JPS61275132A - Dissolving method for iron by nitric acid - Google Patents
Dissolving method for iron by nitric acidInfo
- Publication number
- JPS61275132A JPS61275132A JP11545485A JP11545485A JPS61275132A JP S61275132 A JPS61275132 A JP S61275132A JP 11545485 A JP11545485 A JP 11545485A JP 11545485 A JP11545485 A JP 11545485A JP S61275132 A JPS61275132 A JP S61275132A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- amount
- nitric acid
- reaction
- nox
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compounds Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、鉄を硝酸水溶液によ)溶解する方法の改良法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improved method for dissolving iron (in an aqueous nitric acid solution).
硝酸鉄は、なめl−皮や医薬品工業等に古くから使用さ
れているが近年特に磁性フェライト用原料とl−て注目
されている。従来、鉄を硝酸で溶解する方法としては、
1)比重1.29 (45,95重量%)の硝酸水溶液
に当初緑色の液が暗赤色になるまで鉄を加えて溶解する
。Iron nitrate has been used for a long time in tanning leather and the pharmaceutical industry, but has recently attracted attention as a raw material for magnetic ferrite. Conventionally, iron is dissolved in nitric acid as follows: 1) Iron is added and dissolved in an aqueous solution of nitric acid with a specific gravity of 1.29 (45.95% by weight) until the initially green liquid turns dark red.
2)比重1.25〜1.33(38,92〜5237重
−11)でや\過剰の硝酸で鉄を溶解する。2) Dissolve iron with a specific gravity of 1.25 to 1.33 (38,92 to 5237 weight-11) and excess nitric acid.
3)100−の濃硝酸と30111の水との混合液(比
重1.31,49.0重量%)K2O2の鉄の削シ屑を
少量ずつ加え70℃以下にて加温する等の方法が文献に
記載されている。3) A mixed solution of 100 - concentrated nitric acid and 30111 water (specific gravity 1.31, 49.0% by weight) may be prepared by adding K2O2 iron shavings little by little and heating at below 70°C. Described in the literature.
しかしながら上記の方法で、硝酸濃度が濃厚な場合(比
重1.30以上>VCId、該硝酸水溶液に鉄を添加す
ると、鉄の表面に不動態膜が形成され一般に鉄の溶解が
困難となる。However, in the above method, when the nitric acid concentration is high (specific gravity 1.30 or higher > VCId), when iron is added to the nitric acid aqueous solution, a passive film is formed on the surface of the iron, making it generally difficult to dissolve the iron.
そ1.て、鉄の溶解作業中攪拌などによシ、この不動態
膜が破壊されると一挙に鉄の溶解反応が進行する。この
際の反応は激1.い発熱反応であるので液mは急激に上
昇17大畳のNOxを発生する。Part 1. When this passive film is destroyed by stirring or the like during the iron melting operation, the iron dissolution reaction proceeds all at once. The reaction at this time was 1. Since this is an exothermic reaction, the liquid m rises rapidly and generates 17 tatami of NOx.
本来、これらの硝酸への鉄の溶解反応は、液温か40℃
以下では進行せず、70℃以上になると硝酸鉄が分解1
.て難濾過性の鉄沈(主と1−てFe203)が生成す
る。Originally, the dissolution reaction of iron in nitric acid was carried out at a temperature of 40°C.
It does not progress at temperatures below 70°C, and iron nitrate decomposes at temperatures above 70°C.
.. As a result, a difficult-to-filter iron precipitate (mainly 1-Fe203) is formed.
従って鉄を硝酸で溶解する際の液温は、40℃以上70
℃以下とする必要があるが、前述のように不動態膜が何
等かの理由で破壊されるまで反応が開始せず、該不動態
膜が破れると激L <反応するというように鉄の溶解反
応が断続的に行われるので、液温を好ましい範囲に制御
するためには加温と冷却を繰シ返す必要があ)且つ、溶
解効率も悪いという欠点があった。又比重1.25程度
の硝酸で鉄を溶解する場合は、溶解反応は順調ではソ一
定速度で進行するが、一方で2価の硝酸鉄が生成12、
これが下記式のように分解1−で濾過性の悪い鉄沈の生
成が避けられない。Therefore, when dissolving iron with nitric acid, the liquid temperature should be 40°C or higher and 70°C.
