JPS61276751A - Twin roll casting method for thin metallic sheet - Google Patents

Twin roll casting method for thin metallic sheet

Info

Publication number
JPS61276751A
JPS61276751A JP11871085A JP11871085A JPS61276751A JP S61276751 A JPS61276751 A JP S61276751A JP 11871085 A JP11871085 A JP 11871085A JP 11871085 A JP11871085 A JP 11871085A JP S61276751 A JPS61276751 A JP S61276751A
Authority
JP
Japan
Prior art keywords
casting
rolls
ingot
twin
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11871085A
Other languages
Japanese (ja)
Inventor
Akio Kasama
昭夫 笠間
Shozo Mizoguchi
溝口 庄三
Michitoshi Ito
井藤 三千寿
Tetsuya Sukai
須貝 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11871085A priority Critical patent/JPS61276751A/en
Publication of JPS61276751A publication Critical patent/JPS61276751A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize a casting operation and to obtain an ingot having an excellent characteristic without internal defects by controlling casting conditions in such a manner that the ingot drawn out between twin rolls completes the solidification near the line connecting the axial centers of the casting rolls. CONSTITUTION:The casting conditions of the twin roll casting method for casting continuously a thin metallic sheet by pouring a molten metal 2 between a pair of the horizontal casting rolls 1 and 1 rotating in an arrow direction and drawing drawing out the ingot 3 obtd. by cooling and solidifying the molten metal toward the arrow direction are so controlled that the ingot 3 solidifies on the line connecting the axial centers of the rolls 1, 1 or near the same by joining of the solidified shells formed on the surfaces of the rolls 1, 1. The generation of the internal and surface cracks and bulging, etc. is thus prevented and the ingot 3 having good quality is stably cast.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一対の水平鋳造ロール(双ロール)間に溶融金
属を供給して金属薄板を連続的に鋳造する方法、特に安
定した鋳造が行なえかつ優れた性状の鋳片を得ることが
できる双ロール鋳造方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for continuously casting a thin metal plate by supplying molten metal between a pair of horizontal casting rolls (twin rolls), and in particular, a method that enables stable casting. The present invention also relates to a twin-roll casting method that allows slabs with excellent properties to be obtained.

(従来の技術) 双ロール鋳造方法は、一対の水冷構造の回転自在な鋳造
ロールを所定の間隔をもって配置し、これらロール間に
溶鋼の如き溶融金属を供給し。
(Prior Art) In the twin roll casting method, a pair of water-cooled rotatable casting rolls are arranged at a predetermined interval, and molten metal such as molten steel is supplied between these rolls.

ロールを回転しながら下方に凝固した薄板鋳片を引き出
して、連続的に金属薄板を鋳造する技術である。
This is a technology that continuously casts thin metal sheets by pulling out solidified thin sheet slabs downward while rotating rolls.

この双ロール鋳造方法において、最も重要な点は欠陥の
ない優れた性状の鋳片をいかに効率よく鋳造するかとい
う事である。このような目的を達成するため従来の鋳造
技術では1種々の対策を実施しているが、いずれも実効
を挙げるに至っていないのが現状である。
In this twin-roll casting method, the most important point is how to efficiently cast slabs with excellent properties and no defects. In order to achieve this purpose, conventional casting techniques have taken various measures, but none of them have been effective at present.

本発明は上記の点に鑑みなされたもので、凝固完了位置
の制御を主眼とする双ロール鋳造方法であって、優れた
性状の鋳片を得ることができる鋳造方法を提供せんとす
るものである。なお、従来ではこのような鋳片性状改良
のため凝固完了位置を制御することに関しては、何等の
提案がなされていなかった。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a twin-roll casting method that focuses on controlling the solidification completion position and that can obtain slabs with excellent properties. be. Note that, in the past, no proposals have been made regarding controlling the solidification completion position in order to improve the properties of the slab.

(発明の構成・作用) すなわち、本発明の双ロール鋳造方法の構成は、一対の
水平鋳造ロール間に溶融金属を注入して連続的に金属薄
板を鋳造する方法において、ロール間を引き出される鋳
片の凝固完了位置が。
(Structure and operation of the invention) That is, the structure of the twin-roll casting method of the present invention is that in a method of continuously casting a thin metal plate by injecting molten metal between a pair of horizontal casting rolls, The solidification completion position of the piece is shown.

