JPS61276674A - Evaporator for air-conditioning - Google Patents
Evaporator for air-conditioningInfo
- Publication number
- JPS61276674A JPS61276674A JP11716885A JP11716885A JPS61276674A JP S61276674 A JPS61276674 A JP S61276674A JP 11716885 A JP11716885 A JP 11716885A JP 11716885 A JP11716885 A JP 11716885A JP S61276674 A JPS61276674 A JP S61276674A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- evaporator
- pipe
- flat tube
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は自動車用空調装置等に用いられて有効なコルゲ
ートフィン型蒸発器の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a corrugated fin type evaporator that is effective for use in automobile air conditioners and the like.
従来この種のコルゲートフィン型蒸発器は、第6図(a
)、 Tb)にその平面図および正面図を示すように、
膨張弁16は低温では作動が安定しないために送風方向
上流側に設けられる必要があり、また偏平形チューブへ
の冷媒の流入方向は、蒸発器の送風方向上流側により多
くの冷媒を供給するために下流側から流入させる必要が
あった。従って、金属パイプよりなる配管を用いて上記
のような構成とするためには、配管は急激に曲げること
ができないため、第6図(a)に示されるように膨張弁
16を出た冷媒は配管Aによって蒸発器上方中央部で、
偏平チューブの曲折部の間を通して送風方向下流側に導
き、その後直角方向に配管Aを曲折させて蒸発器側端部
の偏平チューブ入口部へ導き、再び直角方向に曲折させ
て入口側冷媒分配管Bに冷媒を流入させるように形成さ
れている。Conventionally, this type of corrugated fin type evaporator is shown in Fig. 6(a).
), Tb) as shown in its plan view and front view,
Since the expansion valve 16 does not operate stably at low temperatures, it needs to be installed on the upstream side in the air blowing direction, and the refrigerant flows into the flat tube in order to supply more refrigerant to the upstream side of the evaporator in the air blowing direction. It was necessary to let the water flow in from the downstream side. Therefore, in order to achieve the above configuration using piping made of metal pipes, since the piping cannot be bent sharply, the refrigerant leaving the expansion valve 16 as shown in FIG. At the upper central part of the evaporator by pipe A,
The air is guided to the downstream side in the blowing direction through the bent part of the flat tube, and then the pipe A is bent at right angles and guided to the flat tube inlet at the end on the evaporator side, and then bent at right angles again to connect the refrigerant to the inlet side refrigerant distribution pipe. It is formed so that a refrigerant flows into B.
しかしながら上記の如き従来の構造にあっては、配管A
が長くなって取り回しか複雑となり、組付上も曲折部が
多くなるために作業工数が多くなるという問題を有して
いた。However, in the conventional structure as described above, piping A
The problem is that the length increases, making the handling complicated, and the number of bends increases during assembly, which increases the number of man-hours.
そこで本発明は上記の如き問題点を解決するために、偏
平形チューブの冷媒入口部に風の流れと同一方向から流
入した冷媒の流れ方向を逆方向に変換させる冷媒通路を
内部に一体的に形成させた冷媒分配手段を設けるという
ものである。Therefore, in order to solve the above-mentioned problems, the present invention integrates a refrigerant passage inside the flat tube that converts the flow direction of the refrigerant flowing from the same direction as the wind flow into the refrigerant inlet part of the flat tube. A refrigerant distribution means is provided.
上記構成によれば、冷媒の流れ方向を逆方向に変換させ
る冷媒通路を内部に一体的に形成させた冷媒分配手段を
偏平チューブにロー付けするだけで蒸発器の送風方向上
流側から流入する冷媒を送風方向の下流側からに変換し
て流入させることができる。According to the above configuration, refrigerant flows from the upstream side of the evaporator in the blowing direction by simply brazing the refrigerant distribution means, which has a refrigerant passage integrally formed inside the refrigerant passage for converting the flow direction of the refrigerant in the opposite direction, to the flat tube. can be converted to flow from the downstream side in the direction of air blowing.
