication of JPH0747119B2 publication Critical patent/JPH0747119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低圧又は真空系統に低蒸気圧の物質を精確に
注入するための装置に関する。
Description: FIELD OF THE INVENTION The present invention relates to a device for accurately injecting low vapor pressure substances into a low pressure or vacuum system.

〔従来の技術〕[Conventional technology]

ガス源を使用する気相エピタクシーおよび分子線エピタ
クシー成長においては、半導体化合物はガス状凝集状態
において低圧又は真空系統の中に、そこで加熱された氷
晶物質表面上に薄い被膜を成長させるために注入され
る。この目的のために、真空室への出口開口において十
分な量で精確に配分できる粒子流を得るための装置が必
要である。特に複数のガス供給配管を使用して、種々の
半導体化合物特に金属有機化合物を所定の化学量論比で
注入室に入れるようにする場合、流出率は非常に精確に
調整できねばならない。
In vapor phase epitaxy and molecular beam epitaxy growth using a gas source, the semiconductor compound is in a gaseous state of aggregation in a low pressure or vacuum system to grow a thin film on the surface of the cryogen heated there. Is injected into. For this purpose, there is a need for a device for obtaining a particle flow that can be accurately distributed in sufficient quantity at the outlet opening to the vacuum chamber. The outflow rate must be very precisely adjustable, especially when using several gas supply pipes to bring various semiconductor compounds, in particular metal-organic compounds, into the injection chamber in a predetermined stoichiometric ratio.

従来かかる装置では、注入すべき物質の純粋な蒸気が圧
力制御のもとに真空系統に直接注入されていた。しかし
これは不可避の伝導抵抗により、地さな酸飽和蒸気圧の
物質(例えばトリエチルインジウムは20℃で約0.25mbar
にすぎない)の場合、非常に小さな物質流しか得られな
い。従来大きな物質流を得るには、キャリアガス例えば
水素を注入すべき物質が収容されている容器内に導き
(いわゆるバブリング)、このキャリアガスを容器の上
側部分においてガス状凝集状態で集合している物質と混
合させ、この混合物をポンプ系統によって低圧あるいは
真空に維持されている真空室にある程度の圧力のもとに
導入しなければならなかった。
Conventionally, in such devices, pure vapor of the substance to be injected has been injected directly into the vacuum system under pressure control. However, this is due to the unavoidable conduction resistance, and substances with a saturated acid-saturated vapor pressure (for example, triethylindium at about 20 ° C and about 0.25 mbar).
If only) then only a very small mass flow is obtained. Conventionally, in order to obtain a large substance flow, a carrier gas, for example, hydrogen is introduced into a container containing a substance to be injected (so-called bubbling), and this carrier gas is collected in a gaseous state in the upper part of the container. It had to be mixed with the substances, and this mixture had to be introduced under some pressure into a vacuum chamber maintained at a low pressure or vacuum by a pump system.

