JPH0129517B2 - - Google Patents

Info

Publication number
JPH0129517B2
JPH0129517B2 JP11911285A JP11911285A JPH0129517B2 JP H0129517 B2 JPH0129517 B2 JP H0129517B2 JP 11911285 A JP11911285 A JP 11911285A JP 11911285 A JP11911285 A JP 11911285A JP H0129517 B2 JPH0129517 B2 JP H0129517B2
Authority
JP
Japan
Prior art keywords
temperature
white
color
film
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11911285A
Other languages
Japanese (ja)
Other versions
JPS61275381A (en
Inventor
Yoshihisa Inoe
Toshihiko Takano
Yukiko Kobayashi
Shigeo Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP11911285A priority Critical patent/JPS61275381A/en
Publication of JPS61275381A publication Critical patent/JPS61275381A/en
Publication of JPH0129517B2 publication Critical patent/JPH0129517B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<発明の技術分野> 本発明は、温度変化により色相が異なる性質を
有する温度管理材の一種である可逆性示温材に関
するものである。 <発明の技術的背景とその問題点> 従来、サーモペイント(日本油脂株式会社の登
録商標)と呼ばれている一定温度以上で変色する
示温材として温度管理材がある。この温度管理材
には不可逆性、準不可逆性、可逆性のものが幅広
い変色温度で取り揃えられており、非常に広く使
用されている。これ等の素材は主に有機物質であ
り、またバインダー等も有機系物質が主体であ
る。このため上記温度管理材の耐熱限界温度は高
いものでも、おおむね250℃前後であつた。耐熱
限界温度が上がれば、比較的高温の各種加熱処理
装置周辺にも用途が広がることになる為、高温ま
で耐える素材が求められている。 また、各種家電製品、とりわけ電磁調理器の加
熱板、ホツトプレートなど加熱を伴なう調理器具
に可逆性の変色示温機能を附加したいという要請
がある。この附加の目的は、測温することではな
く、使用者が加熱された部分に不用意に接触をし
て火傷を負うことを避けるため、色調の変化で警
告することにある。但し、電磁調理器の加熱部分
は約450℃に達することもあるといわれており、
室温から少なくともこの温度に至るまでの熱サイ
クルに耐えるものでなくてはならない。また、こ
の場合一般家庭内で日常使用する器具という観点
において、人体に無害であることも極めて重要で
ある。その他、寿命、安定性、価格、加工性など
を考慮すると、この用途に要求される条件を充分
満たした材料は未だ得るに至つていないといえ
る。 <発明の目的> 本発明は上記の問題に鑑みなされたもので化学
的に安定で、安価な示温性の素材を提供し、より
広範な用途に供することを目的とするものであ
る。 <実施例> まず、本発明に至るまでの経過について概略説
明する。 可逆性示温材の色調は従来、例えば黄色←→橙色
のような同系色内の変化が圧倒的に多く、変化の
視認性の良い、例えば青色←→赤色の様な異系色内
の変化はなかなか得がたかつた。これはわずか数
10℃あるいは数100℃の温度変化で物質の可視波
長域反射スペクトルを大幅にシフトする現象を生
じさせることが困難な事情に基づく。また、色調
変化の視認性が非常に良いと思われる白色系から
呈色する材料もほとんどなかつた。本発明者は、
白色系の材料を種々試みたが、稀には白色系から
呈色する材料もあるものの、充分なコントラスト
を得るに至つていない。そこで異つた反射スペク
トル域を持つ二種類の呈色材料を組み合わせて、
室温でほぼ白色を呈し、昇温するにつれて、いず
れか一種類の反射スペクトル域がシフトしてもう
一方のそれと重複し、一種類の反射スペクトルの
みが残り、色変化が起るような系はないものか、
種々の化合物について調べてみた。その結果
CoWO4と酸化タングステン化合物にそれにやや
近い現象が見られることを確認した。この化合物
の系の組成比を細かく変えてみたが、室温での色
調が白色で反射スペクトルが全可視域でブロード
のものはなかなか得難く、CoWO4―酸化タング
ステン化合物の系では最もそれに近いものでも明
灰色である。しかし、従来の同系色内の変化に比
較して視認性においては優れていた。また変色後
のコントラストは若干下るものの、加工法を工夫
することによりほとんど白色の色調を呈すること
を確認した。 次に本発明に係る可逆性示温材の実施例の製造
法を説明する。 出発物質に酸化コバルト化合物としてCoO,
Co3O4を、酸化タングステン化合物としてWO3
H2WO4,WO2を用いる。このいずれを供しても
最終の生成物は、CoWO4(単斜晶系)とWO3(正
方晶系)となり、基本的に同一の組成をもつ。本
発明に係る組成範囲においては、(1−n)WO3
+nCoWO4(n=1.00〜0.03)の組成をもつ生成相
が得られる。仮焼及び焼成温度は、出発物質によ
り変える必要は特にない。仮焼温度は750℃程度、
焼成温度は900℃程度が妥当である。 この化合物の系の色調はCoとWの組成比に大
きく依存する。表1にそれぞれの組成比(n値)
における室温での色調、昇温変色後の色調、変色
下限温度を示す。
<Technical Field of the Invention> The present invention relates to a reversible temperature indicating material, which is a type of temperature control material that has the property of changing hue depending on temperature changes. <Technical background of the invention and its problems> Conventionally, there is a temperature control material called thermopaint (registered trademark of NOF Corporation), which is a temperature indicating material that changes color at a certain temperature or higher. These temperature control materials are available in irreversible, semi-irreversible, and reversible types with a wide range of discoloration temperatures, and are very widely used. These materials are mainly organic substances, and the binders and the like are also mainly organic substances. For this reason, the heat-resistant limit temperature of the temperature control material is generally around 250°C, even if it is high. As the heat-resistant limit temperature rises, applications will expand to include areas around various heat treatment devices that operate at relatively high temperatures, so there is a need for materials that can withstand high temperatures. Furthermore, there is a demand for adding a reversible color-changing temperature indicating function to various home appliances, especially cooking utensils that involve heating, such as heating plates of electromagnetic cookers and hot plates. The purpose of this addition is not to measure temperature, but to warn the user with a change in color tone to prevent the user from inadvertently touching the heated part and getting burnt. However, it is said that the heating part of an electromagnetic cooker can reach a temperature of approximately 450℃.
