JPS6127679B2 - - Google Patents

Info

Publication number
JPS6127679B2
JPS6127679B2 JP57063312A JP6331282A JPS6127679B2 JP S6127679 B2 JPS6127679 B2 JP S6127679B2 JP 57063312 A JP57063312 A JP 57063312A JP 6331282 A JP6331282 A JP 6331282A JP S6127679 B2 JPS6127679 B2 JP S6127679B2
Authority
JP
Japan
Prior art keywords
water
aluminum
core material
alloy
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57063312A
Other languages
Japanese (ja)
Other versions
JPS58179798A (en
Inventor
Hiroshi Kawase
Motoyoshi Yamaguchi
Yoshiharu Hasegawa
Kazumi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Denso Corp
Original Assignee
Furukawa Aluminum Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd, NipponDenso Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP57063312A priority Critical patent/JPS58179798A/en
Publication of JPS58179798A publication Critical patent/JPS58179798A/en
Publication of JPS6127679B2 publication Critical patent/JPS6127679B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルミニウム製熱交換器に関するもの
で、特に循環水と接触する部分の耐孔食性を向上
せしめたものである。 従来、アルミニウム製熱交換器、例えば自動車
用ラジエータは第1図に示すように直立する平列
状の多数の水管1両端に水室2,2を取付け、各
水管1間に多数のフイン3を取付けた構造のもの
で、エンジンから吸熱した冷却水は入口4よりラ
ジエータ内に入つて冷却され、出口5よりエンジ
ン部に送られ、冷却水は供給口6から補充される
ようになつている。尚、図において7はサイドバ
ー、8はドレンコツクを示す。 このような熱交換器のフインにはJIS3003(Al
−Mn合金)、JIS1100(工業用純アルミニウム)、
JIS5005(Al−Mg合金)又はこれ等にZn、Sn等
を添加した犠性陽極フインを使用し、また水管及
び水室には陰極防食効果の優れたアルミニウム複
合板を使用している。この複合板はZn0.8〜1.3wt
%(以下wt%を単に%と略記)を含むアルミニ
ウム金、例えばJIS7072(Al−Zn合金)を皮材と
し、これをJIS3003からなる芯材の片面にクラツ
ドし、他面にろう材(All−Si合金、Al−Si−Mg
系合金)をクラツドしたもので、これを電縫ある
いはプレス成形して外表面にろう材を有する水管
と水室を形成し、第1図に示すように水管を直立
して平列状に配置し、その上下両端に水室を取付
け、直立する水管間にコルゲート状にプレス成形
したフインを取付け、これをプレージングにより
接合している。 前記複合板は腐食性雰囲気に晒した場合、芯材
に比べて電位が低い皮材が優先的に腐食して芯材
の腐食を防止する作用、即ち陰極防食効果を有す
る。このような複合板を用いて熱交換器を製造す
るためには、従来フラツクスを用いて大気中でプ
レージングを行なうか又は溶融フラツクス中でプ
レージングを行なつている。しかしながらこれ等
の方法は有害なフラツクスを用いるため公害上の
問題があり、またブレージング後にフラツクスを
完全に除去する必要があるなど、種々の欠点があ
つた。 これに鑑み近年真空中でブレージングする方法
が開発され、盛んに行なわれるようになつた。し
かしながら真空中でブレージングを行なうと、水
管及び水室を形成する複合板の皮材に含まれてい
るZnが真空中へ蒸発し、皮材表面のZn濃度が極
端に減少するため陰極防食効果がほとんどなくな
り、自動車用ラジエータのように腐食環境の厳し
い雰囲気、特に腐食抑制剤によつて管理されてい
ない冷却水に晒されると、孔食が芯材にまで達
し、遂には水管や水室に貫通孔を生ずる欠点があ
つた。 本発明者等はJIS7072の真空ブレージングにお
けるZnの蒸発を抑制することについて種々検討
の結果、JIS7072に微量のCa又はLiを添加するこ
とによりZnの蒸発を抑制できることを知見し、
これを提案した。しかし、Ca又はLiの添加はか
なりの効果を奏するもZnの蒸発を完全に抑制す
ることは不可能であり、特に大量生産においては
Znの蒸発による炉の汚染が問題となつている。 本発明はこれに鑑み種々研究の結果、アルミニ
ウムに微量のCaを添加した合金が真空ブレージ
ングによりZnやMgのように真空中で蒸発するこ
となく、優れた陰極防食効果を示すことを知見
し、更に検討の結果、陰極防食効果の優れたアル
ミニウム製熱交換器を開発したもので、複数個の
平列状水管とその両端に取付けた水室を、外表面
にろう材を有するアルミニウム複合板で形成し、
水管間に多数のアルミニウム製フインを取付けて
真空ブレージングにより接合した熱交換器におい
て、水管び水室をCu1.0%以下、Mn0.8%以下
で、CuとMnを合計0.5%以上含み、残部Alと通
常の不純物からなるアルミニウム合金を芯材と
し、その片面にろう材を設け、他面にCa0.02〜
0.2%、FeとSiの合計が0.5%以下、残部アルミニ
ウムからなる皮材を設けたアルミニウム複合板で
形成し、水管及び水室の内面側を皮材としたこと
を特徴とするものである。 即ち、本発明熱交換器は多数の平列状水管の両
端に水室を取付け、水管間に多数のフインを取付
けて、真空ブレージングにより接合する水管と水
室を次の複合板で形成し、冷却水の通る水管及び
水室の内面にCa0.02〜0.2%、FeとSiの合計が0.5
%以下、残部Alからなるアルミニウム合金(以
下Al−Ca合金と略記)層を形成したものであ
る。 複合板はCu1.0%以下、Mn0.8%以下で、Cuと
Mnを合計0.5%以上を含み、残部Alと通常の不純
物からなるアルミニウム合金(以下Al−Cu−Mn