従ってかかる装置の場合、貫流ガス量を調整する必要か
ある。これは一般には、半導体化合物を収容している容
器の前で、貫流キャリアガスを測定する質量流量制御装
置によって行われる。この方法は、質量流量制御装置の
測定精度が小さな流量(1cm3/min以下)の場合には低
すぎるという欠点を有する。これに対し配管内の圧力は
極めて精確に測定することができる。
Therefore, in the case of such a device, it is necessary to adjust the flow-through gas amount. This is typically done by a mass flow controller that measures the flow-through carrier gas in front of the container containing the semiconductor compound. This method has the drawback that the measurement accuracy of the mass flow controller is too low for small flow rates (1 cm 3 / min or less). On the other hand, the pressure in the pipe can be measured extremely accurately.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明の目的は、低圧又は真空系統に低蒸気圧の物質を
十分な物質流量において精確に配分して注入することが
できるような装置を提供することにある。
An object of the present invention is to provide a device capable of accurately distributing and injecting a substance having a low vapor pressure into a low pressure or vacuum system at a sufficient substance flow rate.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明によればこの目的は、少なくとも一つの低圧/真
空質と液状あるいは固形状の注入すべき物質を収容する
ための少なくとも一つの容器とを備え、この容器の中に
その底の近くまで達しているキャリアガスの供給配管
と、キャリアガスと気相状態にある注入すべき物質との
混合物に対する前記容器の上方にあって蓋の下側から出
ている出口配管とが設けられている、低圧又は真空系統
に低蒸気圧の物質を精確に注入するためのガス系統にお
いて、供給配管に第1の制御弁が、出口配管の端部に第
2の制御弁が設けられ、第2の制御弁の後ろに低圧/真
空質にガス流を導くための注入配管が設けられ、出口配
管に第1の圧力測定個所が、注入配管に第2の圧力測定
個所が設けられ、第1の圧力測定個所に第1の圧力測定
器が、第2の圧力測定個所に第2の圧力測定器が接続さ
れ、第1の圧力測定器から第1の制御弁に第1の信号線
が、第2の圧力測定器から第2の制御弁に第2の信号線
が通じており、前記測定個所における圧力が前記制御弁
を介して調整され、その制御弁が圧力測定器によって信
号線を介して制御されることによって達成できる。
According to the invention, this object comprises at least one low-pressure / vacuum quality and at least one container for containing the substance to be injected, in liquid or solid form, into this container reaching close to its bottom. A carrier gas supply line and an outlet line above the container for the mixture of the carrier gas and the substance to be injected which is in the gas phase and exiting from the underside of the lid, low pressure Alternatively, in a gas system for accurately injecting a substance having a low vapor pressure into a vacuum system, a first control valve is provided in a supply pipe and a second control valve is provided at an end of an outlet pipe, and a second control valve is provided. Is provided with an injection pipe for guiding the gas flow to the low pressure / vacuum quality, the outlet pipe is provided with a first pressure measurement point, the injection pipe is provided with a second pressure measurement point, and the first pressure measurement point is provided. The first pressure measuring device A second pressure measuring device is connected to the portion, a first signal line from the first pressure measuring device to the first control valve, and a second signal line from the second pressure measuring device to the second control valve. Can be achieved by adjusting the pressure at the measuring point via the control valve, which control valve is controlled via a signal line by the pressure measuring device.

即ち本発明に基づく装置は次のように構成されている。
注入すべき物質例えば液状凝集状態にある半金属有機化
合物を収容するために、そのために寸法づけられた容器
が用いられる。この容器に対してキャリアガスが貫流す
る供給配管と出口配管が設けられている。その供給配管
および容器と真空室との間の配管に、それぞれ制御弁が
組み込まれている。キャリアガス用の供給配管における
制御弁は、電子制御装置を介して制御される。この制御
装置は主に、容器から出ている配管内の圧力を測定して
所定の設定値と比較する圧力測定器から成っている。容
器と真空室との間にあるこの制御弁の後ろに、相応した
調整装置が設けられている。この場合圧力測定個所は制
御弁のすぐ後ろに設定される。
That is, the device according to the present invention is configured as follows.
A container sized therefor is used to contain the substance to be injected, for example a semi-metallic organic compound in the liquid state of aggregation. A supply pipe and an outlet pipe through which the carrier gas flows are provided to the container. A control valve is incorporated in each of the supply pipe and the pipe between the container and the vacuum chamber. The control valve in the carrier gas supply line is controlled via the electronic control unit. This control device mainly consists of a pressure measuring device which measures the pressure in the pipe coming out of the container and compares it with a predetermined set value. Behind this control valve between the container and the vacuum chamber, a corresponding adjusting device is provided. In this case, the pressure measuring point is set just behind the control valve.

〔作用効果〕[Action effect]