It must be able to withstand thermal cycling from room temperature to at least this temperature. Furthermore, in this case, it is extremely important that the device be harmless to the human body from the perspective of a device used on a daily basis in a general household. Considering other factors such as lifespan, stability, price, and workability, it can be said that a material that fully satisfies the conditions required for this use has not yet been obtained. <Object of the Invention> The present invention was made in view of the above-mentioned problems, and an object of the present invention is to provide a chemically stable and inexpensive temperature-indicating material, which can be used in a wider range of applications. <Example> First, the progress up to the present invention will be briefly explained. Conventionally, the color tone of reversible temperature-indicating materials has overwhelmingly changed within similar colors, such as yellow←→orange, while changes within dissimilar colors, such as blue←→red, where the change is easily visible, have traditionally been predominantly changed. It was quite rewarding. this is only a few
This is because it is difficult to produce a phenomenon in which a material's visible wavelength reflection spectrum shifts significantly due to a temperature change of 10 degrees Celsius or several hundred degrees Celsius. In addition, there were almost no materials whose colors ranged from white, which is considered to have very good visibility of color tone changes. The inventor is
Various attempts have been made to use white materials, but in rare cases some materials change color from white, but sufficient contrast has not been achieved. Therefore, by combining two types of coloring materials with different reflection spectral ranges,
There are no systems that exhibit an almost white color at room temperature, and as the temperature rises, the reflection spectral range of one type shifts and overlaps with the other, leaving only one type of reflection spectrum and no color change. Something?
I investigated various compounds. the result
It was confirmed that a somewhat similar phenomenon was observed in CoWO 4 and tungsten oxide compounds. We tried to finely change the composition ratio of this compound system, but it was difficult to obtain a system with a white color at room temperature and a broad reflection spectrum over the entire visible range. It is light gray. However, it was superior in visibility compared to conventional changes within similar colors. Furthermore, although the contrast after discoloration is slightly lower, it has been confirmed that by devising a processing method, it can take on an almost white tone. Next, a manufacturing method of an embodiment of the reversible temperature indicating material according to the present invention will be explained. CoO as a cobalt oxide compound as a starting material,
Co 3 O 4 as tungsten oxide compound WO 3 ,
H 2 WO 4 and WO 2 are used. Regardless of which method is used, the final products are CoWO 4 (monoclinic system) and WO 3 (tetragonal system), which have basically the same composition. In the composition range according to the present invention, (1-n)WO 3
A produced phase having a composition of +nCoWO 4 (n=1.00 to 0.03) is obtained. There is no particular need to change the calcination and calcination temperatures depending on the starting materials. The calcination temperature is about 750℃,
A firing temperature of about 900°C is appropriate. The color tone of this compound system largely depends on the composition ratio of Co and W. Table 1 shows each composition ratio (n value)
Shows the color tone at room temperature, color tone after temperature-induced discoloration, and lower limit temperature of discoloration.