従って本発明によれば、複雑な配管取り回しを行うこと
なく、上流側の膨張弁から導いた冷媒を下流側へ導き下
流側から冷媒を偏平チューブ入口に流すことができるた
め、長い配管数回しも不要で簡単な形状とすることがで
き、また組付作業上の工数も大巾に低減できるというす
ぐれた効果を有する。Therefore, according to the present invention, the refrigerant led from the expansion valve on the upstream side can be guided to the downstream side and the refrigerant can be flowed from the downstream side to the flat tube inlet without the need for complicated piping. It has the excellent effect of being unnecessary and simple in shape, and also greatly reducing the number of man-hours required for assembly work.
以下本発明を図に示す実施例に基づいて説明する。第4
図(a)、 (b)は本発明の冷媒分配手段を採用した
2バスコルゲ一トフイン型蒸発器10、すなわち冷媒の
流通圧力損失低減等の目的のため偏平チューブからなる
冷媒通路を2つに分割し、それぞれ並列に冷媒を流せる
ように構成した蒸発器の全体構成を示す平面図および正
面図で、11.12は第5図にその断面を示すように、
多数の冷媒通過孔13を一列に配した構造を有し、アル
ミニウム等の熱伝導性に優れた金属の押出しによる一体
成形によって製造される第1および第2偏平チユーブで
ある。14は、蛇行状に屈曲形成された偏平形チューブ
11.12の壁間に形成され、熱交換を促進するための
コルゲートフィンで、偏平形チューブにろう付は等によ
って接合されている。The present invention will be described below based on embodiments shown in the drawings. Fourth
Figures (a) and (b) show a two-bath corrugated-fin type evaporator 10 that employs the refrigerant distribution means of the present invention, that is, the refrigerant passage consisting of a flat tube is divided into two for the purpose of reducing refrigerant distribution pressure loss, etc. 11 and 12 are a plan view and a front view showing the overall configuration of an evaporator configured to allow refrigerant to flow in parallel, respectively, as shown in the cross section of FIG.
The first and second flat tubes have a structure in which a large number of refrigerant passage holes 13 are arranged in a line, and are manufactured by integral molding by extrusion of a metal with excellent thermal conductivity such as aluminum. A corrugated fin 14 is formed between the walls of the flat tube 11 and 12 bent in a meandering manner to promote heat exchange, and is joined to the flat tube by brazing or the like.
また蒸発器10の上流側には膨張弁16が設けられ、液
冷媒を膨張させ霧状として蒸発器10に送る。18は、
膨張させた冷媒を2つの蒸発経路すなわち、第1および
第2偏平チューブ11.12に分配するための冷媒分配
管で、その詳細構造は後述する。また、第1および第2
偏平形チユーブ11.12の出口部11b、12bは、
分岐した冷媒配管である合流管19の入口部19b、1
9Cにそれぞれろう付げによって接続されている。Further, an expansion valve 16 is provided upstream of the evaporator 10 to expand the liquid refrigerant and send it to the evaporator 10 in the form of mist. 18 is
This is a refrigerant distribution pipe for distributing the expanded refrigerant to two evaporation paths, that is, first and second flat tubes 11 and 12, and its detailed structure will be described later. Also, the first and second
The outlet portions 11b and 12b of the flat tube 11.12 are
Inlet portions 19b, 1 of the merging pipe 19, which is a branched refrigerant pipe
9C by brazing.
合流管19の合流点19aより下流側には、感温筒20
が設けられており、合流管工9を通過するガス冷媒温度
に応じて、膨張弁16から蒸発器10に供給する冷媒量
を調節するために、膨張弁16の図示しないダイヤフラ
ム室等に圧力を伝達する圧力伝達管21が接続されてい
る。On the downstream side of the confluence point 19a of the confluence pipe 19, there is a temperature sensing tube 20.
is provided, and in order to adjust the amount of refrigerant supplied from the expansion valve 16 to the evaporator 10 according to the temperature of the gas refrigerant passing through the merging pipework 9, pressure is applied to a diaphragm chamber (not shown) of the expansion valve 16, etc. A pressure transmission pipe 21 is connected thereto.