合金と略記)板を芯材とし、その片面にAl−Si合
金、Al−Si−Mg合金等のろう材、例えばAl−10
%Si−1.5%Mg合金又はこれにBiを微量添加した
ろう材をクラツドし、他面にAl−Ca合金材をク
ラツドしたものである。この複合板をロールフオ
ーミングして第2図に示すように外面にろう材1
aを有し、内面にAl−Ca合金材1bを有する管
状体に成形し、その衝接面を電縫して水管1と
し、またプレス成形により第3図に示すように水
管1の両端に取付ける外面にろう材9a、内面に
Al−Ca合金材9bを有する水室用管板9と外面
にろう材10a、内面にAl−Ca合金材10bを
有する水室用外枠10を形成し、水管1の両端に
管板9と外枠10からなる水室2を取付けること
により、冷却水が通る水管1と水室2の内面に
Al−Ca合金層を形成したものである。 Al−Ca合金のCaは真空ブレージングにより蒸
発して炉内を汚染することなく、アルミニウムに
含まれる不純物のFe及びSiと化合物を作り、マ
トリツクスを高純化して合金の電位を下げる作用
をなす。しかしてCa含有量を0.02〜0.2%、Alの
不純物中FeとSiの合計含有量を0.5%以下と限定
したのはCa含有量が0.02%未満ではアルミニウ
ムに含まれる不純物中のFe及びSiと完全に結び
つくには少なすぎ、芯材に対する電位が陰極防食
効果を発揮する程十分に低くならず、0.2%を越
えるとFe及びSiと結びつかない過剰のCaがAlと
化合物を作り、芯材に対する電位が逆に高くなる
ためである。またFeとSiの合計含有量が0.5%を
越えると、Fe及びSiが単体又はAlとの化合物と
してマトリツクス中に晶出し、芯材に対する電位
が十分に低くならないためである。 Al−Cu−Mn合金(芯材)のCuとMnは芯材の
電位を上げる作用と、芯材に必要な強度を付与す
るもので、Cu含有量を1.0%以下、Mn含有量を
0.8%以下の範囲内でCuとMnの合計含有量を0.5
%以上としたのは、Cu又はMnの何れかが上限を
越えても電位の上昇効果は飽和し、特にCuの増
加は自己腐食を増大し、Mnの増加の塑性加工性
を悪くし、しかもCuとMnの合計が0.5%未満で
は芯材の電位を十分に高くすることができないた
めである。尚、芯材は鋳塊の結晶微細化として
Tiを添加してもその添加量が0.03%以下であれば
問題はない。 このような複合板の全厚に対するAl−Ca合金
材の複合比率、即ち、クラツド比については特に
限定するものではないが、一般には2〜20%と
し、またろう材クラツド比は一般に5〜15%とす
ることが望ましい。 本発明熱交換器は以上の構成からなり、上記の
如く形成した水管、水室、フインを第1図に示す
如く組み合せ、1×10-5〜1×10-4Torr真空中で
580〜600℃の温度に加熱する真空ブレージングに
より接合して得られるものである。 以下、本発明の実施例について説明する。 実施例 1 第1表に示す組成のAl−Ca合金(皮材)とAl
−Cu−Mn合金(芯材)からなる板厚1.2mmの熱
交換器の水室用複合板(皮材のクラツド比10%、
皮材厚さ0.12mm)を作成し、これに真空ブレージ
ングを模して5×10-5Torrの真空中で600℃の温
度に10分間加熱した後、次の各試験を行なつた。
また比較のためA3003(Al−0.15%Cu−1.1%Mn
合金)を芯材とし、A7072(Al−1.1%Zn合金)
を皮材とする従来の水室用複合板について同様の
加熱処理を行なつた後、次の各試験を行なつた。
これ等の結果を第1表に併記した。 (1) 25℃の5%食塩水で飽和甘汞電極を基準とし
て皮材と芯材の電位を測定した。 (2) 芯材の表面をポリエスルテープでシールし、
水道水+10ppmCu++の腐食液中に浸漬して腐
食液の温度を80℃に8時間保持した後室温に16
時間保持することを2ケ月間繰返して、皮材面
の最大孔食深さを測定した。
The present invention relates to an aluminum heat exchanger, and in particular has improved pitting corrosion resistance in the parts that come into contact with circulating water. Conventionally, aluminum heat exchangers, such as automobile radiators, have water chambers 2, 2 installed at both ends of a large number of upright parallel water pipes 1, and a large number of fins 3 between each water pipe 1, as shown in Fig. 1. In this installed structure, the cooling water that absorbs heat from the engine enters the radiator through the inlet 4 and is cooled, is sent to the engine section through the outlet 5, and is replenished through the supply port 6. In the figure, 7 indicates a side bar, and 8 indicates a drain pot. The fins of such heat exchangers are JIS3003 (Al
-Mn alloy), JIS1100 (industrial pure aluminum),
JIS5005 (Al-Mg alloy) or sacrificial anode fins made of these added with Zn, Sn, etc. are used, and aluminum composite plates with excellent cathodic protection are used for the water pipes and water chambers. This composite board has Zn0.8~1.3wt
% (hereinafter wt% is simply abbreviated as %), such as JIS7072 (Al-Zn alloy), is used as the skin material, and this is clad on one side of the core material made of JIS3003, and the other side is covered with a filler metal (All-Zn alloy). Si alloy, Al-Si-Mg