【表】 分光光度計の反射スペクトルを観察するとn=
1.0(CoWO4)の化合物は室温で470nmから
480nmに急峻なピークを持つている。もう一方の
組成化合物であるWO3は第2図に示す様に温度
変化に対して複雑な挙動を示すが、室温では
480nmから500nmにピークをもつなだらかなスペ
クトルを示す。これらを表1のn値の組成で重畳
したものが室温の色調である。組成の代表例とし
てn=0.15の反射スペクトルを第3図に示す。
475nm付近の比較的急峻なピークは室温から昇温
するに従つて減少し、短波長域が徐々に欠けてい
く現象がみられる。視認では表1に示した様に灰
色から緑色が出現した感じとなる。 この系の熱的安定性及び耐久性について述べ
る。耐熱性に関しては950℃まで加熱を繰り返し
たが、少なくともこの温度までは前述の全ての組
成とも安定である。また、色変化の特性にも何ら
影響を及ぼさない。950℃より急冷した場合も同
様である。また水に不溶であり、1規定の塩酸、
硝酸にもほとんど不溶である。紫外線下に長時間
さらしても劣化の兆しは見られない。この様に熱
的にも化学的にも非常に高い安定性を持つている
ために、前述した幅広い加工が可能である。 次に、第1図の工程図に従い、具体例を説明す
る。 いずれも試薬級のCoO,Co3O4,WO3
H2WO4及びWO2を表2に示す重量だけ秤量し
た。この場合のn値は表2中の右欄に併記した通
りである。
[Table] When observing the reflection spectrum of a spectrophotometer, n=
1.0 ( CoWO4 ) compound from 470nm at room temperature
It has a steep peak at 480nm. The other compound, WO 3 , exhibits complex behavior with respect to temperature changes, as shown in Figure 2, but at room temperature
It shows a gentle spectrum with a peak from 480nm to 500nm. The color tone at room temperature is obtained by superimposing these with the composition of the n value shown in Table 1. As a representative example of the composition, the reflection spectrum of n=0.15 is shown in FIG.
The relatively steep peak around 475 nm decreases as the temperature rises from room temperature, and a phenomenon is observed in which the short wavelength region gradually disappears. Visually, as shown in Table 1, it appears as if green has appeared from gray. The thermal stability and durability of this system will be described. Regarding heat resistance, heating was repeated up to 950°C, and all of the above-mentioned compositions were stable at least up to this temperature. Further, it does not affect the color change characteristics in any way. The same applies when rapidly cooling from 950°C. It is also insoluble in water, and 1N hydrochloric acid,
It is also almost insoluble in nitric acid. There is no sign of deterioration even after prolonged exposure to UV light. Because it has extremely high thermal and chemical stability, it can be processed in a wide variety of ways as described above. Next, a specific example will be explained according to the process diagram of FIG. All are reagent grade CoO, Co 3 O 4 , WO 3 ,
The weights of H 2 WO 4 and WO 2 shown in Table 2 were weighed. The n value in this case is as shown in the right column of Table 2.