It is necessary to keep the temperature below ℃, but as mentioned above, the reaction does not start until the passive film is destroyed for some reason, and if the passive film is broken, the iron melts. Since the reaction is carried out intermittently, it is necessary to repeat heating and cooling in order to control the liquid temperature within a desirable range), and the dissolution efficiency is also poor. In addition, when dissolving iron with nitric acid with a specific gravity of about 1.25, the dissolution reaction proceeds smoothly at a constant rate, but on the other hand, divalent iron nitrate is produced12,
When this decomposes as shown in the following equation, the formation of iron precipitate with poor filterability is unavoidable.
6Fe(N03)2+5H20→
3Fe203+2NO+ 1oHNo3〔発明が解決1
7ようとする問題点〕
本発明は、上記の欠点のない硝酸による鉄の溶解法を提
供することを目的とする。6Fe(N03)2+5H20→ 3Fe203+2NO+ 1oHNo3 [Invention solved 1
7. Problems to be Solved] The object of the present invention is to provide a method for dissolving iron with nitric acid that does not have the above-mentioned drawbacks.
〔問題点を解決するための手段〕
本発明の方法は、例えば厚さ1〜20mで5〜110X
10sの切屑又は塊状の鉄を、下部に目皿を介1−で溶
液が溜る室と出口を有する溶解槽内に充填し、核種の上
部から50〜72重量%の硝酸水溶液を、鉄100g当
)1分間に200d以上好ましくは600au以下連続
的にシャワーする事を特徴とする。而して溶解槽にシャ
ワーされ核種の下部から排出された水溶液は、貯留槽に
導入され再び循環ポンプによシ同じ量の硝酸水溶液をシ
ャワー1−111 X一定の速度で効率よく鉄を連続的
に溶解するというものである。[Means for Solving the Problems] The method of the present invention is applicable to, for example, 5 to 110×
10 seconds of chips or lumps of iron are filled into a dissolution tank that has a chamber and an outlet in which the solution accumulates through a perforated plate at the bottom, and a 50 to 72% by weight aqueous nitric acid solution is added to the top of the nuclide per 100 g of iron. ) It is characterized by continuous showering of 200 d or more, preferably 600 au or less per minute. The aqueous solution showered into the dissolution tank and discharged from the bottom of the nuclide is then introduced into the storage tank and fed back into the circulation pump to shower the same amount of nitric acid aqueous solution. It is said that it dissolves in.
本発明において、使用する硝酸水溶液の濃度を規制する
理由は、硝酸濃度は50重量%以下でも鉄の溶解は可能
であるが、2価の鉄イオン生成量が増加1..72重量
%以上のものを使用すると硝酸による酸化力が強すぎる
ためか、生成する不動jI111Kが本発明法によりて
も充分に破壊されず、そのため鉄の溶解速度が遅くなる
だけ蚕なく、反応温度の上昇によシ硝酸鉄の自己分解が
起る等のためである。In the present invention, the reason why the concentration of the nitric acid aqueous solution used is regulated is that although it is possible to dissolve iron even if the nitric acid concentration is 50% by weight or less, the amount of divalent iron ions produced increases.1. .. If more than 72% by weight is used, perhaps because the oxidizing power of nitric acid is too strong, the generated immobile jI111K is not sufficiently destroyed even by the method of the present invention, and as a result, the dissolution rate of iron is slowed down, and the reaction temperature is low. This is because iron nitrate self-decomposes due to the increase in iron nitrate.
次に、硝酸水溶液を鉄100.g当り1分間に2001
14以上好ましくは600−以下シャワーリングして連
続的に鉄を溶解するのは、該硝酸量が200ILl/分
以下では、溶解反応時の反応熱が低すぎて溶解効率が悪
く、そのため本発明法の特徴で多る鉄溶解時に鉄表面に
発生する不導態層の破壊が不充分となるためである。Next, nitric acid aqueous solution was added to iron 100%. 2001 g per minute
14 or more, preferably 600 or less, to continuously dissolve iron by showering.If the amount of nitric acid is less than 200 ILl/min, the heat of reaction during the dissolution reaction is too low, resulting in poor dissolution efficiency. This is because the destruction of the passive layer that occurs on the iron surface during iron melting is insufficient.