The water tubes and water chambers are formed by electric resistance welding or press molding to form water tubes and water chambers with brazing filler metal on the outer surface, and the water tubes are arranged upright and in parallel as shown in Figure 1. Water chambers are attached to both the upper and lower ends, and corrugated press-formed fins are attached between the upright water tubes, which are joined by plating. When the composite board is exposed to a corrosive atmosphere, the skin material, which has a lower potential than the core material, corrodes preferentially and has the effect of preventing corrosion of the core material, that is, has a cathodic protection effect. In order to manufacture a heat exchanger using such a composite plate, conventionally, plating is performed in the atmosphere using flux or plating is performed in molten flux. However, these methods have various drawbacks, such as the use of harmful flux, which poses pollution problems, and the need to completely remove the flux after brazing. In view of this, in recent years a method of brazing in a vacuum has been developed and has become popular. However, when brazing is performed in a vacuum, the Zn contained in the skin material of the composite plate that forms the water pipes and water chambers evaporates into the vacuum, and the Zn concentration on the surface of the skin material decreases extremely, resulting in a loss of cathodic protection. When exposed to a highly corrosive atmosphere such as an automobile radiator, especially cooling water that is not controlled by corrosion inhibitors, pitting corrosion can reach the core material and eventually penetrate the water pipes and water chamber. It had the drawback of creating holes. As a result of various studies on suppressing Zn evaporation during vacuum brazing according to JIS7072, the present inventors found that Zn evaporation can be suppressed by adding a small amount of Ca or Li to JIS7072.
I suggested this. However, although the addition of Ca or Li has a considerable effect, it is impossible to completely suppress Zn evaporation, especially in mass production.
Contamination of the furnace due to Zn evaporation has become a problem. In view of this, as a result of various studies, the present invention has discovered that an alloy made by adding a small amount of Ca to aluminum does not evaporate in a vacuum like Zn or Mg when vacuum brazing, and exhibits excellent cathodic protection effects. As a result of further study, we developed an aluminum heat exchanger with excellent cathodic protection.The multiple parallel water pipes and the water chambers attached to both ends are made of aluminum composite plates with brazing filler metal on the outer surface. form,