【表】 試料1から8までの各試料の量は50g一定とし
た。なおH2WO4は70℃で水分子1個を放出して
WO3となり、基本的には初めからWO3を用いた
場合と全く変わらないが、出発物質の1つとして
供して実験を行ない記載した。 それぞれの混合物試料を、自動乳鉢で充分粉砕
したのち、ボールミルで撹拌を行ない均一な混合
微粉体を得た。これを磁製るつぼに移し、空気
中750℃で約20時間仮焼を行つた。冷却後これ
をとりだし、再度自動乳鉢で粉砕処理を行なつ
たのち本焼成をした。焼成は900℃で36時間行
ない、その後500℃まで50℃/時で徐冷し、引き
続き室温まで放冷した。得られた試料はX線回
折装置で生成相の確認を行なつた。WO3
CoWO4以外の相が認められた場合(a)は再び焼成
をくり返した。WO3,CoWO4以外の相が認め
られない場合(b)はその必要はない。一般に焼成温
度が高めの場合は三番目の相としてCoO(NaCl
型)が析出しやすい。表2の試料1及び2は出発
物質が異なるが生成する相は全く同一のものであ
る。次に試料2を除く全ての試料の一部を数g取
り、さらにメノウ乳鉢で粉砕して二つのふるいを
用いて粒径25μmから37μmの微粉体を得た。これ
を分光光度計で400から800nmの反射スペクトル
を測定した。測定温度は室温と、70℃から350
℃まで70℃間隔の合計6点である。これらの基礎
的な測定と合わせて、熱履歴の有無の確認を行な
つたが格別問題になる様な現象は観察されなかつ
た。 なお、色調について若干付言すると、視認では
室温で最も白色に近い組成比はn値が0.05から
0.15の範囲のものである。とりわけ0.10は室温で
白灰色の色調をもつ好ましいものであつた。 次に、全試料についてその一部を取り、更に色
変化の熱追従性、熱的安定性、繰り返し寿命、各
種溶媒での溶解度、紫外線下での安定性などの試
験を行なつて変色示温材料としての適性を充分吟
味したが、その結果は申し分のないものであつ
た。 次にそれぞれの色調が非常に異なるため、全試
料個々について適合した最も有効な加工法を検討
して製膜を試みた。ここでは、表2の試料番号1
のnの値が0.10の素材について述べる。この材料
については白色系の利点を生かした種々の加工、
製膜を行なつた。次にその内の3つの加工法につ
いて述べる。 (1) ガラスフリツトを用いた加工法 まず、ガラスフリツト(6μm)とその重量の
40%に当る試料をボールミルで均一に混合を行
ない、ほとんど白色の微粉体を得た。これをエ
タノールと充分混和して粘調なペースト状に
した。これを素焼のセラミツク板、梨地加工を
施した薄めの並ガラス板、同じくパイレツクス
ガラス板、および石綿板上にスパチユラで均一
に塗つた。これを減圧乾燥器内で充分乾燥し
たのち、マツフル炉に移して約490℃で3時間
焼き付けを行なつた。表面の平滑さと光沢
は、焼き付け温度、ガラスフリツトと試料の量
に、微妙に依存するが、得られた膜はこの場
合、半透明で白色である。約120℃を境にして、
半透明白色と緑色の変化が視認できた。 (2) ガラスフリツトにアルミナ粉末などを添加し
て白地を強調した加工法。 ガラスフリツトとその重量の40%に相当する
上記試料と、同じく10%に相当するアルミナ砥
粒粉末(10μm)の混合物を上記(1)と同様にし
て基板に焼き付けた。この場合、白色成分とし
て試料の他にアルミナ粉末が分散されているの
で、焼付け温度に若干の高低があつても再現性
の良い、一様な白色の膜が得られる。また、こ
の製膜を何度かくり返すと意図した膜厚に近い
ものが得られる様になつた。この場合、約
100μmである。白色から淡緑色の色変化がやは
り120℃前後で見られるが、背景色が白色であ
るだけに視感的に鮮やかであり、視認性が良
い。また、変色後の緑色の濃さは添加するアル
ミナの量である程度加減できた。しかし、あま
り多量に添加すると強度的にもろいものとなつ
た。アルミナの他の白色添加物として酸化ジル
コニウム、酸化チタン、酸化亜鉛を用いてみた
が、結果は同様で白地を基調として、緑色系に
変化する可逆性変色膜が得られた。 (3) セラミツクス分散塗布剤を用いて白地を強調
した加工法。 用いたセラミツクス分散塗布剤は水及びイソ
プロピルアルコールにSiO2,Al2O3を添加分散
させたものである。したがつて成分としては前
項の例と変わらないが塗布しやすいこと、スプ
レー、刷毛、デイツプ、ロール法など量産的な
加工形態がとれること、既にSiO2成分が溶解
しているため150℃前後の加熱あるいは風乾で
固着が可能であること、そのため大幅に被着物
の範囲が広がること、膜の耐熱温度が800℃で
あることなどの利点がある。 製膜基板は、上記(1)及び(2)項に記載したもの
の他に、ポリイミドフイルム(耐熱限界温度約
500℃)とアルミニウム板を用いた。ポリイミ
ドフイルムは濡れ性及び接着力を幾分でも向上
させるため、あらかじめ紙やすり等でその表面
に無数の傷をつけた。またアルミニウム板も固
着後の接着力を高めるため、その表面に同様の
処理を行なつた。 具体的には、最初にセラミツクス分散塗布剤
を撹拌して分散を均一にさせたのち、その重量
の10%にあたる粉末試料を混入してマグネチツ
クスターラーで均一な混合分散液をつくつた。
これを刷毛を用いて各種基板に塗布した。一回
の塗布では均一な膜が得られないので、塗布、
乾燥の操作を最少3回くり返した。ポリイミド
フイルムは濡れ性が極端に悪いため分散物の濃
度を高めてペースト状粘調液にしたのち、スパ
チユラでこすりつける様にして1回で塗布し
た。これらを、150℃で1時間加熱処理を行な
つて厚さ約100μmの硬質の膜を形成した。これ
ら被着膜の変色の具合は上記(2)項に記述した様
に優れた視認性を示した。 尚、多孔質ガラス、セラミツクス、石綿、セメ
ント、プラスチツク等の混入・分散加工成型
するようにして基板に直接示温材を混入させるよ
うにしてもよい。 以上述べた可逆性示温材の実施例は次に要約す
る特徴をもつ。 (1) 変色機能に関する事項 (イ) 室温で青色系、白灰色系、黄灰色系の色調
を呈し、約170℃から120℃でそれぞれ緑青色
系、緑色系、緑黄色系の色調に変化する。 (ロ) 組成比を変える事により、上記の範囲内で
任意の色調が得られる。 (ハ) その1部の組成は、ガラス、アルミナなど
を加えて製膜することにより、室温でほとん
ど白色となり、約120℃で淡緑色の色調が出
現する。 (2) 安定性、加工性、生産性に関する事項 (イ) 人体に有害な物質を含まない。 (ロ) 水に不溶であり、紫外線の照射にも劣化し
ない。 (ハ) 熱的に安定であり、約950℃まで耐える。 (ニ) 加熱を伴なう加工が可能である。 (ホ) 比較的安価であり、製造法も簡単である。 <発明の効果> 以上の本発明によれば、化学的に安定で安価な
可逆性示温材を得ることができる。
[Table] The amount of each sample from samples 1 to 8 was constant at 50 g. Note that H 2 WO 4 releases one water molecule at 70℃.
The result is WO 3 , which is basically no different from the case where WO 3 was used from the beginning, but the experiment was conducted and described using it as one of the starting materials. Each mixture sample was thoroughly ground in an automatic mortar and then stirred in a ball mill to obtain a uniform mixed fine powder. This was transferred to a porcelain crucible and calcined in air at 750°C for about 20 hours. After cooling, it was taken out and pulverized again in an automatic mortar, followed by final firing. Firing was carried out at 900°C for 36 hours, then slowly cooled to 500°C at a rate of 50°C/hour, and then allowed to cool to room temperature. The produced phase of the obtained sample was confirmed using an X-ray diffractometer. WO3 ,
If a phase other than CoWO 4 was observed (a), the firing was repeated again. This is not necessary in case (b) where no phase other than WO 3 and CoWO 4 is observed. Generally, when the firing temperature is high, CoO (NaCl