この本発明に基づく装置の作用を説明する上で注意すべ
きことは、容器から出ている出口配管内の全圧力が、キ
ャリアガスの分圧とガス状凝集状態にある注入すべき物
質の分圧とから成っていることである。しかしこの装置
の作用にとって重要なのは、圧力ではなく粒子流であ
る。その流量は圧力の関数である。ガス密度および配管
の幾何学的形状に応じて、粘性流あるいは分子流あるい
はそれらの中間流が生じる。粘性流は流量と圧力の二乗
との比で表され、分子流あるいはクヌーセン流は流量と
圧力の比で表される。約0.1〜10mbarの範囲の圧力の場
合、一般には流量と1より大きいべき乗の圧力との間に
比が生じる。従って流量と圧力との関係は過線形であ
る。これにより配管内における圧力の増加によって流量
は過比例で著しく増大する。例えば二乗であれば、キャ
リアガスがない場合、流量は注入すべき物質の蒸気圧の
二乗に比例する。このガスに同じ大きさの分圧を有する
キャリアガスを混合すると、全圧力は最初の場合の2倍
の大きさとなる。しかし流量が圧力の二乗に関係するこ
とから、総流量は4倍となる。総流量は等分のキャリア
ガス流量とガス状注入物質流量とから構成される。この
ようにキャリアガスの添加によって物質流量は倍増でき
る。二乗より小さい場合、即ち流量と指数が1〜2の間
のべき乗の圧力との比例関係の場合、発生する効果は相
応して弱められる。低蒸気圧の物質の場合、このように
してキャリアガスのポンプ搬送によって注入すべき物質
の流量を増加することができる。
It should be noted in explaining the operation of the device according to the present invention that the total pressure in the outlet pipe coming out of the container depends on the partial pressure of the carrier gas and that of the substance to be injected in the gaseous state of aggregation. It consists of pressure. However, it is the particle flow, not the pressure, that is important to the operation of this device. The flow rate is a function of pressure. Depending on the gas density and the geometry of the pipe, viscous or molecular flows or their intermediate flows occur. Viscous flow is represented by the ratio of flow rate to the square of pressure, and molecular flow or Knudsen flow is represented by the ratio of flow rate and pressure. For pressures in the range of about 0.1 to 10 mbar, there is generally a ratio between the flow rate and a power that is greater than one. Therefore, the relationship between flow rate and pressure is hyperlinear. As a result, the flow rate increases remarkably in proportion to the increase in pressure in the pipe. For example, squared, in the absence of carrier gas, the flow rate is proportional to the square of the vapor pressure of the substance to be injected. When this gas is mixed with a carrier gas having the same partial pressure, the total pressure is twice as high as in the first case. However, since the flow rate is related to the square of the pressure, the total flow rate becomes four times. The total flow rate consists of equal parts carrier gas flow rate and gaseous injectate flow rate. Thus, the flow rate of the substance can be doubled by adding the carrier gas. If it is less than the square, i.e. in the case of a proportional relationship between the flow rate and the exponential pressure between an index of 1 and 2, the effect produced is correspondingly weakened. In the case of low vapor pressure substances, it is possible in this way to increase the flow rate of the substance to be injected by pumping the carrier gas.

注入すべき物質の蒸気圧は、容器がその物質と共に温浴
などで一定した温度に保たれることにより一定に維持さ
れる。全圧力の測定によりキャリアガス用の供給配管に
組み込まれた制御弁が制御され、このようにして全圧力
は一定に維持されるか、あるいはその都度設定された値
に調整される。第2の制御弁によって、混合ガス従って
真空室に流入する粒子流の圧力が個々に制御される。
The vapor pressure of the substance to be injected is kept constant by keeping the container with the substance at a constant temperature in a warm bath or the like. The measurement of the total pressure controls a control valve built into the supply line for the carrier gas, and in this way the total pressure is either kept constant or is adjusted to the set value each time. The second control valve individually controls the pressure of the gas mixture and thus of the particle stream entering the vacuum chamber.

〔実施例〕〔Example〕

以下図面に示した実施例を参照して本発明を詳細に説明
する。
The present invention will be described in detail below with reference to the embodiments shown in the drawings.

容器1は液状あるいは固形状の注入すべき物質を収容す
るために使用される。この容器1にはキャリアガスの供
給配管2が通じている。この供給配管2は容器1の底に
接近して開口している。この容器1から出口配管3が出
ており、その開口は容器1内の上方においてその覆い又
は閉塞蓋の下側に位置している。このようにしてキャリ
アガスを供給配管2を介して容器1内にある物質に導入
することかできる。その場合キャリアガスは気泡の形で
物質内を上昇し、蒸気圧の平衡により気相状態にある物
質と混合され、出口配管3の開口を通して容器1から排
出される。
The container 1 is used for containing a substance to be injected in a liquid or solid form. A carrier gas supply pipe 2 communicates with the container 1. The supply pipe 2 is open close to the bottom of the container 1. An outlet pipe 3 extends from the container 1, and its opening is located above the container 1 and below the cover or the closing lid. In this way, the carrier gas can be introduced into the substance in the container 1 via the supply pipe 2. In that case, the carrier gas rises in the substance in the form of bubbles, is mixed with the substance in the vapor phase state due to equilibrium of vapor pressure, and is discharged from the container 1 through the opening of the outlet pipe 3.