In a heat exchanger in which a large number of aluminum fins are attached between water tubes and joined by vacuum brazing, the water tube water chamber is made up of 1.0% Cu or less, 0.8% Mn or less, and a total of 0.5% or more of Cu and Mn. The core material is an aluminum alloy consisting of Al and normal impurities, with a brazing filler metal on one side and Ca0.02 ~ on the other side.
0.2%, the total of Fe and Si is 0.5% or less, and the balance is made of an aluminum composite plate with a skin made of aluminum, and is characterized by using the skin on the inner surface of the water pipe and water chamber. That is, in the heat exchanger of the present invention, water chambers are attached to both ends of a large number of parallel water tubes, a large number of fins are attached between the water tubes, and the water tubes and water chambers are connected by vacuum brazing, and the water tubes and the water chamber are formed by the following composite plate. Ca0.02-0.2%, total of Fe and Si 0.5 on the inner surface of the water pipe and water chamber through which the cooling water passes.
% or less, an aluminum alloy (hereinafter abbreviated as Al-Ca alloy) layer is formed with the remainder being Al. The composite plate has Cu less than 1.0%, Mn less than 0.8%, and Cu and
Aluminum alloy (hereinafter referred to as Al-Cu-Mn
(abbreviated as "alloy") plate is the core material, and one side is filled with a brazing material such as Al-Si alloy or Al-Si-Mg alloy, such as Al-10.
%Si-1.5%Mg alloy or a brazing filler metal with a small amount of Bi added thereto, and the other side is clad with an Al-Ca alloy material. This composite plate is roll-formed and a brazing material 1 is applied to the outer surface as shown in Figure 2.
a and an Al-Ca alloy material 1b on the inner surface, the contact surface is electrically welded to form the water tube 1, and the both ends of the water tube 1 are press-formed as shown in Fig. 3. Brazing material 9a is installed on the outside surface, and on the inside surface.
A water chamber tube plate 9 having an Al-Ca alloy material 9b, a brazing material 10a on the outer surface, and an outer frame 10 for the water chamber having an Al-Ca alloy material 10b on the inner surface are formed. By installing the water chamber 2 consisting of the outer frame 10, the inner surface of the water pipe 1 and the water chamber 2, through which cooling water passes, is
An Al-Ca alloy layer is formed. Ca in the Al-Ca alloy evaporates during vacuum brazing and forms a compound with the impurities Fe and Si contained in the aluminum without contaminating the inside of the furnace, thereby highly purifying the matrix and lowering the potential of the alloy. However, we limited the Ca content to 0.02 to 0.2% and the total content of Fe and Si in the impurities of Al to 0.5% or less.If the Ca content is less than 0.02%, Fe and Si in the impurities contained in aluminum The amount is too low for complete bonding, and the potential to the core material is not low enough to exert a cathodic protection effect, and if it exceeds 0.2%, excess Ca that does not bond with Fe and Si forms a compound