次に冷媒分配管18の構造を第1図の斜視図に基づいて
説明する。22は内部に冷媒通路となる長手方向に貫通
した流路ア、および送風方向上流側端面22d側が封止
された流路イ、つを有するアルミニウム製の管部で、上
方に位置する貫通孔アには膨張弁から出た霧状冷媒を供
給する配管24がロー付は等により接続されている。こ
の管部22は、第2図18)、 [b)の平面図および
正面図にその形状を更に詳細に説明するようにその下面
部22aには、偏平チューブ接続用の長穴22b、22
Cが設けられており、第1および第2偏平チユーブ11
および12の冷媒流入口部がロー付は等により接続され
ている。Next, the structure of the refrigerant distribution pipe 18 will be explained based on the perspective view of FIG. Reference numeral 22 denotes an aluminum pipe portion having a passage A that penetrates in the longitudinal direction and serves as a refrigerant passage, and a passage A that is sealed on the upstream end surface 22d in the air blowing direction. A pipe 24 for supplying the atomized refrigerant discharged from the expansion valve is connected by brazing or the like. This tube part 22 has elongated holes 22b, 22 for connecting flat tubes in its lower surface part 22a, the shape of which is explained in more detail in the plan view and front view of FIGS.
C is provided, and the first and second flat tubes 11
and 12 refrigerant inlet ports are connected by brazing or the like.
23は、管部22の配管24が接続される端面22dと
反対側の端面22.eにロー付は等により気密的に接合
された端板部で22と同様アルミニウムからなり、第3
図(a)、 (blの平面図および正面図にその詳細な
構造を説明するように、くの字型に形成されたくぼみ部
23aを有しており管部22との接合により流路アと流
路イ、つとが接続され、第1図に矢印で示すように配管
24から流路アに流入した冷媒は端板部23に向かって
流れ、端板部23で反転し、流路アとは逆方向の流れと
なって流路イおよびつに分配され、第1および2偏平チ
ユーブの送風方向下流側から冷媒が流入されるよう構成
されている。23 is an end surface 22.23 of the pipe portion 22 opposite to the end surface 22d to which the pipe 24 is connected. The soldering part e is the end plate part that is airtightly joined by etc., and is made of aluminum like 22, and the third
As the detailed structure is explained in the plan view and front view of FIG. The refrigerant flowing into the flow path A from the piping 24 flows toward the end plate part 23, reverses at the end plate part 23, and flows into the flow path A as shown by the arrow in FIG. The refrigerant is configured to flow in the opposite direction to the flow path and to be distributed into the flow paths A and 1, and the refrigerant is introduced from the downstream side of the first and second flat tubes in the blowing direction.
次に上記構成においてその作動を説明する。図示しない
冷凍サイクルを構成する冷媒受液器から供給された液冷
媒は、膨張弁16によって膨張され霧状の液冷媒となっ
て配管24を経由して分配管18の流路アに流入する。Next, the operation of the above configuration will be explained. Liquid refrigerant supplied from a refrigerant receiver constituting a refrigeration cycle (not shown) is expanded by the expansion valve 16 and becomes a mist of liquid refrigerant, which flows into the flow path A of the distribution pipe 18 via the pipe 24.
そして端板部23で流れ方向を180°転換させ、第1
および第2偏平形チューブ11.12内の流通抵抗に応
じて冷媒が流路イおよびつに分配される。霧状の液冷媒
は、第1および第2偏平形チューブ11.12を通る間
に、コルゲートフィン14からそれぞれ熱を奪って蒸発
する。このとき冷房に用いられる被冷却空気が、送風機
によって送風されコルゲートフィン14のすき間を通っ
て流れ、熱をコルゲートフィン14に与えて冷却される
。蒸発したガス冷媒は、蒸発器lOを出て冷媒配管19
に入り合流点19aで合流して、図示しない冷凍サイク
ルを構成する圧縮機の吸入口に供給される。なお感温筒
20は、蒸発器を出たガス冷媒の温度に応じて変化する
圧力を圧力伝達管21によって膨張弁16のダイヤフラ
ム室に導き、ダイヤフラムの動きに応じて弁開度を調節
し、蒸発器10へ供給される冷媒の量を適正に調節する
。Then, the flow direction is changed by 180° at the end plate part 23, and the first
The refrigerant is distributed into flow paths A and I according to the flow resistance within the second flat tube 11.12. The atomized liquid refrigerant takes heat from the corrugated fins 14 and evaporates while passing through the first and second flat tubes 11 and 12, respectively. At this time, the air to be cooled used for cooling is blown by an air blower, flows through the gaps between the corrugated fins 14, gives heat to the corrugated fins 14, and is cooled. The evaporated gas refrigerant exits the evaporator lO and enters the refrigerant pipe 19.
