JPS61275379A - Reversible heat-sensitive material and preparation of the same - Google Patents

Reversible heat-sensitive material and preparation of the same

Info

Publication number
JPS61275379A
JPS61275379A JP11911085A JP11911085A JPS61275379A JP S61275379 A JPS61275379 A JP S61275379A JP 11911085 A JP11911085 A JP 11911085A JP 11911085 A JP11911085 A JP 11911085A JP S61275379 A JPS61275379 A JP S61275379A
Authority
JP
Japan
Prior art keywords
temperature
temp
oxide
bismuth
sensitive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11911085A
Other languages
Japanese (ja)
Other versions
JPH0134556B2 (en
Inventor
Yoshihisa Inoue
井上 喜央
Toshihiko Takano
俊彦 高野
Yukiko Kobayashi
小林 有紀子
Shigeo Harada
原田 茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP11911085A priority Critical patent/JPS61275379A/en
Publication of JPS61275379A publication Critical patent/JPS61275379A/en
Publication of JPH0134556B2 publication Critical patent/JPH0134556B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a reversible heat-sensitive material comprising a Bi2O3-V2O5 polycrystalline material which changes in color tint reversibly accompanying a change in temp., is thermally stable, inexpensive and nontoxic, by calcining a mixture of a Bi compd. with V2O5 at a specific temp., followed by cooling. CONSTITUTION:An oxide, nitrate or chloride of bismuth (e.g.; Bi2O3) is mixed with vanadium pentoxide in such an amount as will provide a Bi/V atomic ration in the range of 0.97/0.03-0.5/0.5. The mixture is pre-calcined and calcined at a temp. of 500-750 deg.C. The product is left to stand for cooling or gradually cooled to obtain a reversible heat-sensitive material comprising a bismuth oxide- vanadium oxide polycrystalline material. The reversible heat-sensitive material exhibits changes in color from a yellow tone to a red tone when heated at a temp. of about 120 deg.C or above and exhibits an allowable maximum temp. of about 750 deg.C. The material is suited for use in temp. displays for heating areas of heating apparatuses.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は温度の変化により色相が異なる性質を有した、
温度管理材の一種である可逆性示温材に関するものであ
る。
[Detailed Description of the Invention] <Technical Field of the Invention> The present invention has the property that the hue changes depending on changes in temperature.
The present invention relates to a reversible temperature indicating material, which is a type of temperature control material.

〈発明の技術的背景とその問題点〉 従来、サーモペイントと総称されている変色顔料がある
。これはラベル、シート、テープ、ワッペン、クレヨン
、ラックなどの形で市販されており、多様な用途に供さ
れている。この素材は一様に有機系顔料であり、その変
色温度は様々であるが、含まれているバインダーなどの
関係で、耐熱限界温度は高いもので250℃位である。
<Technical background of the invention and its problems> Conventionally, there are color-changing pigments that are collectively called thermopaints. It is commercially available in the form of labels, sheets, tapes, patches, crayons, racks, etc., and is used for a variety of purposes. This material is uniformly an organic pigment, and its discoloration temperature varies, but the heat resistance limit temperature is as high as about 250°C, depending on the binder contained.

この変色顔料の用途は極めて広いが、一般には変電、配
電、制御機器2回転電気機器、電子部品、送電機器及び
各種製造工程の異常発熱個所を簡便に察知する温度管理
がほとんどである。したがってこれ等は余り高温になる
ことはないので示温材そのものの耐熱限界温度は約25
0℃位で充分であると考えるのは至当である。しかし金
属の熔融、溶接。
The use of this color-changing pigment is extremely wide, but in general, it is mostly used for temperature control to easily detect abnormal heat generation points in electrical substations, power distribution, control equipment, two-rotation electrical equipment, electronic components, power transmission equipment, and various manufacturing processes. Therefore, these materials do not reach very high temperatures, so the temperature limit temperature of the temperature indicating material itself is approximately 25
It is reasonable to think that around 0°C is sufficient. However, melting and welding of metal.

成型などといった比較的高温の装置の周辺に使用するに
は、上記耐熱限界温度では必らずしも充分とは言い難い
。その為変色温度が低(あるいは高く、かつそれ自体の
耐熱限界の温度が高(まで(例えば700℃まで)欲し
いという要望が高温加熱をともなう製造工程に多い。し
かし現在、この種の用途に供せられる様な耐熱限界温度
の高い可逆性示温材は未だなかった。
The above heat-resistant limit temperature is not necessarily sufficient for use around relatively high-temperature equipment such as molding. Therefore, there are many requests for a low (or high) discoloration temperature and a high (for example, 700°C) heat resistance limit temperature in manufacturing processes that involve high-temperature heating. There has not yet been a reversible temperature indicating material with such a high heat resistance limit temperature.