同様の理由で鉄にシャワーするのは連続的に行う必要が
ある・
このように、鉄の表面に連続的に所定量の好適濃度の硝
酸をシャワーさせると、鉄の表面に薄く広がった硝酸水
溶液中に溶解した空気中の酸素が1鉄表面に瞬間的にで
きる不動8111を下記の式に従って破壊17、鉄溶解
反応ははソ連続して行われるので反応温度も60〜70
”C以上に違1−効率的な鉄処理が行われるものと推定
される。For the same reason, it is necessary to shower the iron continuously. In this way, when a predetermined amount of nitric acid of a suitable concentration is continuously showered on the surface of the iron, the nitric acid aqueous solution spreads thinly on the surface of the iron. Oxygen in the air dissolved in 1 destroys the immobile 8111 that is instantaneously formed on the iron surface according to the following formula.17 Since the iron dissolution reaction is carried out continuously, the reaction temperature is also 60 to 70.
It is estimated that iron processing is more efficient than C.
Fe、O+4HNO3+70□−+ 3Fe(No3)
3+2H20+NO?通常上記の温度忙なると、一旦生
成された硝酸鉄は分解1.て銀源過性の鉄沈(主として
Fe、03)を生成するが、本発明法では、鉄表面の硝
酸水溶液層の流下速度が早く、極めて短時間しか高温に
晒されないため、生成する鉄沈の量は、硝酸に徐々に鉄
を添加1.好適条件で鉄を溶解1−た場合と同程度と少
ない。Fe, O+4HNO3+70□-+ 3Fe(No3)
3+2H20+NO? Normally, once the above temperature is reached, the iron nitrate that has been formed decomposes. However, in the method of the present invention, the flow rate of the nitric acid aqueous solution layer on the iron surface is fast and the iron surface is only exposed to high temperature for a very short time, so the produced iron precipitate is The amount of iron gradually added to nitric acid is 1. It is as low as when iron is melted under suitable conditions.
しか12、本発明法にょシ溶解槽から液溜めに集まりた
水溶液の温度は70’Cを超えないよう、水冷する等の
処置を取るのが硝酸鉄の分解を防ぐ上で望ま1−い。However, in order to prevent the decomposition of iron nitrate, it is desirable to take measures such as cooling with water so that the temperature of the aqueous solution collected in the liquid reservoir from the dissolution tank in the method of the present invention does not exceed 70'C.
本発明の方法によれば、鉄の溶解反応によるNOx5の
発生量や処理温度の制御は、硝酸水溶液の流量を調整す
るだけでも良い。According to the method of the present invention, the amount of NOx5 generated by the iron dissolution reaction and the treatment temperature can be controlled simply by adjusting the flow rate of the nitric acid aqueous solution.
硝酸による鉄の溶解速度は、はぼ一定で且つ従来方法の
約3倍程度と極めて早い。The dissolution rate of iron by nitric acid is almost constant and extremely fast, about three times that of conventional methods.
以下実施例について説明する。 Examples will be described below.
実施例1゜
5X10im、厚さ10uの鉄塊100#を溶解槽に入
れ、上部から61重量%の硝酸水溶液11を所定流量で
シャワーリングl−た。シャワーリングは鉄塊が完全忙
溶解するまで連続1.て行い、溶解完了までの所要時間
から平均鉄溶解時間を求めた。操作中溶解槽下部の液溜
は水冷にょh70℃を超えないようにした。Example 1 A 100# iron ingot measuring 5×10 mm and 10 μ thick was placed in a dissolving tank, and a 61% by weight aqueous nitric acid solution 11 was showered from above at a predetermined flow rate. Shower ring continuously until the iron ingot is completely dissolved. The average iron dissolution time was determined from the time required to complete dissolution. During operation, the liquid reservoir at the bottom of the dissolution tank was cooled with water so that the temperature did not exceed 70°C.
尚参考のため、夫々処理の間に発生したガスは20重量
%の過酸化水素水に吸収させ、この吸収液中の窒素濃度
を比色法で求めNOx発生量を、鉄の溶解が完了するま
での時間から鉄の時間当りの溶解量を計算で求めた。For reference, the gases generated during each treatment were absorbed in 20% by weight hydrogen peroxide solution, and the nitrogen concentration in this absorbed solution was determined by a colorimetric method to determine the amount of NOx generated, indicating the completion of iron dissolution. The amount of iron dissolved per hour was calculated from the time taken.