mold) tends to precipitate. Samples 1 and 2 in Table 2 use different starting materials, but the phases produced are exactly the same. Next, several grams of a portion of all the samples except sample 2 were taken and ground in an agate mortar using two sieves to obtain fine powder with a particle size of 25 μm to 37 μm. The reflection spectrum from 400 to 800 nm was measured using a spectrophotometer. Measurement temperature is room temperature and 70℃ to 350℃
There are a total of 6 points at 70°C intervals. In addition to these basic measurements, we also checked for the presence or absence of thermal history, but no phenomena that would pose a particular problem were observed. As for the color tone, the composition ratio that is closest to white at room temperature when visually recognized is the one with an n value of 0.05.
It is in the range of 0.15. In particular, 0.10 was preferable as it had a white-gray color tone at room temperature. Next, we took a portion of all the samples and conducted further tests on heat followability of color change, thermal stability, repeated life, solubility in various solvents, stability under ultraviolet light, etc. We carefully examined his suitability for the position, and the results were perfect. Next, since the color tones of each sample were very different, we investigated the most effective processing method suitable for each sample and tried to form a film. Here, sample number 1 in Table 2
We will discuss the material where the value of n is 0.10. This material can be processed in various ways, taking advantage of its white color.
Film formation was carried out. Next, three of these processing methods will be described. (1) Processing method using glass frit First, we will introduce glass frit (6μm) and its weight.
A 40% sample was uniformly mixed in a ball mill to obtain an almost white fine powder. This was thoroughly mixed with ethanol to form a viscous paste. This was applied uniformly with a spatula onto an unglazed ceramic board, a thin glass board with a satin finish, a Pyrex glass board, and an asbestos board. After sufficiently drying this in a vacuum dryer, it was transferred to a Matsufuru furnace and baked at about 490°C for 3 hours. The resulting film is in this case translucent and white, although the surface smoothness and gloss depend slightly on the baking temperature, glass frit and amount of sample. At about 120℃,
A change in translucent white and green color was visible. (2) A processing method that emphasizes the white background by adding alumina powder to glass frit. A mixture of glass frit, the above sample corresponding to 40% of its weight, and alumina abrasive powder (10 μm) also corresponding to 10% was baked onto a substrate in the same manner as in (1) above. In this case, since alumina powder is dispersed in addition to the sample as a white component, a uniform white film with good reproducibility can be obtained even if the baking temperature varies slightly. Moreover, by repeating this film formation several times, it became possible to obtain a film with a thickness close to the intended thickness. In this case, approximately
It is 100μm. A color change from white to pale green can still be seen at around 120°C, but since the background color is white, it is visually vivid and has good visibility. In addition, the intensity of the green color after discoloration could be adjusted to some extent by changing the amount of alumina added. However, when added in too large a quantity, the product became brittle in terms of strength. I tried using zirconium oxide, titanium oxide, and zinc oxide as other white additives for alumina, but the results were the same, and a reversible discoloration film with a white background that changed to a greenish color was obtained. (3) A processing method that emphasizes the white background using a ceramic dispersion coating agent. The ceramic dispersion coating agent used is one in which SiO 2 and Al 2 O 3 are added and dispersed in water and isopropyl alcohol. Therefore, the ingredients are the same as the example in the previous section, but it is easy to apply, mass-produced processing methods such as spray, brush, dip, and roll methods can be used, and the SiO 2 component is already dissolved, so it can be applied at around 150℃. Advantages include that it can be fixed by heating or air-drying, which greatly expands the range of adherends, and that the film can withstand a temperature of 800°C. In addition to those described in (1) and (2) above, the film forming substrate can also be made of polyimide film (with a heat resistance limit temperature of approx.