一方、家電業界に於いては、暖房、調理機器関連の加熱
部分の温度を色で表示したい、つまり、ある一定温度以
上で変色してほしいという示温材の根強い要請が以前か
らあり、種々の可逆性示温材が提案されてきた。その素
材は、銀化合物や。
On the other hand, in the home appliance industry, there has long been a strong demand for temperature indicating materials to display the temperature of heating parts related to heating and cooking equipment in color, that is, to change color above a certain temperature, and various reversible materials are being used. Temperature indicating materials have been proposed. The material is a silver compound.

硫化物、沃化物の複合材料が主なものであるが、安定性
、寿命、コスト、毒性などの点で、いずれももう一つき
めでに欠けるところがあるのが現状である。
Composite materials of sulfide and iodide are the main materials, but at present they all have some weaknesses in terms of stability, lifespan, cost, toxicity, etc.

次に、本発明に係る可逆性示温材に到達するまでの技術
的背景1こついて詳しく説明を行なう。
Next, the technical background 1 until reaching the reversible temperature indicating material according to the present invention will be explained in detail.

従来、五酸化バナジウム(V2O5)の可逆的な色変化
は酸化タングステン、酸化モリブデンなどにおけるもの
と共に、古くから非常に良く知られている現象である。
Conventionally, the reversible color change of vanadium pentoxide (V2O5) is a phenomenon that has been very well known for a long time, as well as that of tungsten oxide, molybdenum oxide, and the like.

V2O5の色相は一般に室温では黄色であり、昇温する
に従い赤色側にシフトする。この色相の変化は温度に対
して可逆的であり、約100℃で色相の変化を充分視認
できる。本来v205はV−O−Vの網面の積み重ねを
有するV−6・Oの八面体構造をとるが、そのうち1個
のOが中心のVから特に離れており、正八面体が大きく
歪んだ内部に多数の空洞をもつ三方両雄型と見なされる
構造をとっている。つまり構造内に例えば酸素など自由
に拡散し得る空隙を有している。
The hue of V2O5 is generally yellow at room temperature, and shifts to red as the temperature rises. This change in hue is reversible with respect to temperature, and the change in hue is sufficiently visible at about 100°C. Originally, v205 has a V-6 O octahedral structure with a stack of V-O-V mesh planes, but one O is particularly far away from the center V, and the interior of the regular octahedron is greatly distorted. It has a structure that is considered to be three-sided and hermaphrodite, with numerous cavities inside. In other words, the structure has voids in which, for example, oxygen can freely diffuse.

また、物性的にV2O5は酸素空孔を基本的に有するn
型半導体であり、前記の構造の特異性と相まって、02
の吸着による格子酸素としての取り込みと、昇温による
脱離の交換反応が容易に起きるとされている。この様な
物質固有の現象に基ずく比較的低温で起きる色変化の機
構は極めて興味深いものである。
In addition, in terms of physical properties, V2O5 basically has oxygen vacancies.
02 type semiconductor, and coupled with the above-mentioned structural specificity,
It is said that the exchange reaction of incorporation as lattice oxygen through adsorption and desorption by increasing temperature occurs easily. The mechanism of color change that occurs at relatively low temperatures, which is based on such phenomena unique to substances, is extremely interesting.

さて、上記の如くv20.は酸化活性の大きな化合物で
ある。それ故、SO□ の酸化触媒、あるいは種々有機
化合物の部分酸化触媒として工業的に広く利用されてい
る。又、この様に強い酸化力を持つ物質が通例として人
体に対して無害ではな(、吸入した際に器管の粘膜に付
着することにより、咳、動悸を誘引し、あるいは吸入量
が多いと胸部痛、呼吸困難などの所謂呼吸器障害に到る
こともあるとされている。また皮膚に触れると発疹、吹
き出ものなどの皮膚疾患を起こすこともあると指摘され
ている。これ等の毒性は一般にV2O5を粉体のまま扱
うことに起因するものである。V2O5の優れた呈色機
能を活かして、示温材として使用することはコーティン
グなど加工法を適切に工夫することにより決して不可能
なものではない。たとえ法律で毒物もしくは劇物に指定
されていないものであっても、人体に些かでも有害と指
摘されている物質をそのまま用いることは避けることが
賢明である。
Now, as mentioned above, v20. is a compound with high oxidation activity. Therefore, it is widely used industrially as an oxidation catalyst for SO□ or as a partial oxidation catalyst for various organic compounds. Also, substances with such strong oxidizing power are generally not harmless to the human body (when inhaled, they may adhere to the mucous membranes of the organs, causing coughing and palpitations, or if inhaled in large quantities). It is said that it may lead to so-called respiratory disorders such as chest pain and difficulty breathing.It has also been pointed out that if it comes into contact with the skin, it may cause skin diseases such as rashes and pimples. This is generally caused by handling V2O5 as a powder. Taking advantage of V2O5's excellent coloring ability, it is possible to use it as a temperature indicating material by appropriately devising processing methods such as coating. Even if the substance is not designated as a poisonous or deleterious substance by law, it is wise to avoid using substances that are known to be even slightly harmful to the human body.