with Al, causing damage to the core material. This is because the potential becomes higher. Furthermore, if the total content of Fe and Si exceeds 0.5%, Fe and Si crystallize in the matrix either alone or as a compound with Al, and the potential with respect to the core material does not become sufficiently low. Cu and Mn in the Al-Cu-Mn alloy (core material) have the effect of increasing the potential of the core material and imparting the necessary strength to the core material.
The total content of Cu and Mn within the range of 0.8% or less 0.5
% or more because even if either Cu or Mn exceeds the upper limit, the potential increase effect will be saturated, and in particular an increase in Cu will increase self-corrosion, and an increase in Mn will worsen plastic workability. This is because if the total content of Cu and Mn is less than 0.5%, the potential of the core material cannot be made sufficiently high. In addition, the core material is made by refining the crystals of the ingot.
Even if Ti is added, there is no problem if the amount added is 0.03% or less. The composite ratio of the Al-Ca alloy material to the total thickness of such a composite plate, that is, the cladding ratio, is not particularly limited, but is generally 2 to 20%, and the brazing metal cladding ratio is generally 5 to 15%. % is desirable. The heat exchanger of the present invention has the above-mentioned configuration, and the water pipes, water chambers, and fins formed as described above are combined as shown in Fig. 1, and heated in a vacuum of 1 x 10 -5 to 1 x 10 -4 Torr.
It is obtained by joining by vacuum brazing at a temperature of 580 to 600°C. Examples of the present invention will be described below. Example 1 Al-Ca alloy (skin material) with the composition shown in Table 1 and Al
- Composite plate for the water chamber of a heat exchanger with a plate thickness of 1.2 mm made of Cu-Mn alloy (core material) (cladding ratio of skin material 10%,
A skin material (thickness: 0.12 mm) was prepared and heated to a temperature of 600° C. for 10 minutes in a vacuum of 5×10 -5 Torr to simulate vacuum brazing, and then the following tests were conducted.
For comparison, A3003 (Al−0.15%Cu−1.1%Mn
alloy) as the core material, A7072 (Al-1.1%Zn alloy)
A conventional composite board for a water chamber made of a skin material was subjected to the same heat treatment, and then the following tests were conducted.
These results are also listed in Table 1. (1) The potentials of the skin material and core material were measured with reference to a saturated acetate electrode in 5% saline at 25°C. (2) Seal the surface of the core material with polyester tape,
Immerse it in a corrosive solution of tap water + 10ppmCu ++ and keep the temperature of the corrosive solution at 80℃ for 8 hours, then return to room temperature for 16 hours.
The holding time was repeated for two months, and the maximum depth of pitting on the surface of the skin material was measured.