500℃) and an aluminum plate. In order to improve the wettability and adhesive strength of the polyimide film to some extent, numerous scratches were made on the surface of the polyimide film using sandpaper or the like. The surface of the aluminum plate was also treated in the same manner in order to increase the adhesive strength after fixing. Specifically, the ceramic dispersion coating agent was first stirred to ensure uniform dispersion, and then a powder sample corresponding to 10% of its weight was mixed in and a uniform mixed dispersion liquid was created using a magnetic stirrer.
This was applied to various substrates using a brush. Since a uniform film cannot be obtained with one application,
The drying operation was repeated a minimum of three times. Since polyimide film has extremely poor wettability, the concentration of the dispersion was increased to form a paste-like viscous liquid, and then applied in one go by rubbing with a spatula. These were heat-treated at 150° C. for 1 hour to form a hard film with a thickness of about 100 μm. The degree of discoloration of these deposited films showed excellent visibility as described in item (2) above. Incidentally, the temperature indicating material may be directly mixed into the substrate by mixing, dispersing and molding porous glass, ceramics, asbestos, cement, plastic, etc. The embodiments of the reversible temperature indicating material described above have the characteristics summarized below. (1) Matters related to color changing function (a) At room temperature, it exhibits blue, whitish-gray, and yellow-gray tones, and at approximately 170°C to 120°C, it changes to greenish-blue, green, and greenish-yellow, respectively. (b) By changing the composition ratio, any color tone can be obtained within the above range. (c) By forming a film by adding glass, alumina, etc., the composition of one part becomes almost white at room temperature, and a pale green color appears at about 120°C. (2) Matters related to stability, processability, and productivity (a) Contains no substances harmful to the human body. (b) It is insoluble in water and does not deteriorate even when exposed to ultraviolet light. (c) It is thermally stable and can withstand up to approximately 950℃. (d) Processing that involves heating is possible. (e) It is relatively inexpensive and the manufacturing method is simple. <Effects of the Invention> According to the present invention described above, a chemically stable and inexpensive reversible temperature indicating material can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る可逆性示温材の一実施例
の製造工程の工程図、第2図及び第3図は可逆性
示温材に関する物質の分光光度計による反射スペ
クトルの温度依存性のグラフ図である。
FIG. 1 is a process diagram of the manufacturing process of one embodiment of the reversible temperature indicating material according to the present invention, and FIGS. 2 and 3 are graphs of the temperature dependence of the reflection spectrum measured by a spectrophotometer of substances related to the reversible temperature indicating material. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 一酸化コバルト、四三酸化コバルトのいずれ
か一種からなる酸化コバルト化合物と、三酸化タ
ングステン、タングステン酸、二酸化タングステ
ンのいずれか一種からなる酸化タングステン化合
物による、コバルトとタングステンの原子比が
(Co:1.0,W:1.0)より(Co:0.03,W:1.00)
の範囲にある組成混合物をそれぞれ焼成すること
により得られる酸化コバルト―酸化タングステン
系酸化物多結晶粉末を原材料とすることを特徴と
する可逆性示温材。
1 The atomic ratio of cobalt and tungsten is (Co: 1.0, W: 1.0) (Co: 0.03, W: 1.00)
A reversible temperature indicating material characterized in that the raw material is cobalt oxide-tungsten oxide polycrystalline powder obtained by firing a composition mixture having a composition within the range of .
JP11911285A 1985-05-30 1985-05-30 Reversible heat-sensitive material Granted JPS61275381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11911285A JPS61275381A (en) 1985-05-30 1985-05-30 Reversible heat-sensitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11911285A JPS61275381A (en) 1985-05-30 1985-05-30 Reversible heat-sensitive material