〈発明の目的〉 本発明は以上の従来点に鑑みなされたものであり、特に
、人体に有害な物質を含まず、安定で、耐熱限界温度が
高く、且つ低コストの材料からなる可逆性示温材を提供
することを目的とするものである。
<Object of the Invention> The present invention has been made in view of the above-mentioned conventional points, and in particular, a reversible temperature indicator made of a material that does not contain substances harmful to the human body, is stable, has a high heat-resistant limit temperature, and is low in cost. The purpose is to provide materials.

〈実施例〉 以下、本発明に係る可逆性示温材の実施例につき図面を
用いて詳細に説明を行なう。
<Examples> Examples of the reversible temperature indicating material according to the present invention will be described in detail below with reference to the drawings.

本発明に係る可逆性示温材は基本的にビスマス化合物と
五酸化バナジウムの混合物を焼成することにより得られ
る、酸化ビスマス−酸化バナジウム系多結晶体からなる
ものである。又その組成はBi及びVの原子化で(B 
io、97Vo、oa )より(B iO,50vo、
りo )の範囲が適切である。
The reversible temperature indicating material according to the present invention basically consists of a bismuth oxide-vanadium oxide polycrystal obtained by firing a mixture of a bismuth compound and vanadium pentoxide. In addition, its composition is the atomization of Bi and V (B
io, 97Vo, oa) from (B iO, 50vo,
A range of (o) is appropriate.

次に第1図の製造工程図を参照しつつ具体的な製造工程
につき説明を行なう。
Next, a specific manufacturing process will be explained with reference to the manufacturing process diagram shown in FIG.

O実施例1 いずれも試薬級のBi20g及びV2O5を表1に示す
重量だけ秤量した。この場合の原子比は表中に併記した
とおりである。
Example 1 20 g of Bi and V2O5, both of reagent grade, were weighed as shown in Table 1. The atomic ratio in this case is as shown in the table.

表  1 試料1より5をそれぞれ自動乳鉢、ボールミルを用いて
別々に粉砕混合■する。次に蓋付きセラミックスるつぼ
に別々に移し、夫々空気中で500℃で24時間仮焼■
する。その後、再度粉砕■を行い、試料1.2及び3は
750℃7゛丸試料4及び5は650℃で48時間本焼
成■する。その後300℃まで毎時15℃で徐冷し、室
温まで放冷■する。
Table 1 Samples 1 to 5 were ground and mixed separately using an automatic mortar and ball mill. Next, they were individually transferred to ceramic crucibles with lids and calcined in air at 500℃ for 24 hours.
do. Thereafter, pulverization was performed again (2), and samples 1, 2 and 3 were fired at 750°C for 7°, and samples 4 and 5 were fired at 650°C for 48 hours (2). Thereafter, it was slowly cooled to 300°C at a rate of 15°C per hour, and then allowed to cool to room temperature.

上記冷却後の試料はまずX線で生成相を調べた■。若干
でもv205の相が存在している(aの場合)試料は再
度焼成■を繰り返す。v205の相が存在していない(
bの場合)試料は再度の焼成は不要である。次に分光光
度計で色相の温度依存性を調べる■ため、試料を25μ
m〜37μmの粒径に揃える。測定波長域は400〜8
00nmである。この色調測定は室温及び70℃から3
50’Ctでの範囲を70℃間隔で行なった。これ等の
結果を第2図及び第3図に示す。第2図及び第3図はそ
れぞれ試料4及び5の各温度における反射スペクトルで
ある。これ等の色相の温度依存性には本質的に熱履歴は
ない。昇温時も降温時も測定温度で熱的平衡を充分保持
することにより、同一の結果が得られる。尚、組成の基
本成分であるBi2O3とv205の分光光度計による
反射スペクトルを夫々第4図、第5図に示すが、この第
4図及び第5図と上記第2図及び第3図とを比較すると
生成された試料はその基本成分の単純な混在物ではな(
、固有の独立したものであることが判る。
The sample after cooling was first examined for the formed phase using X-rays. For samples in which even a small amount of the V205 phase is present (in the case of a), the firing process (2) is repeated again. v205 phase does not exist (
In case b) the sample does not need to be fired again. Next, in order to examine the temperature dependence of hue using a spectrophotometer, a sample of 25μ
Adjust the particle size to 37 μm. Measurement wavelength range is 400-8
00 nm. This color tone measurement is performed from room temperature and 70℃.
Ranges at 50'Ct were performed at 70°C intervals. These results are shown in FIGS. 2 and 3. FIGS. 2 and 3 show the reflection spectra of Samples 4 and 5 at various temperatures, respectively. The temperature dependence of these hues essentially has no thermal history. The same results can be obtained by sufficiently maintaining thermal equilibrium at the measurement temperature both when the temperature is raised and when the temperature is lowered. The reflection spectra of Bi2O3 and V205, which are the basic components of the composition, measured by a spectrophotometer are shown in Figures 4 and 5, respectively. By comparison, the sample produced is not a simple mixture of its basic components (
, is found to be unique and independent.