The fuel enters the water, merges at a merging point 19a, and is supplied to the suction port of a compressor constituting a refrigeration cycle (not shown). Note that the temperature-sensitive tube 20 guides the pressure that changes depending on the temperature of the gas refrigerant exiting the evaporator to the diaphragm chamber of the expansion valve 16 through the pressure transmission pipe 21, and adjusts the valve opening degree according to the movement of the diaphragm. The amount of refrigerant supplied to the evaporator 10 is appropriately adjusted.
以上説明したように、2バスコルゲ一トフイン型蒸発器
において本発明の冷媒分配管18を採用したことによっ
て、これを採用しない場合に第6図[a)、 (blに
示すような蒸発器の上部をまたぐようにして配設しなけ
ればならなかった配管Aをなくすことができ前記配管へ
の突出によって組付はスペースを害することもなく、ま
た組付上も、あらかじめ管部22と端板部23を接合さ
せておいて、蒸発器10の第1および第2偏平チユーブ
11゜12の冷媒入口部にまた配管24を流路アに接合
するだけでよく、配管の曲げ工程を最少銀にとどめるこ
とができるために、大巾に作業性を向上させることがで
きる。As explained above, by adopting the refrigerant distribution pipe 18 of the present invention in a two-bath corrugated-fin type evaporator, if this is not adopted, the upper part of the evaporator as shown in FIGS. It is possible to eliminate the pipe A that had to be installed so as to straddle the pipe, and the assembly does not harm the space due to the protrusion into the pipe. 23 and then connect the piping 24 to the refrigerant inlets of the first and second flat tubes 11 and 12 of the evaporator 10 and to the flow path A, and the bending process of the piping can be kept to a minimum. As a result, work efficiency can be greatly improved.
本発明は上記第1の実施例に限定されることなく広く変
形可能である。The present invention is not limited to the first embodiment described above, but can be widely modified.
上記第1の実施例においては、冷媒分配管18内の流路
を3つの平行な流路で構成し、流路アから入った冷媒が
反転して流路イ、つに入って第1、第2偏平チューブ1
1.12に流れるようにしたが、流路イおよびつは1つ
にまとめられてもよく、例えば第7図に示すように二重
管状の構成とすれば、分配管の構造をさらに簡単なもの
にできる。In the first embodiment described above, the flow path in the refrigerant distribution pipe 18 is configured with three parallel flow paths, and the refrigerant that enters from flow path A is reversed and enters flow path A, the first flow path, and the second flow path. Second flat tube 1
1.12, but channels A and A may be combined into one. For example, if they have a double pipe configuration as shown in Figure 7, the structure of the distribution pipe can be made simpler. It can be made into something.