【表】【table】

【表】 第1表から明らかなように本発明用複合板は何
れも芯材の電位に比較して皮材の電位が十分に低
く、最大孔食深さも0.12mm以下で、皮材の厚さ
(0.12mm)内に止まつており、従来用複合板No.21
と比較し、はるかに優れれていることが判る。 これに対し、Caを含まないが、又は含むも含
有量が0.01%と少ない比較皮材No.15、No.16、
FeとSiの合計含有量が0.6%と多い比較皮材
No.17、又はCa含有量が0.30%と多い比較皮材
No.18は何れも皮材の電位が充分低くなく、孔食
深さも0.18mm以上と皮材の厚さを通し、芯材に達
していることが判る。また芯材のCu含有量とMn
含有量の合計が0.4%と少ない比較複合板No.19は
芯材の電位が低くなり、孔食深さも芯材に達して
おり、芯材のCu含有量の多い比較複合板No.20で
は芯材の電位が高く、最水孔食深さも0.08mmと優
れているが、複合板の塑性加工が劣り実用上好ま
しいものではなかつた。 実施例 2 第2表に示す組成の皮材と芯材からなる板厚
0.4mmの熱交換器の水管用複合板(皮材のクラツ
ド比15%、皮材厚さ0.06mm)を作成し、実施例1
と同様真空中で加熱処理を行なつた後、各試験を
行なつた。その結果を第2表に併記した。
[Table] As is clear from Table 1, in all of the composite plates of the present invention, the potential of the skin material is sufficiently low compared to the potential of the core material, the maximum pitting depth is 0.12 mm or less, and the thickness of the skin material is (0.12mm), compared to conventional composite board No. 21
It turns out that it is much better than the . On the other hand, comparative skin materials No. 15 and No. 16, which do not contain Ca or have a low content of 0.01%,
Comparative skin material with a high total content of Fe and Si of 0.6%
No.17 or comparative leather material with high Ca content of 0.30%
For No. 18, the potential of the skin material was not low enough, and the depth of pitting corrosion was 0.18 mm or more, indicating that the corrosion penetrated through the thickness of the skin material and reached the core material. In addition, the Cu content and Mn of the core material
Comparative composite board No. 19, which has a low total Cu content of 0.4%, has a low potential in the core material and the depth of pitting corrosion reaches the core material, while comparative composite board No. 20, which has a high Cu content in the core material, Although the potential of the core material was high and the maximum water pitting depth was 0.08 mm, it was excellent, but the plastic working of the composite plate was poor and was not practical. Example 2 Thickness of a plate made of skin material and core material with the composition shown in Table 2
A 0.4 mm composite plate for water pipes of a heat exchanger (cladding ratio of skin material: 15%, skin material thickness: 0.06 mm) was prepared in Example 1.
After heat treatment in vacuum in the same manner as above, each test was conducted. The results are also listed in Table 2.

【表】 第2表より明らかなように本発明用複合板は何
れも芯材の電位に比べて皮材の電位が十分に低
く、最大孔食深さも皮材の厚さ内に止まつてお
り、優れた陰極防食効果を有することが判る。 これに対し、本発明の範囲より外れる比較用複
合材は最大孔食深さが皮材の厚さを通して芯材に
達していることが判る。 実施例 3 第3表に示す組成の芯材と皮材を用い、芯材の
片面に皮材をクラツド(皮材のクラツド比10%)
し、その他面にAl−10%Si−1.5%Mg−0.02%Bi
合金からなるろう材をクラツド(ろう材のクラツ
ド比10%)した板厚1.6mm及び0.4mmの複合板を作
成し、板厚0.4mmの複合板より外表面にろう材を
有し、内表面に皮材を有する第2図に示すような
水管と、板厚1.2mmの複合板より外表面にろう材
を有し、内表面に皮材を有する第3図に示すよう
な水室を形成した。水管は複合板をロールフオー
ミングにより管状に形成し、その衝接面を電縫し
た。これ等を第1図に示すように組み合せ、水管
間にA3003からなる板をコルゲート状に成形した
フインを取付け、1×10-5Torrの真空中でブレ
ージング(600℃×15分)してアルミニウム製熱
交換器を作成した。 この熱交換器内に腐食涎(水道水+
10ppmCu++)を80℃の温度で8時間循環させた後
室温で16時間循環させることを3ケ月間繰返した
後水管及び水室の最大孔食深さを測定した。その
結果を第3表に併記した。尚、第3表中皮材と芯
材の電極電位は複合板より採取したテストピース
について、実施例1と同様にして測定したものを
示す。
[Table] As is clear from Table 2, in all of the composite plates of the present invention, the potential of the skin material is sufficiently lower than that of the core material, and the maximum pitting depth remains within the thickness of the skin material. , it is found that it has an excellent cathodic protection effect. In contrast, it can be seen that the maximum pitting corrosion depth of the comparative composite material outside the scope of the present invention reaches the core material through the thickness of the skin material. Example 3 Using core material and skin material having the composition shown in Table 3, cladding the skin material on one side of the core material (cladding ratio of skin material 10%)
and Al-10%Si-1.5%Mg-0.02%Bi on the other side.
Composite plates with thicknesses of 1.6 mm and 0.4 mm were made by cladding brazing metal made of alloy (10% cladding ratio of brazing metal). A water tube as shown in Fig. 2 with a skin material on the outside and a water chamber as shown in Fig. 3 with a brazing material on the outer surface and a skin material on the inner surface are formed from a composite plate with a thickness of 1.2 mm. did. The water pipe was formed into a tubular shape by roll forming a composite plate, and the contact surface was electrically sewn. These were combined as shown in Figure 1, and fins made of A3003 plate formed into a corrugated shape were attached between the water tubes, and the aluminum was A manufactured heat exchanger was created. There is corrosion inside this heat exchanger (tap water +
10ppmCu ++ ) was circulated at a temperature of 80°C for 8 hours and then at room temperature for 16 hours, which was repeated for 3 months, and then the maximum pitting depth of the water pipe and water chamber was measured. The results are also listed in Table 3. Note that the electrode potentials of the intermediate skin material and the core material in Table 3 are those measured in the same manner as in Example 1 on test pieces taken from the composite board.