また、温度変化に対して色相が鋭敏に変わることも良く
納得できる。なお、この一連の物質の変色機能は750
℃で加熱処理を繰り返しても損なわれないことを確認し
た。
It is also understandable that the hue changes sensitively in response to temperature changes. The color changing function of this series of substances is 750
It was confirmed that there was no damage even after repeated heat treatment at ℃.

次に試料5の粉体を水溶性ガラス塗布剤に一定の濃度で
混練■したのち、あらかじめ梨地加工を施したガラス板
、素焼のセラミックス板9石綿板。
Next, the powder of sample 5 was kneaded with a water-soluble glass coating agent at a certain concentration, and then a glass plate that had been subjected to a satin finishing process, an unglazed ceramic plate, and an asbestos plate were prepared.

セメント板、梨地アルミ板、ポリイミドフィルム等の基
板に刷毛を用いて塗布[相]を行った。この場合石綿板
、セメント板については、該粉体の混和量を少なくして
何度も塗布する方がより均一な塗膜が得やすい。乾燥、
固着の方法は150℃で1時間加熱■するか、もしくは
そのまま放置する。
Application [phase] was performed using a brush on substrates such as cement boards, matte aluminum boards, and polyimide films. In this case, for asbestos boards and cement boards, it is easier to obtain a more uniform coating film by reducing the amount of the powder mixed and applying the powder many times. drying,
The fixing method is to heat it at 150°C for 1 hour, or leave it as it is.

後者の場合塗膜の厚さにより放置時間は長(なるが、I
Opm前後で約3日が標準である。この様にして得られ
た塗膜の色変化は、本来の色調と全く変わるところがな
い。また様々な剥離試験を行ってみたが、1度乾燥、固
着した膜の強度は極めて強(、機械的に引掻(などしな
い限りは剥れることはまずない。又熱的ショックにも強
(、乱暴に加熱或いは急冷したとき、ガラス基板が割れ
ることはままあるが、その場合でも膜は剥離しなかった
In the latter case, depending on the thickness of the coating film, the leaving time may be long (but I
The standard time is about 3 days before and after Opm. The color change of the coating film obtained in this way is completely unchanged from the original color tone. We also conducted various peel tests, and found that once dried and fixed, the film is extremely strong (and rarely peels off unless mechanically scratched).It is also resistant to thermal shock ( Although the glass substrate often cracks when heated or rapidly cooled, the film did not peel off even in that case.

次に分散剤としてセラミックス塗布剤を用いて、前述の
方法と同様に塗布を行なった。用いたセラミックス塗布
剤は、前記のガラス塗布剤に含まれる5i02成分の他
にZ r 02 、 AA’203を添加分散させたも
のである。この場合でも非常に頑強な膜ができた。また
ZrO2、AJ?203などの白色成分の量を加減する
ことにより、膜の色の濃さを任意に選択することが可能
である。この場合の色調は若干コントラストの弱いもの
になるが、視認に際し支障はなかった。
Next, using a ceramic coating agent as a dispersant, coating was carried out in the same manner as in the above method. The ceramic coating agent used was one in which Z r 02 and AA'203 were added and dispersed in addition to the 5i02 component contained in the glass coating agent. Even in this case, a very strong film was produced. Also ZrO2, AJ? By adjusting the amount of white components such as 203, it is possible to arbitrarily select the color depth of the film. Although the color tone in this case had a slightly weak contrast, there was no problem in visual recognition.

・実施例2 いずれも試薬級のB i (NO3)a・5H20、B
 i C13及びv205を表2に示した重量だけ秤量
した。
・Example 2 Both are reagent grade B i (NO3)a・5H20, B
i C13 and v205 were weighed as shown in Table 2.