前記一対の鋳造ロールの軸心を結ぶ線上もしくはその近
傍になるように、鋳造条件を制御すること、を特徴とす
る。
The method is characterized in that the casting conditions are controlled so that the casting conditions are on or near a line connecting the axes of the pair of casting rolls.

制御する鋳造条件としては1例えば鋳造速度。One of the casting conditions to be controlled is, for example, the casting speed.

湯面高さく接触弧長)あるいはロール間隔等が考えられ
る。このように鋳片の凝固完了位置が、前記一対の鋳造
ロールの軸心を結ぶ線上もしくはその近傍になる如くす
れば、鋳造作業自体が安定すると共に、ロール面上で形
成される凝固シェルが互いに良好な状態で接触すること
になり、欠陥のない鋳片が鋳造される。
Possible factors include the height of the hot water level, the contact arc length) or the distance between the rolls. In this way, if the solidification completion position of the slab is on or near the line connecting the axes of the pair of casting rolls, the casting operation itself will be stabilized, and the solidified shells formed on the roll surfaces will be mutually This results in good contact and a defect-free slab is cast.

以下本発明を図面にしたがって詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

まず、本発明を完成するに至った経緯を第1図を用いて
説明する0図において、1は一対の水平鋳造ロールで、
矢印方向に回転可能でかつ図示していないが内部が水冷
構造に形成されている。2はタンディシュからの注湯ノ
ズルによってロール間に供給される溶鋼等の溶湯であり
、3はロール間から凝固して下方に引き出される鋳片で
ある。
First, the circumstances that led to the completion of the present invention will be explained using Fig. 1. In Fig. 0, 1 is a pair of horizontal casting rolls;
It is rotatable in the direction of the arrow, and has a water-cooled interior (not shown). 2 is a molten metal such as molten steel that is supplied between the rolls by a pouring nozzle from a tundish, and 3 is a slab that is solidified from between the rolls and drawn downward.

しかして、図において凝固完了点を、ロール軸心線より
上方位置■、軸心線位置■、軸心線より下方位置■のそ
れぞれ三箇所を選定して鋳片性状を調査してみた。凝固
完了点は一対の鋳造ロール面上で形成されるそれぞれの
凝固シェルが互いにぶつかる位置をいう。
Therefore, three solidification completion points were selected in the figure: a position above the roll axis (■), an axis position (■), and a position below the axis (■), and the properties of the slab were investigated. The solidification completion point refers to the position where the respective solidified shells formed on the surfaces of a pair of casting rolls collide with each other.

第1図の■の位置は、凝固完了点がロール軸心線より上
に来るので、凝固直後の非常に脆い(高温のため脆化域
にある)鋳片がロール間を通過することになり、この通
過時にロールによって圧延されることになるため、鋳片
に割れが生じる。また、凝固シェルのぶつかる所で溶湯
の絞り込みが激しいので、負偏析の原因となり好ましく
ない。
At the position marked ■ in Figure 1, the solidification completion point is above the roll axis, so the extremely brittle slab (in the embrittlement region due to high temperature) immediately after solidification passes between the rolls. During this passage, the slab is rolled by rolls, which causes cracks in the slab. In addition, the molten metal is severely squeezed where the solidified shells collide, which is undesirable as it causes negative segregation.

したがって、■位置は鋳片の内部割れや表面割れの発生
を招き、しかも鋳片の偏析を助長する問題点がある。
Therefore, the position (2) causes the problem that internal cracks and surface cracks occur in the slab, and furthermore, it promotes segregation of the slab.

次に、軸心線位置よりも下方の■位置の場合。Next, in the case of position ■ below the axis center line position.

鋳片はロール軸心線を通過した後も、内部に未凝固の溶
湯を包含することになり、その結果溶湯の静圧でさらに
は未凝固部が固化するときの凝固潜熱によってシェルが
再溶解されるため、鋳片のふくれ(バルジング)やブレ
ークアウトが発生する、欠点がある。
Even after passing through the roll axis, the slab still contains unsolidified molten metal, and as a result, the shell is remelted by the static pressure of the molten metal and the latent heat of solidification when the unsolidified portion solidifies. This has the disadvantage that bulging and breakout of the slab may occur.