【表】 第3表から明らかな如く、本発明熱交換器は何
れも最大孔食深さが皮材内に止まつており、陰極
防食効果が優れていることが判る。これに対し従
来熱交換器及び本発明の範囲より外れる比較用熱
交換器は何れも最大孔食深さが皮材を通して芯材
に達しており、陰極防食効果が認められない。 このように本発明熱交換器は真空ブレージング
により接合した後も優れた陰極防食効果を示し、
熱交換器の耐孔食性を向上し、耐用年数を著しく
向上し得る顕著な効果を奏するものである。
[Table] As is clear from Table 3, in all of the heat exchangers of the present invention, the maximum depth of pitting corrosion remains within the skin material, indicating that the cathodic protection effect is excellent. On the other hand, in both the conventional heat exchanger and the comparative heat exchanger outside the scope of the present invention, the maximum depth of pitting corrosion reaches the core material through the skin material, and no cathodic protection effect is observed. In this way, the heat exchanger of the present invention shows excellent cathodic protection effect even after being bonded by vacuum brazing,
This has the remarkable effect of improving the pitting corrosion resistance of the heat exchanger and significantly extending its service life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルミニウム製熱交換器の一例を示す
説明図、第2図は本発明熱交換器の水管を示す斜
視図、第3図は本発明熱交換器の水室を示す断面
図である。 1……水管、1a……ろう材、1b……Al−
Ca合金材、2,2′……水室、3……フイン、4
……冷却水流入口、5……冷却水流出口、6……
給水口、7……サイドバー、8……ドレンコツ
ク、9……水室用管板、10……水室用外枠。
Fig. 1 is an explanatory diagram showing an example of an aluminum heat exchanger, Fig. 2 is a perspective view showing a water tube of the heat exchanger of the present invention, and Fig. 3 is a sectional view showing a water chamber of the heat exchanger of the present invention. . 1... Water pipe, 1a... Brazing metal, 1b... Al-
Ca alloy material, 2, 2'...Water chamber, 3...Fin, 4
...Cooling water inlet, 5...Cooling water outlet, 6...
Water supply port, 7...side bar, 8...drain pot, 9...tube plate for water chamber, 10...outer frame for water chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の平列状水管とその両端に取付けた水
室を外表面にろう材を有するアルミニウム複合板
で形成し、水管間に多数のアルミニウム製フイン
を取付けて真空ブレージングにより接合した熱交
換器において、水管及び水室をCu1.0wt%以下、
Mn0.8wt%以下で、CuとMnを合計0.5wt%以上
含み、残部Alと通常の不純物からなるアルミニ
ウム合金を芯材とし、その片面にろう材を設け、
他面にCa0.02〜0.2wt%、FeとSiの合計が0.5wt
%以下、残部アルミニウムからなる皮材を設けた
アルミニウム複合板で形成し、水管及び水室の内
面側を皮材としたことを特徴とするアルミニウム
製熱交換器。
1. A heat exchanger in which multiple parallel water tubes and water chambers attached to both ends are formed from an aluminum composite plate with brazing material on the outer surface, and a large number of aluminum fins are attached between the water tubes and joined by vacuum brazing. , water pipes and water chambers should be Cu1.0wt% or less,
An aluminum alloy containing 0.8wt% or less of Mn, a total of 0.5wt% or more of Cu and Mn, and the balance consisting of Al and normal impurities is used as a core material, and a brazing filler metal is provided on one side of the core material.
On the other side, Ca0.02~0.2wt%, total of Fe and Si is 0.5wt
% or less, the aluminum heat exchanger is formed of an aluminum composite plate provided with a skin material of which the balance is aluminum, and the inner surface of the water tube and water chamber is made of the skin material.
JP57063312A 1982-04-16 1982-04-16 Aluminum heat exchanger Granted JPS58179798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57063312A JPS58179798A (en) 1982-04-16 1982-04-16 Aluminum heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57063312A JPS58179798A (en) 1982-04-16 1982-04-16 Aluminum heat exchanger