表2 実施例1と同様の仮焼の前処理■を素早く行ない、試料
6は500℃で48時間、試料7は最初に880℃で1
2時間、引き続き500℃で48時間仮焼■した。試料
6の昇温速度は80℃/時に制御した。また分解物を逃
すため、いずれもるつぼに蓋をかぶせなかった。次に試
料6及び7をとり出した後、再度充分粉砕、混合■を行
ない、650℃で空気中にて48時間本焼成■した。そ
の後実施例1と同様に冷却■を行い、生成物を得たのち
X線解析■を行った。もし未反応物が残存した場合aは
再焼成■を繰り返す。未反応物が残存しない場合すは再
焼成■は不要である。この場合、得られた最終生成物は
いずれもBiVO4である。ここで分光光度計による測
定■の結果は出発物質にBi2O3を供した実施例1の
場合と何ら変わらなかった。
Table 2 Pre-calcination treatment (2) similar to that in Example 1 was quickly performed, and sample 6 was heated at 500°C for 48 hours, and sample 7 was initially heated at 880°C for 1 hour.
It was calcined for 2 hours, and then calcined for 48 hours at 500°C. The temperature increase rate of sample 6 was controlled at 80° C./hour. Also, in order to allow decomposition products to escape, the crucibles were not covered with lids. Next, Samples 6 and 7 were taken out, thoroughly ground again, mixed (1), and main fired (4) at 650° C. in air for 48 hours. Thereafter, cooling (2) was performed in the same manner as in Example 1 to obtain a product, which was then subjected to X-ray analysis (2). If unreacted substances remain, step (a) repeats re-baking (2). If no unreacted substances remain, re-calcination (2) is not necessary. In this case, the final product obtained is BiVO4. Here, the results of measurement (2) using a spectrophotometer were no different from those of Example 1 in which Bi2O3 was used as the starting material.

次に試料6の粉体を自動乳鉢で充分粉砕した後、ふるい
を用いて37μm以下の粒径の微粉末にする。これをガ
ラスフリットに20重量%加えてボールミルで均一混合
を行ない、淡黄色の混合微粉体を得る。これをエタノー
ルと充分混和してペースト状にした■のち、並ガラス薄
板及び素焼のセラミックス板にスパチュラで均一に塗る
@10乾s後、マツフル炉内で該ガラスフリットの仕様
に規定された温度(480℃)で3時間焼き付け■を行
なって、徐冷後とり出した。この場合は、実施例1と同
様な表面の滑らかな状態はなかなか得がたかったが、表
面の散乱光により、低い角度からも昇温により淡黄白色
から淡橙色にきれいに色調が変化する状態が観察できた
Next, the powder of sample 6 is sufficiently ground in an automatic mortar, and then made into a fine powder with a particle size of 37 μm or less using a sieve. 20% by weight of this was added to the glass frit and uniformly mixed in a ball mill to obtain a pale yellow mixed fine powder. After thoroughly mixing this with ethanol to make a paste, apply it evenly with a spatula to a thin glass plate and an unglazed ceramic plate. 480° C.) for 3 hours, and after slow cooling, it was taken out. In this case, it was difficult to obtain the same smooth surface as in Example 1, but due to the scattered light on the surface, the color tone changed neatly from pale yellow-white to pale orange as the temperature rose even from a low angle. I was able to observe it.

尚、上記生成した粉体と被測温物に直接分散混入させる
場合は、基材中に上記生成した粉体を均一混合◎し、次
いでこれを鋳型に移し、加圧成型[相]すればよい。
In addition, when directly dispersing and mixing the powder produced above into the object to be measured, uniformly mix the powder produced above into the base material, then transfer it to a mold, and press-form [phase]. good.

上記の様にして生成されたB i 203  v、、 
o5系多結晶体において、その組成は既述した如(Bi
及びVの原子比で(B io、97Vo、og )より
(BiO,50Vo、so )の範囲である。ここで(
B i O,50Vo、so )の組成の化合物を空気
中500℃から750℃で焼成すると13iVO4が生
成される。一方(Bio、5o十工■0.50−x )
の範囲(即ちBi過剰の組成)テハ、BiVO4の他に
Xに相当するβBi2O3,δBi20Bに酷似した相
の生成が見られる。しかし必ずしも判然としたものでは
なく、Bi−VO系の新規の化合物の可能性もなくはな
い。一方(B io、5o−8V0.50+x )の範
囲(即ちVが過剰の組成域)ではBiVO4の外にXに
相当する分の出発物質であるV2O5がそのまま残る。
B i 203 v generated as above,
The composition of the o5 polycrystal is as described above (Bi
The atomic ratio of V and V ranges from (Bio, 97Vo, og) to (BiO, 50Vo, so). here(
When a compound having the composition B i O, 50Vo, so ) is fired in air at 500°C to 750°C, 13iVO4 is generated. On the other hand (Bio, 5o Juku■0.50-x)
In addition to BiVO4, formation of phases very similar to βBi2O3 and δBi20B corresponding to X is observed in the range of (ie, composition with excess Bi). However, it is not necessarily obvious, and there is a possibility of new Bi-VO compounds. On the other hand, in the range (Bio, 5o-8V0.50+x) (ie, a composition range in which V is in excess), the starting material V2O5 corresponding to X remains as is in addition to BiVO4.