供給配管2には第1の制御弁7が、出口配管3の端部に
は第2の制御弁11が設置されている。容器1とこの第2
の制御弁11との間に第1の圧力測定個所5が設けられて
いる。この圧力測定個所5に接続されている第1の圧力
測定器4は、この個所における圧力を測定し、この圧力
を目標値と比較し、第1の信号線6を介して第1の制御
弁7を制御し、これによって第1の圧力測定個所5にお
けるガス圧が所定の圧力に調整され、一定に保持され
る。精確な圧力検出器を使用する場合、これは+0.1%
以上の精度で行うことができる。
A first control valve 7 is installed in the supply pipe 2 and a second control valve 11 is installed at the end of the outlet pipe 3. Container 1 and this second
A first pressure measuring point 5 is provided between the control valve 11 and the control valve 11. A first pressure measuring device 4, which is connected to this pressure measuring point 5, measures the pressure at this point, compares this pressure with a target value and, via a first signal line 6, a first control valve 7 is controlled, whereby the gas pressure at the first pressure measurement point 5 is adjusted to a predetermined pressure and kept constant. This is + 0.1% when using an accurate pressure detector
It can be performed with the above accuracy.

出口配管3は第2の制御弁11の後ろで、低圧又は真空系
統の一部を成す真空室12にガスを導入するための注入配
管13に接続されている。この注入配管13には第2の圧力
測定個所9が設けられ、ここには第2の圧力測定器8が
接続されている。この第2の圧力測定器8は個所9の圧
力を測定し、第2の信号線10を介して第2の制御弁11を
制御する。このような制御機構によって第2の圧力測定
個所9における圧力従って粒子流量が所定の値に精確に
調整される。その場合第2の圧力測定個所9における圧
力は第1の圧力測定個所5における圧力を超えることは
ない。
The outlet pipe 3 is connected behind a second control valve 11 to an injection pipe 13 for introducing gas into a vacuum chamber 12 forming part of a low pressure or vacuum system. The injection pipe 13 is provided with a second pressure measuring point 9 to which a second pressure measuring device 8 is connected. The second pressure measuring device 8 measures the pressure at the location 9 and controls the second control valve 11 via the second signal line 10. With such a control mechanism, the pressure at the second pressure measuring point 9, and hence the particle flow rate, is accurately adjusted to a predetermined value. In that case, the pressure at the second pressure measuring point 9 does not exceed the pressure at the first pressure measuring point 5.

更に本発明によれば、容器1に対して補助的なバイパス
路16が設けられる。供給配管2には第1の制御弁7と容
器1との間に遮断弁14が組み込まれている。第1の制御
弁7とこの遮断弁14との間で供給配管2から一つの配管
が分岐している。この配管は容器1と第2の制御弁11と
の間における出口配管3に開口し、バイパス路16を形成
している。このバイパス路16を遮断するためにこの配管
には少なくとも一つの弁15が組み込まれている。洗流さ
れない死空間ができることを避けるために、バイパス路
16の接続個所にそれぞれ弁を設けると有利である。
Further according to the invention, an auxiliary bypass 16 for the container 1 is provided. A shutoff valve 14 is incorporated in the supply pipe 2 between the first control valve 7 and the container 1. One pipe branches from the supply pipe 2 between the first control valve 7 and the shutoff valve 14. This pipe opens to the outlet pipe 3 between the container 1 and the second control valve 11 and forms a bypass passage 16. At least one valve 15 is incorporated in the pipe to shut off the bypass 16. Bypass passages to avoid creating dead spaces that will not be washed out
It is advantageous to provide valves at each of the 16 connection points.

この装置の有利な作動方式は、第1の圧力測定個所5に
おける圧力を第1の圧力測定器4および第1の制御弁7
を制御するための第1の信号線6を介して一定に保持
し、注入配管13における圧力を第2の測定個所9におい
て検出し、第2の圧力測定器8、第2の信号線10および
第2の制御弁11を介してその都度必要な物質流に相応し
た値に調整することにある。
An advantageous mode of operation of this device is that the pressure at the first pressure measuring point 5 is set to the first pressure measuring device 4 and the first control valve 7.
The pressure in the injection pipe 13 is detected at the second measuring point 9, and the second pressure measuring device 8, the second signal line 10 and A second control valve 11 is used to adjust the value to the required material flow in each case.