Publications (2)

Publication Number Publication Date
JPS58179798A JPS58179798A (en) 1983-10-21
JPS6127679B2 true JPS6127679B2 (en) 1986-06-26

Family

ID=13225633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57063312A Granted JPS58179798A (en) 1982-04-16 1982-04-16 Aluminum heat exchanger

Country Status (1)

Country Link
JP (1) JPS58179798A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149771A (en) * 1984-08-15 1986-03-11 Nippon Radiator Co Ltd Heat exchanger
ES2145660B1 (en) * 1996-11-18 2001-02-16 Valeo Termico Sa COPPER RADIATOR, AND PROCEDURE TO IMPROVE THE CORROSION RESISTANCE OF A COPPER RADIATOR.
ES2664475T3 (en) * 2010-12-22 2018-04-19 Novelis, Inc. Solar energy absorption unit and solar energy device that contains it

Also Published As

Publication number Publication date
JPS58179798A (en) 1983-10-21

Similar Documents

Publication Publication Date Title
JPS6248742B2 (en)
JPS62230494A (en) Aluminum alloy core material for brazing
JP2685927B2 (en) A Blazing sheet for refrigerant passage of heat exchanger manufactured by A
JPS5831267B2 (en) Manufacturing method of aluminum heat exchanger
JPH04263033A (en) Aluminum clad material for heat exchanger
JPS6153639B2 (en)
JPS6248743B2 (en)
JPS6127679B2 (en)
JP3759215B2 (en) Al brazing sheet for vacuum brazing, tube element for drone cup type heat exchanger and drone cup type heat exchanger
JPH0120958B2 (en)
JP3876180B2 (en) Aluminum alloy three-layer clad material
JPH0261536B2 (en)
JPH05331580A (en) Aluminum alloy brazing sheet for heat exchanger
JP3749089B2 (en) Sacrificial anticorrosion aluminum alloy plate and composite material thereof
JPS6234827B2 (en)
JP3876179B2 (en) Aluminum alloy three-layer clad material
JPH08260085A (en) Aluminum alloy composite material for vacuum brazing excellent in corrosion resistance
JP2749660B2 (en) Aluminum heat exchanger
JPH0234296A (en) Brazing alloy for aluminum and brazing sheet for heat exchanger made of aluminum
JPS6261104B2 (en)
JPH029098B2 (en)
JPH04297541A (en) Aluminum alloy clad material for heat exchanger
JP3538507B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JPH06228695A (en) High strength and high corrosion resistant aluminum alloy composite for heat exchanger
JPH0394993A (en) Tube material made of aluminum alloy and production thereof