■の上限値を0.50としたのは、このような理由に基
づ(。なお出発物質のBi化合物としてB i (NO
3)3・5H20またはBiCA’3を用いても前記と
同様の生成相が得られる。ここで、Bi2O3V2O5
系多結晶体の公知の文献は本発明者の知る限りにおいて
全く無く、単1cBi203−V205(Q〜8七に%
) で(D固溶相がPhase Diagram fo
r Ceramists(AmericanCeram
ic 5ociety刊)に記載されるのみであった。
It is based on this reason that the upper limit of
3) Even when 3.5H20 or BiCA'3 is used, the same formation phase as above can be obtained. Here, Bi2O3V2O5
To the best of the present inventor's knowledge, there are no known documents regarding polycrystalline polycrystals, and single 1cBi203-V205 (Q~87%)
) (D solid solution phase is Phase Diagram fo
r Ceramists (American Ceramists)
ic 5ociety).

次に組成範囲と色相の関連について述べる。まず一方の
組成分であるBi2O3は室温において淡岳6右ア豆・
β手lir帰l)要鵜グ亦ル手ス γ小箱相の変化を視
認できる温度は200℃前後である。
Next, the relationship between composition range and hue will be described. First, one of the components, Bi2O3, is at room temperature.
The temperature at which changes in the γ small box phase can be visually observed is around 200°C.

一方v205は室温において黄色を呈し、昇温すると錆
赤色に変化する。視認できる温度は約100℃である。
On the other hand, v205 exhibits a yellow color at room temperature and changes to a rust red color when the temperature rises. The visible temperature is approximately 100°C.

Bi−V系ではBiに■を添加するに従い、室温では黄
色味が、変色時には赤色が徐々に増加し、視認できる変
色温度も次第に下がる。
In the Bi-V system, as ■ is added to Bi, the yellowish tinge at room temperature gradually increases and the red tinge increases at the time of discoloration, and the visible discoloration temperature also gradually decreases.

BiVO4では室温で黄色、昇温時には橙赤色を呈する
。色相の変化を視認できる温度は約120℃である。
BiVO4 exhibits a yellow color at room temperature and an orange-red color when the temperature rises. The temperature at which a change in hue can be visually recognized is about 120°C.

次に焼成後の熱処理条件及び焼成上限温度について述べ
る。上記組成範囲では本焼成■の後の冷却■の際に75
0℃より急冷した場合、不純物として微量のV2O5が
残存しやすい傾向がある。また、得られた焼結体そのも
のも、V2O5の残存の有無に関係な(、室温で不鮮明
な色調を呈し、変色後も赤褐色を帯びがちである。これ
らの現象の由来するところは未解明であるが、結晶構造
の乱れや、当然予想される酸素欠陥の増大が微妙に可視
域の吸収に影響を与えていることが窺える。いずれにし
ても、穏やかな放冷、あるいは意識的な徐冷が必要であ
る。上記焼成温度の上限を750℃とした理由は、一方
の反応組成分であるv205が800℃もしくはそれ以
上の温度では熱安定性に欠け、化学量論組成からずれ易
いとされているところによる。基本的にはv205−x
においてX値は酸素分圧と温度の関数に支配されるが、
800℃以上では比較的大きなX値をとることが電気伝
導度の測定により実証されている。
Next, the heat treatment conditions after firing and the upper limit firing temperature will be described. In the above composition range, when cooling (■) after main firing (■), 75%
When rapidly cooled from 0° C., a trace amount of V2O5 tends to remain as an impurity. In addition, the obtained sintered body itself exhibits an indistinct color tone at room temperature and tends to take on a reddish-brown color even after discoloration.The origin of these phenomena is unknown. However, it can be seen that the disturbance of the crystal structure and the naturally expected increase in oxygen defects subtly affect absorption in the visible region.In any case, gentle cooling or intentional slow cooling The reason why the upper limit of the firing temperature was set at 750°C is that one of the reaction components, v205, lacks thermal stability at temperatures of 800°C or higher and is said to easily deviate from the stoichiometric composition. Depends on where you are. Basically v205-x
The X value is controlled by the function of oxygen partial pressure and temperature,
It has been demonstrated by electrical conductivity measurements that the X value is relatively large at temperatures above 800°C.

以上述べた様に、Bi−V系の熱処理条件が生成相、色
調に与える影響は微妙なものであり、組成に応じた適切
且つ正確な制御が必要である。
As described above, the effects of Bi-V heat treatment conditions on the generated phase and color tone are subtle, and appropriate and accurate control is required depending on the composition.

上記組成の範囲内において、生成物は約750℃まで安
定であり、色相の変化が損なわれることはない。v20
5は一部水に溶解してバナジン酸を生成し黄色を呈すが
、水系の組成は冷水、温水及び1規定の苛性ソーダに不
溶である。また、紫外光下での変質はみられない。これ
等の点では、v20.より遥かに安定であり、改善され
ている。
Within the above composition range, the product is stable up to about 750°C without loss of hue change. v20
5 partially dissolves in water to produce vanadic acid and exhibits a yellow color, but its aqueous composition is insoluble in cold water, hot water, and 1N caustic soda. Moreover, no deterioration is observed under ultraviolet light. In these points, v20. Much more stable and improved.