また上記第1の実施例は、2バスコルゲ一トフイン型蒸
発器に本発明を適用したものであるが、通常の1パス型
であっても第6図の配管BにかえてU字形状の通路を有
する分配管を用いることによって適用することができる
。Furthermore, in the above-mentioned first embodiment, the present invention is applied to a two-pass corrugated-fin type evaporator, but even in the case of a normal one-pass type, a U-shaped passage is used instead of the piping B in Fig. 6. This can be applied by using a distribution pipe with a
第1図は本発明の冷媒分配管18の形状を説明する斜視
図、第2図(al、 (b)は第1図における冷媒分配
管18の管部22の形状を説明する平面図および側面図
、第3図(a)、 (t))は端板部23の形状を説明
する正面図および平面図、第4図は本発明の分配管を適
用した蒸発器の構成を説明する平面図および正面図、第
5図は第4図における偏平チューブ11.12の断面形
状を説明する断面図、第6図は(al、 (b)の従来
の蒸発器の構成を説明する平面図および正面図、第7図
は本発明の冷媒分配管の他の実施例の形状を説明する斜
視図である。
18・・・冷媒分配管。FIG. 1 is a perspective view illustrating the shape of the refrigerant distribution pipe 18 of the present invention, and FIG. Figures 3(a) and 3(t)) are a front view and a plan view illustrating the shape of the end plate portion 23, and FIG. 4 is a plan view illustrating the configuration of an evaporator to which the distribution pipe of the present invention is applied. and a front view, FIG. 5 is a cross-sectional view explaining the cross-sectional shape of the flat tube 11 and 12 in FIG. 4, and FIG. 7 are perspective views illustrating the shape of another embodiment of the refrigerant distribution pipe of the present invention. 18...Refrigerant distribution pipe.
Claims (1)
折り曲げ、該蛇行状チューブの隣接壁間にコルゲートフ
ィンを結合してなる蒸発器において、前記偏平形チュー
ブの冷媒入口部に、風の流れと同一方向から流入した冷
媒の流れを逆方向に変換させる冷媒通路を内部に一体的
に形成させた冷媒分配手段を設けたことを特徴とする空
調用蒸発器。In an evaporator formed by bending a flat tube having refrigerant passage holes therein into a meandering shape and connecting corrugated fins between adjacent walls of the meandering tube, the refrigerant inlet of the flat tube is provided with a wind flow. An evaporator for air conditioning, characterized in that it is provided with a refrigerant distribution means in which a refrigerant passage is integrally formed inside the refrigerant passage for converting the flow of refrigerant flowing from the same direction into the opposite direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11716885A JPS61276674A (en) | 1985-05-30 | 1985-05-30 | Evaporator for air-conditioning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11716885A JPS61276674A (en) | 1985-05-30 | 1985-05-30 | Evaporator for air-conditioning |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61276674A true JPS61276674A (en) | 1986-12-06 |
Family
ID=14705128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11716885A Pending JPS61276674A (en) | 1985-05-30 | 1985-05-30 | Evaporator for air-conditioning |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61276674A (en) |
-
1985
- 1985-05-30 JP JP11716885A patent/JPS61276674A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4966230A (en) | Serpentine fin, round tube heat exchanger | |
CN101443621A (en) | Parallel flow heat exchanger with crimped channel entrance | |
JP2004184074A (en) | Structure of meandering pipe crossing flow type heat exchanger | |
KR19990067881A (en) | Liquid cooled, two phase heat exchanger | |
US6431264B2 (en) | Heat exchanger with fluid-phase change | |
US20210190331A1 (en) | Refrigerant distributor, heat exchanger, and air-conditioning apparatus | |
JP2002139295A (en) | Heat exchanger for air conditioning | |
JPS6214751B2 (en) | ||
JPH10288476A (en) | Heat-exchanger | |
US11988422B2 (en) | Microchannel heat exchanger drain | |
US4722388A (en) | Heat exchanger | |
JPS61276674A (en) | Evaporator for air-conditioning | |
CN110440062B (en) | Connecting pipe assembly, heat exchanger, refrigerating system and air conditioner | |
US7650934B2 (en) | Heat exchanger | |
JPH10170098A (en) | Laminated evaporator | |
KR100606332B1 (en) | Flat tube for heat exchanger for use in air conditioning or refrigeration systems | |
JPS6334489A (en) | Heat exchanger | |
KR19980061128A (en) | Condenser formed a combined flow path with receiver dryer | |
KR100219026B1 (en) | Serpentine heat exchanger with corrugated fin | |
JPH04340094A (en) | Heat exchanger | |
JP2000329487A (en) | Heat exchanger | |
JPH0814703A (en) | Refrigerant evaporator | |
KR200158737Y1 (en) | Support of condenser | |
KR100393564B1 (en) | Condenser for air-conditioner | |
JP2006266521A (en) | Heat exchanger |