そこで、軸心線位置■に凝固完了点がくるようにした場
合、上記■及び■位置にて凝固が完了するようにした場
合に生じた前述した問題点の全てが解消された。
Therefore, when the solidification completion point is set at the axial center line position (2), all of the problems described above that occur when the solidification is completed at the above-mentioned positions (2) and (2) are solved.

本発明はこのように凝固完了点がロール軸心線上及びそ
の近傍に位置するように鋳造を制御するもので、そのた
めに以下に述べるような凝固式を一手段として用いるも
のである。
The present invention thus controls casting so that the solidification completion point is located on and near the roll axis, and for this purpose uses the following solidification formula as one means.

板厚の薄い双ロール鋳造方法において、接触熱抵抗が存
在する場合、−個のロールと凝固シェルの温度分布が第
2図に示す如くなるとき、凝固式は次のように表される
In the twin-roll casting method for thin sheets, when contact thermal resistance exists and the temperature distribution between the - rolls and the solidified shell is as shown in FIG. 2, the solidification equation is expressed as follows.

ここで、dsは凝固シェル厚、hはロールとシェル間の
総括熱伝達係数、tは溶湯とロールの接触時間、)(’
fはスーパーヒートを考慮した融解の潜熱、またρl、
に′、C′Pはそれぞれ凝固シェルの密度、熱伝導率、
比熱を表す、(1)式をtisについて解くと、 の関係を得る。この式から接触熱抵抗を考慮して求めら
れる凝固式は、tが小さい範囲ではdsがJに対して曲
線的に、またtが十分大きい場合にはdsはπに対して
直線的に変化することがわかる。
Here, ds is the solidified shell thickness, h is the overall heat transfer coefficient between the roll and shell, t is the contact time between the molten metal and the roll, )('
f is the latent heat of fusion considering superheat, and ρl,
′ and C′P are the density and thermal conductivity of the solidified shell, respectively.
When equation (1) expressing specific heat is solved for tis, the following relationship is obtained. The solidification equation obtained from this equation by considering the contact thermal resistance is that ds changes curvedly with respect to J in the range where t is small, and ds changes linearly with respect to π when t is sufficiently large. I understand that.

第3図に本発明者等の実験によって得られた5n−Pb
合金におけるd c/2(d g)とtの関係を実際に
測定して示した。又、(3)式の計算を行なう場合、総
括熱伝達係数りの値が必要となるが、これは実測値の任
意の一点(具体的にはπ= 0.04m1n4、ds 
=0.8mm ) f)値を(3)式に代入することに
よりhを求めた。このようにして得たhはL#I’7v
lI’14/bA−17−2−に−−dat−1+++
(A)となり、これを(3)式に代入してdsとtの関
係を求め、実測値との比較を行なった結果を第3図に示
した。なお、計算に際しては、 p’= 1.05X 
10’kg/la”、  k’= 34.07kcal
/m・hr−deg、  C’p  =  3.58X
  1O−2kcal/kg−deg、  Hf  =
 9.58kcal/kg  、  TM= 200”
0.T、=20℃の各値を使用した。また1図には熱抵
抗のない場合の関係についても示した0図かられかるよ
うに、(3)式の関係は広い範囲にわたって測定値と非
常によく一致しているのが明らかである。したがって、
前記(1)(3)式の関係は双ロール鋳造法の凝固式と
して極めて有用なものであると言える。
Figure 3 shows the 5n-Pb obtained by the inventors' experiments.
The relationship between d c/2 (d g) and t in an alloy was actually measured and shown. In addition, when calculating equation (3), the value of the overall heat transfer coefficient is required, but this is calculated from an arbitrary point of the actual measurement value (specifically, π = 0.04m1n4, ds
=0.8mm) h was determined by substituting the f) value into equation (3). The h obtained in this way is L#I'7v
lI'14/bA-17-2---dat-1+++
(A), and by substituting this into equation (3) to find the relationship between ds and t, the results of comparison with actual measured values are shown in FIG. In addition, when calculating, p'= 1.05X
10'kg/la", k'= 34.07kcal
/m・hr-deg, C'p = 3.58X
1O-2kcal/kg-deg, Hf =
9.58kcal/kg, TM=200”
0. Each value of T,=20°C was used. Furthermore, as can be seen from Figure 1, which also shows the relationship in the case of no thermal resistance, the relationship expressed by equation (3) agrees very well with the measured values over a wide range. therefore,
It can be said that the relationships of equations (1) and (3) above are extremely useful as solidification equations for twin roll casting.