又、この多結晶体は金属酸化物特有の化学的、熱的、光
化学的安定さと、様々な酸化物系材料に対する本質的な
馴染み良さ故に幅広い用途が可能である。即ち上述した
如(多孔質ガラス、セラミックス、石綿、セメント、プ
ラスチックなどに直接混入させ、あるいは分散させる方
法がある。これ等の材料とは本来非常に馴染み易いもの
である。
Furthermore, this polycrystalline material can be used in a wide range of applications due to its chemical, thermal, and photochemical stability unique to metal oxides and its inherent compatibility with various oxide-based materials. That is, as mentioned above, there is a method of directly mixing or dispersing it into porous glass, ceramics, asbestos, cement, plastics, etc. These materials are naturally very compatible.

又、上述した如く・水溶性ガラス塗布剤、セラミック塗
布剤など、比較的多孔性の皮膜を作り易い溶剤に分散さ
せて、被測温物表面に塗布製膜するのも極めて有効であ
る。また、加熱固着の方法として一定量をガラスフリッ
トに均一に分散させて、被測温物上で該ガラスフリット
に応じた温度で仮焼することにより、白色、多孔性のガ
ラス状物質の膜を被着させることも可能である。
Furthermore, as mentioned above, it is extremely effective to disperse the material in a solvent that can easily form a relatively porous film, such as a water-soluble glass coating agent or a ceramic coating agent, and apply it to the surface of the object to be measured. In addition, as a method of heating and fixing, a film of white, porous glass-like material can be formed by uniformly dispersing a certain amount into a glass frit and calcining it on the object to be measured at a temperature that corresponds to the glass frit. It is also possible to deposit the material.

ここで本発明に係る示温材の上記実施例の特徴を以下に
掲げる。
Here, the features of the above embodiments of the temperature indicating material according to the present invention are listed below.

+1)  示温特性に関する事項。+1) Matters regarding temperature characteristics.

げ)黄色系から赤色系の色調に可逆的に変化する。(G) Changes reversibly from yellowish to reddish in tone.

(ロ)変化が視認できる下限温度は約120℃である。(b) The lower temperature limit at which changes can be visually recognized is approximately 120°C.

(ハ)熱追従性が良く、熱履歴を持たない。(c) Good heat followability and no thermal history.

(2)安定性、安全性に関する事項。(2) Matters related to stability and safety.

イ)耐熱限界温度は約750℃である。b) The heat resistance limit temperature is approximately 750°C.

(ロ)水に不溶であり、紫外光下でも変質しない。(b) It is insoluble in water and does not deteriorate even under ultraviolet light.

(ハ)充分な繰返し寿命を有している。(c) It has sufficient repeat life.

に))人体に有害とされる物質を含まない。)) Contains no substances that are considered harmful to the human body.

(3)加工の多様性及び生産上の利点に関する事項。(3) Matters regarding processing diversity and production advantages.

K)安定な金属酸化物であるので、ガラス、セラミック
ス、石綿、セメントなど広汎な材料と良く馴染む。
K) Since it is a stable metal oxide, it blends well with a wide range of materials such as glass, ceramics, asbestos, and cement.

川 水、アルカリに不溶であるので様々な溶剤に分散で
きる。
River: It is insoluble in water and alkalis, so it can be dispersed in various solvents.

(/1)熱的に安定であるので加熱を伴なう加工ができ
る。
(/1) Since it is thermally stable, processing that involves heating is possible.

に)) 材料そのものが比較的安価であり、製造法が簡
単である。
)) The materials themselves are relatively inexpensive and the manufacturing method is simple.

〈発明の効果〉 以上の本発明によれば人体に無害で、熱的に安定で、且
つ材料が安価に入手可能な実用性に富んだ優れた可逆性
示温材を得ることができるものである。
<Effects of the Invention> According to the present invention as described above, it is possible to obtain an excellent reversible temperature indicating material that is harmless to the human body, thermally stable, and whose materials are available at low cost and is rich in practicality. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る可逆性示温材の実施例の製造工程
の工程図、第2図乃至第5図は分光光度計による可視波
長域における吸収スペクトルの温度依存性を示すグラフ
図である。
FIG. 1 is a process diagram of the manufacturing process of an embodiment of the reversible temperature indicating material according to the present invention, and FIGS. 2 to 5 are graphs showing the temperature dependence of absorption spectra in the visible wavelength range measured by a spectrophotometer. .