別の有利な作動方式は、第2の圧力測定個所9における
圧力を制御機構を介して一定に保持し、第1の圧力測定
個所5における圧力の変動に応じて第1の制御弁7に対
する制御機構によってキャリアガスと有効ガスとの比率
を変更することにあり、その場合同様に粒子流量と圧力
との間の非線形性の物理的特性が利用される。
Another advantageous mode of operation is to keep the pressure at the second pressure measuring point 9 constant via the control mechanism and to control the first control valve 7 in response to fluctuations in the pressure at the first pressure measuring point 5. The mechanism consists in changing the ratio of carrier gas to effective gas, in which case the physical property of non-linearity between particle flow rate and pressure is also used.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明に基づく系統の概略図である。 1…容器 2…供給配管 3…出口配管 4…第1の圧力測定器 5…第1の圧力測定個所 6…第1の信号線 7…第1の制御弁 8…第2の圧力測定器 9…第2の圧力測定個所 10…第2の信号線 11…第2の制御弁 12…低圧ないし真空室 13…注入配管 14、15…遮断弁 16…バイパス路 The drawing is a schematic illustration of a system according to the invention. DESCRIPTION OF SYMBOLS 1 ... Container 2 ... Supply piping 3 ... Outlet piping 4 ... 1st pressure measuring instrument 5 ... 1st pressure measuring location 6 ... 1st signal wire 7 ... 1st control valve 8 ... 2nd pressure measuring instrument 9 … Second pressure measurement point 10… Second signal line 11… Second control valve 12… Low pressure or vacuum chamber 13… Injection piping 14, 15… Shutdown valve 16… Bypass path

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一つの低圧/真空室(12)と液
状あるいは固形状の注入すべき物質を収容するための少
なくとも一つの容器(1)とを備え、この容器(1)の
中にその底の近くまで達しているキャリアガスの供給配
管(2)と、キャリアガスと気相状態にある注入すべき
物質との混合物に対する前記容器(1)の上方にあって
蓋の下側から出ている出口配管(3)とが設けられてい
る、低圧又は真空系統に低蒸気圧の物質を精確に注入す
るための装置において、供給配管(2)に第1の制御弁
(7)が、出口配管(3)の端部に第2の制御弁(11)
が設けられ、第2の制御弁(11)の後ろに低圧/真空室
(12)にガス流を導くための注入配管(13)が設けら
れ、出口配管(3)に第1の圧力測定個所(5)が、注
入配管(13)に第2の圧力測定個所(9)が設けられ、
第1の圧力測定個所(5)に第1の圧力測定器(4)
が、第2の圧力測定個所(9)に第2の圧力測定器
(8)が接続され、第1の圧力測定器(4)から第1の
制御弁(7)に第1の信号線(6)が、第2の圧力測定
器(8)から第2の制御弁(11)に第2の信号線(10)
が通じており、前記測定個所(5、9)における圧力が
前記制御弁(7、11)を介して調整され、これらの制御
弁(7、11)が圧力測定器(4、8)によって信号線
(6、10)を介して制御されることを特徴とする低圧又
は真空系統に低蒸気圧の物質を注入するための装置。
1. At least one low-pressure / vacuum chamber (12) and at least one container (1) for containing a substance to be injected in liquid or solid form, in which the container (1) A carrier gas supply pipe (2) reaching near the bottom and above the container (1) for the mixture of carrier gas and the substance to be injected in the gas phase, exiting from the underside of the lid. In an apparatus for accurately injecting a substance having a low vapor pressure into a low-pressure or vacuum system, which is provided with an outlet pipe (3) which is provided, a first control valve (7) is provided at an outlet of a supply pipe (2). The second control valve (11) at the end of the pipe (3)
Is provided, an injection pipe (13) for guiding a gas flow to the low pressure / vacuum chamber (12) is provided behind the second control valve (11), and a first pressure measurement point is provided at the outlet pipe (3). (5) is provided with a second pressure measurement point (9) in the injection pipe (13),
At the first pressure measuring point (5), the first pressure measuring device (4)
However, the second pressure measuring device (8) is connected to the second pressure measuring portion (9), and the first signal line (from the first pressure measuring device (4) to the first control valve (7) ( 6) is the second signal line (10) from the second pressure measuring device (8) to the second control valve (11).
And the pressure at the measuring points (5, 9) is regulated via the control valves (7, 11), which control signals (7, 11) are signaled by the pressure measuring device (4, 8). Device for injecting a substance of low vapor pressure into a low pressure or vacuum system, characterized in that it is controlled via lines (6, 10).
【請求項2】供給配管(2)と出口配管(3)との間に
弁(15)付のバイパス路(16)が設けられ、供給配管
(2)においてバイパス路(16)の接続個所の後ろに遮
断弁(14)が設けられていることを特徴とする請求項1
記載の装置。
2. A bypass passage (16) with a valve (15) is provided between the supply pipe (2) and the outlet pipe (3), and the bypass pipe (16) is provided with a bypass passage (16). A shut-off valve (14) is provided at the rear, characterized in that
The described device.
JP63053408A 1987-03-09 1988-03-07 Device for injecting low vapor pressure substances into low pressure or vacuum systems Expired - Lifetime JPH0747119B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3707507 1987-03-09
DE3707507.1 1987-03-09