次に、第4図に本発明者等の実験によって得られた溶鋼
におけるd c/2とEの関係を実際に測定して白丸印
にて示す、この図の測定結果が前記(3)式の凝固式に
よって得た計算結果と一致しているかを検討してみるに
、まず第4図から測定値の比較的多いK = 0.02
9m1n”t’のdsの値(= 0.3mm )を用い
て溶鋼の場合のhの値を求めると、次式となる。
Next, in Figure 4, the relationship between dc/2 and E in molten steel obtained through experiments by the present inventors is actually measured and indicated by a white circle. Let's examine whether it matches the calculation result obtained using the coagulation equation. First, from Figure 4, we can see that the measured value is relatively large, K = 0.02.
When the value of h in the case of molten steel is determined using the value of ds (=0.3 mm) of 9m1n"t', the following equation is obtained.

h = 1.4  X 10’(kcal/m”−hr
−deg )    −(5)第4図に(3)(5)式
を使って求めた結果を実線で、また熱抵抗のないとした
ときの結果を点線で示した。この計算結果と実測値とは
比較的一致してl、%ることがわかる。
h = 1.4 x 10' (kcal/m”-hr
-deg) -(5) In FIG. 4, the results obtained using equations (3) and (5) are shown as a solid line, and the results when there is no thermal resistance are shown as a dotted line. It can be seen that this calculation result and the actual measurement value are relatively in agreement with each other by l,%.

以上の如く(3)式の凝固式は双ロール鋳造方法におい
て実測値とよく一致することから、これを用いて凝固完
了点が双ロールの軸心位置に合致するように溶湯とロー
ルの接触時間、即ち鋳造速度等を制御すればよいことに
なる。
As mentioned above, since the solidification equation (3) is in good agreement with the actual measurement value in the twin roll casting method, this is used to determine the contact time between the molten metal and the rolls so that the solidification completion point coincides with the axial center position of the twin rolls. In other words, it is sufficient to control the casting speed, etc.

なお、本発明では凝固完了位置が厳密にロール軸心線上
にある必要はなく、そこにはある一定の許容範囲が存在
する。すなわち、第5図(イ)は凝固完了点がロール軸
心線より上方位置にくる場合であるが、この場合の許容
範囲は 2a/見<1.3 であれば、鋳片割れが激減する。ただし、aはロール法
線方向のシェル厚、文はロール中立点での初期設定ロー
ル間隔である。
Note that in the present invention, the solidification completion position does not need to be strictly on the roll axis, and there is a certain tolerance range there. That is, FIG. 5(a) shows the case where the solidification completion point is located above the roll axis, and in this case, if the tolerance range is 2a/view<1.3, slab cracking will be drastically reduced. Here, a is the shell thickness in the normal direction of the rolls, and ``a'' is the initial set roll spacing at the roll neutral point.

一方、第5図(0)は凝固完了点がロール軸心線より下
方位置にくる場合であるが、この場合の許容範囲は 2b/文〉0.7 であれば、ブレークアウトの発生を抑制することができ
る。ただし、bはロール中立点でのシェル厚である。
On the other hand, Figure 5 (0) shows the case where the solidification completion point is below the roll axis, and in this case, the allowable range is 2b/sentence>0.7 to suppress the occurrence of breakout. can do. However, b is the shell thickness at the neutral point of the roll.

従って、本発明においては凝固完了位置をロール中立点
に制御することが最適であるが、仮にロール中立点をは
ずれても、上記の条件を満足していれば、鋳片を安定し
て鋳造することが可能である。
Therefore, in the present invention, it is optimal to control the solidification completion position to the roll neutral point, but even if the solidification completion position deviates from the roll neutral point, as long as the above conditions are satisfied, the slab can be stably cast. Is possible.