Publications (2)

Publication Number Publication Date
JPS61275381A JPS61275381A (en) 1986-12-05
JPH0129517B2 true JPH0129517B2 (en) 1989-06-12

Family

ID=14753213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11911285A Granted JPS61275381A (en) 1985-05-30 1985-05-30 Reversible heat-sensitive material

Country Status (1)

Country Link
JP (1) JPS61275381A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424148C (en) * 2001-05-15 2008-10-08 欧罗克拉公司 Thermochromic material
FR2963098B1 (en) * 2010-07-26 2020-02-28 Seb Sa HEATING ARTICLE COMPRISING A COLORED THERMAL INDICATOR WITH IMPROVED VISIBILITY AND PRECISION.

Also Published As

Publication number Publication date
JPS61275381A (en) 1986-12-05

Similar Documents

Publication Publication Date Title
EP1405890B2 (en) Thermochromic material
JPS63274829A (en) Heating unit
Těšitelová et al. Synthesis and study of Bi 2 Ce 2 O 7 as inorganic pigment
Ianoş et al. Solution combustion synthesis: a straightforward route for the preparation of chromium-doped lanthanum aluminate, LaAl1-xCrxO3, pink red pigments
JPH0129517B2 (en)
US4722510A (en) Reversible temperature indicating materials
JPH0647464B2 (en) Temperature indicating material and manufacturing method thereof
JP7272528B2 (en) CERAMIC BODY, MANUFACTURING METHOD THEREOF, AND TEMPERATURE INDICATE ARTICLE
US3541589A (en) Process for preparing silicon nitride coated refractory material
JPS645639B2 (en)
JPH0262156B2 (en)
JPH0222144A (en) Reversible temperature-indicating material
JPS61275379A (en) Reversible heat-sensitive material and preparation of the same
Adolfová et al. Ceramic pigments based on doped strontium stannates
JPS61275382A (en) Reversible heat-sensitive material
JPH0684270B2 (en) Infrared radiation coating
JP2018141112A (en) Thermochromic ceramic body and method for producing the same
JP2006104319A (en) Temperature display
JP3954837B2 (en) Yellow cerium pigment
JP2561838B2 (en) Heat radiation paint
KR920007017B1 (en) Ceramic coating composition for aluminium cooking hoil
JPS63284283A (en) Reversible thermocolor material
JPH04140622A (en) Temperature indicating material
RU2492198C1 (en) Molybdate-based inorganic pigment
JPS63248716A (en) Composite mgo powder and production thereof