Publications (2)

Publication Number Publication Date
JPS63236530A JPS63236530A (en) 1988-10-03
JPH0747119B2 true JPH0747119B2 (en) 1995-05-24

Family

ID=6322603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053408A Expired - Lifetime JPH0747119B2 (en) 1987-03-09 1988-03-07 Device for injecting low vapor pressure substances into low pressure or vacuum systems

Country Status (3)

Country Link
EP (1) EP0286158B1 (en)
JP (1) JPH0747119B2 (en)
DE (1) DE3861610D1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585296B2 (en) * 1987-09-25 1997-02-26 株式会社東芝 Organometallic pyrolysis vapor phase epitaxy
EP0311446A3 (en) * 1987-10-08 1990-11-22 Mitsubishi Rayon Co., Ltd. Apparatus for producing compound semiconductor
EP0382987A1 (en) * 1989-02-13 1990-08-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Gas supplying apparatus
US5108983A (en) * 1989-11-21 1992-04-28 Georgia Tech Research Corporation Method for the rapid deposition with low vapor pressure reactants by chemical vapor deposition
TW358964B (en) 1996-11-21 1999-05-21 Applied Materials Inc Method and apparatus for improving sidewall coverage during sputtering in a chamber having an inductively coupled plasma
US6038919A (en) * 1997-06-06 2000-03-21 Applied Materials Inc. Measurement of quantity of incompressible substance in a closed container
US5972117A (en) * 1997-09-03 1999-10-26 Applied Materials, Inc. Method and apparatus for monitoring generation of liquid chemical vapor
US6098964A (en) * 1997-09-12 2000-08-08 Applied Materials, Inc. Method and apparatus for monitoring the condition of a vaporizer for generating liquid chemical vapor
US6033479A (en) * 1998-04-22 2000-03-07 Applied Materials, Inc. Process gas delivery system for CVD having a cleaning subsystem

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640221A (en) * 1985-10-30 1987-02-03 International Business Machines Corporation Vacuum deposition system with improved mass flow control

Also Published As

Publication number Publication date
EP0286158B1 (en) 1991-01-23
JPS63236530A (en) 1988-10-03
DE3861610D1 (en) 1991-02-28
EP0286158A1 (en) 1988-10-12

Similar Documents

Publication Publication Date Title
US4911101A (en) Metal organic molecular beam epitaxy (MOMBE) apparatus
US5866795A (en) Liquid flow rate estimation and verification by direct liquid measurement
US5968588A (en) In-situ liquid flow rate estimation and verification by sonic flow method
US20140299206A1 (en) Raw material vaporizing and supplying apparatus equipped with raw material concentration
JPH0747119B2 (en) Device for injecting low vapor pressure substances into low pressure or vacuum systems
US4728434A (en) Liquid chromatography
US4793173A (en) Process for calibrating a gas metering instrument
GB2028380A (en) Method and apparatus for regulating the evaporation rate in reactive vacuum deposition processes
US3975947A (en) Method of and apparatus for quantitative analysis
US4170960A (en) Additive supply and control device
JPH0229261A (en) Narcotics vaporizer
US3500675A (en) Apparatus for an automatic gravimetric recording of characteristic curves which represent the sorption of gas by a sample
US3365951A (en) Sample injector for gas chromatographs
US4356834A (en) Vapor feed regulator
US3626761A (en) Sample-introduction apparatus for a gas-chromatograph
US7003215B2 (en) Vapor flow controller
US2080872A (en) Method of and apparatus for adding reagents to liquids
US6406821B1 (en) Method for preparing silver halide emulsions and apparatus for implementing the method
US3400585A (en) Method of measuring the output of a source of a certain gas
JP2934883B2 (en) Gas generator by vaporization method
JP2004514997A (en) Method and apparatus for metered delivery of low volume liquid streams
GB1200471A (en) Fluid pressure or fluid flow control device
US4346673A (en) Apparatus and method for metering and controlling a feed of hydrogen fluoride vapor
JPH0222472A (en) Device for feeding gas of liquid starting material for vapor growth
JPH0362790B2 (en)