Claims (1)

【特許請求の範囲】 1、ビスマス化合物と五酸化バナジウムの混合物を焼成
することにより得られた酸化ビスマス−酸化バナジウム
系多結晶体からなり、温度変化に対して異なった色相を
呈する事を特徴とする可逆性示温材。 2、前記ビスマス化合物が酸化物、硝酸化物もしくは塩
化物のいずれかであり、前記ビスマス化合物の前記五酸
化バナジウムとの混合組成比がビスマスとバナジウムの
原子比で(Bi:0.97、V:0.03)乃至(Bi
:0.50、V:0.50)の範囲にあることを特徴と
する特許請求の範囲第1項記載の可逆性示温材。 3、前記ビスマス化合物と五酸化バナジウムの混合物を
500℃から750℃の温度範囲で仮焼及び本焼成し、
次に放冷あるいは徐冷することにより、酸化ビスマス−
酸化バナジウム系多結晶体を得たことを特徴とする可逆
性示温材の製造方法。
[Claims] 1. It consists of a bismuth oxide-vanadium oxide polycrystal obtained by firing a mixture of a bismuth compound and vanadium pentoxide, and is characterized by exhibiting different hues depending on temperature changes. A reversible temperature indicating material. 2. The bismuth compound is an oxide, a nitrate, or a chloride, and the mixing composition ratio of the bismuth compound with the vanadium pentoxide is an atomic ratio of bismuth and vanadium (Bi: 0.97, V: 0.03) to (Bi
2. The reversible temperature indicating material according to claim 1, wherein the reversible temperature indicating material is in the range of V: 0.50 and V: 0.50. 3. Calcining and main firing the mixture of the bismuth compound and vanadium pentoxide at a temperature range of 500°C to 750°C,
Next, by cooling or slow cooling, bismuth oxide
A method for producing a reversible temperature indicating material, characterized in that a vanadium oxide polycrystal is obtained.
JP11911085A 1985-05-30 1985-05-30 Reversible heat-sensitive material and preparation of the same Granted JPS61275379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11911085A JPS61275379A (en) 1985-05-30 1985-05-30 Reversible heat-sensitive material and preparation of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11911085A JPS61275379A (en) 1985-05-30 1985-05-30 Reversible heat-sensitive material and preparation of the same

Publications (2)

Publication Number Publication Date
JPS61275379A true JPS61275379A (en) 1986-12-05
JPH0134556B2 JPH0134556B2 (en) 1989-07-19

Family

ID=14753160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11911085A Granted JPS61275379A (en) 1985-05-30 1985-05-30 Reversible heat-sensitive material and preparation of the same

Country Status (1)

Country Link
JP (1) JPS61275379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052101A (en) * 2010-07-26 2012-03-15 Seb Sa Heating article including colored heat indicator with improved visibility and precision
KR20220160736A (en) * 2021-05-28 2022-12-06 (주) 씨에프씨테라메이트 Thermochromic pigment and method for preparing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052101A (en) * 2010-07-26 2012-03-15 Seb Sa Heating article including colored heat indicator with improved visibility and precision
KR20220160736A (en) * 2021-05-28 2022-12-06 (주) 씨에프씨테라메이트 Thermochromic pigment and method for preparing thereof

Also Published As

Publication number Publication date
JPH0134556B2 (en) 1989-07-19

Similar Documents

Publication Publication Date Title
CN1671816A (en) Thermochromic material
CN105967655B (en) Lithium iron doped nickel oxide negative temperature coefficient thermistor material
CA1055204A (en) Antimony-free yellow pigments and their preparation
JPS61275379A (en) Reversible heat-sensitive material and preparation of the same
JPH0262155B2 (en)
JPH0647464B2 (en) Temperature indicating material and manufacturing method thereof
RU2315072C1 (en) Molybdate-based inorganic pigment
JPH0226861A (en) Ceramic composition
Alarcón Synthesis and characterization of vanadium-containing ZrO2 solid solutions pigmenting system from gels
Silva et al. Influence of the network former on the properties of magnesium spinels
JPH0129518B2 (en)
JPH0129517B2 (en)
Strnadlová et al. Thermal study of the Ce 0.9 Tb 0.1 O 2 pigment prepared by different synthesis
US3544343A (en) High density alumina and method for producing it
JPH0262156B2 (en)
Watanabe Phase relations of Bi2O3-rich Bi2O3–Er2O3 system: The appearance of a new stable orthorhombic phase (Bi2O3) 0.72 (Er2O3) 0.28 against the known oxide-ion conductive hexagonal phase
JPS6361080A (en) Reversible temperature indicating material
CN111559911B (en) High-sensitivity negative temperature coefficient thermistor material and preparation method thereof
JPS645639B2 (en)
RU2492198C1 (en) Molybdate-based inorganic pigment
JPH0435514B2 (en)
JPH0222030B2 (en)
JP2003160742A (en) Yellow cerium pigment
Rohilla et al. Synthesis and Characterization of Calcium Copper Titanate (CaCu3Ti4O12) Powder as a Brown-Coloured Inorganic Pigment with High Infra-Red Reflectance
JPS6042236A (en) Yellow inorganic pigment