(発明の効果) 本発明の鋳造方法によれば、割れやふくれのない良好な
性状の鋳片を容易に得ることができると共に、安定した
鋳造作業を実施することが可能である。このため、本発
明の双ロール鋳造方法の工業的な価値は極めて高い。
(Effects of the Invention) According to the casting method of the present invention, it is possible to easily obtain slabs with good properties without cracks or blisters, and it is also possible to carry out stable casting operations. Therefore, the industrial value of the twin roll casting method of the present invention is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を説明するための双ロール鋳造設備
の概略図、第2図はロールと凝固シ、)し間の各部温゛
度分布を示す説明図、第3図は5n−pb金合金おける
dsとLとの関係を示すグラフ、第4図は溶鋼における
clsとtとの関係を示すグラフ、第5図(イ)(0)
は本発明の許容範囲を説明するための略図である。
Fig. 1 is a schematic diagram of twin roll casting equipment for explaining the method of the present invention, Fig. 2 is an explanatory diagram showing the temperature distribution of each part between the rolls and the coagulation plate, and Fig. 3 is a 5n-pb Graph showing the relationship between ds and L in gold alloys, Figure 4 is a graph showing the relationship between cls and t in molten steel, Figure 5 (A) (0)
is a schematic diagram for explaining the permissible range of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 一対の水平鋳造ロール間に溶融金属を注入して連続的に
金属薄板を鋳造する方法において、ロール間を引き出さ
れる鋳片の凝固完了位置が、前記一対の鋳造ロールの軸
心を結ぶ線上もしくはその近傍になるように、鋳造条件
を制御することを特徴とする金属薄板の双ロール鋳造方
法。
In a method of continuously casting thin metal sheets by injecting molten metal between a pair of horizontal casting rolls, the solidification completion position of the slab pulled out between the rolls is on or on a line connecting the axes of the pair of casting rolls. A twin-roll casting method for thin metal sheets, characterized by controlling casting conditions so that they are close to each other.
JP11871085A 1985-06-03 1985-06-03 Twin roll casting method for thin metallic sheet Pending JPS61276751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11871085A JPS61276751A (en) 1985-06-03 1985-06-03 Twin roll casting method for thin metallic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11871085A JPS61276751A (en) 1985-06-03 1985-06-03 Twin roll casting method for thin metallic sheet

Publications (1)

Publication Number Publication Date
JPS61276751A true JPS61276751A (en) 1986-12-06

Family

ID=14743195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11871085A Pending JPS61276751A (en) 1985-06-03 1985-06-03 Twin roll casting method for thin metallic sheet

Country Status (1)

Country Link
JP (1) JPS61276751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8956472B2 (en) 2008-11-07 2015-02-17 Alcoa Inc. Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8956472B2 (en) 2008-11-07 2015-02-17 Alcoa Inc. Corrosion resistant aluminum alloys having high amounts of magnesium and methods of making the same

Similar Documents

Publication Publication Date Title
US4166495A (en) Ingot casting method
JP3401785B2 (en) Cooling method of slab in continuous casting
US3339623A (en) Thermal bending of continuous castings
JPS61276751A (en) Twin roll casting method for thin metallic sheet
JPH0635030B2 (en) Horizontal continuous casting method and apparatus for metal
JP2950152B2 (en) Continuous casting mold for slab
JP3405490B2 (en) Method for improving slab quality in continuous casting
JPH03210950A (en) Powder for continuous casting
JPS60137562A (en) Continuous casting method for thin sheet
JP3101069B2 (en) Continuous casting method
JPS60162560A (en) Continuous casting method of steel
JPS6087956A (en) Continuous casting method of metal
JP3546137B2 (en) Steel continuous casting method
JP3161293B2 (en) Continuous casting method
JPH05269561A (en) Method for continuously casting steel
JPS62248546A (en) Production of continuously cast steel ingot without generation of central segregation
JPS55109549A (en) Continuous casting method of sheet
JPH04224050A (en) Method for preventing solidification of end parts in strip casting
WO2023140865A1 (en) Method for continuous casting
JPH0126787B2 (en)
JPS6153143B2 (en)
JPH09225612A (en) Continuous casting method
JPS61245949A (en) Continuous casting method
JPS60191642A (en) Horizontal and continuous casting method of metal
Ozawa et al. Development of Thin Strip Caster