その結果を第1表に従来法と比較17て示す。The results are shown in Table 1 in comparison with the conventional method.
第1表よシ明らかなように本発明法の範囲を外れた実験
Na2以外は何れも従来法の2倍以上の鉄の溶解速度を
示I、た。鉄溶解時の鉄沈及びNOxの発生量は、従来
法よ)低目の傾向を示17た。As is clear from Table 1, all experiments except Na2, which was outside the scope of the method of the present invention, showed an iron dissolution rate more than twice that of the conventional method. Iron precipitation and NOx generation during iron dissolution tended to be lower (compared to conventional methods)17.
実施例2
鉄を溶解する際の硝酸濃度を変更12、該硝酸水溶液の
流量を2501117/分一定とした以外は実施例1と
同様K して鉄の溶解を行い1分間当りの鉄溶解量を求
めた。Example 2 Iron was dissolved in the same manner as in Example 1 except that the nitric acid concentration when dissolving iron was changed 12 and the flow rate of the nitric acid aqueous solution was kept constant at 2501117/min. I asked for it.
その結果を第2表に示す。The results are shown in Table 2.
第 2 表
第2表より判るように硝酸濃度が低い実験風7は鉄の溶
解速度は早くなるが、鉄沈の発生量が増加し、逆に硝酸
濃度が本発明の範囲を超えた実験Nccll#:t、鉄
溶解の速度が急激に低下1.且つ鉄沈の発生量も増加1
−た。Table 2 As can be seen from Table 2, the dissolution rate of iron is faster in Experiment 7, which has a lower nitric acid concentration, but the amount of iron precipitate increases; #: t, the rate of iron dissolution rapidly decreases 1. Moreover, the amount of iron precipitate generated also increased1
-ta.
鉄に好適条件で硝酸水溶液をシャワーリングさせる事に
よ、!l) 、NOXの発生量や難濾過性の鉄沈量を増
やすことなく、鉄を従来法の2〜3倍の速度で溶解する
ことができる。By showering iron with a nitric acid aqueous solution under suitable conditions! l) Iron can be dissolved at a rate 2 to 3 times faster than conventional methods without increasing the amount of NOX generated or the amount of iron precipitation, which is difficult to filter.
装置を密閉様式とするとNOxによる公害を防止する事
も可能である。If the device is sealed, it is also possible to prevent pollution caused by NOx.
従来法と比較して濃厚な硝酸濃度のものを使用すること
ができるので作業効率が良い等の利点が得られる。Compared to conventional methods, it is possible to use nitric acid with a higher concentration, resulting in advantages such as better work efficiency.
Claims (1)
1分間に200ml以上連続的にシヤワーする事を特徴
とする硝酸による鉄の溶解方法。A method for dissolving iron using nitric acid, which comprises continuously showering 50 to 72% by weight nitric acid aqueous solution onto iron in an amount of 200 ml or more per minute per 100 g of iron.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11545485A JPS61275132A (en) | 1985-05-30 | 1985-05-30 | Dissolving method for iron by nitric acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11545485A JPS61275132A (en) | 1985-05-30 | 1985-05-30 | Dissolving method for iron by nitric acid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61275132A true JPS61275132A (en) | 1986-12-05 |
Family
ID=14662948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11545485A Pending JPS61275132A (en) | 1985-05-30 | 1985-05-30 | Dissolving method for iron by nitric acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61275132A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6231683B1 (en) | 1997-05-16 | 2001-05-15 | British Nuclear Fuels Plc | Method for cleaning radioactively contaminated material |
-
1985
- 1985-05-30 JP JP11545485A patent/JPS61275132A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6231683B1 (en) | 1997-05-16 | 2001-05-15 | British Nuclear Fuels Plc | Method for cleaning radioactively contaminated material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61110100A (en) | Method of chemically removing contamination of nuclear reactor structural part | |
GB1311093A (en) | Process for the treatment of molten metals | |
JPS61275132A (en) | Dissolving method for iron by nitric acid | |
US2045092A (en) | Method of chloridizing ore materials | |
JPS58174286A (en) | Treatment of waste water containing heavy metal complex salt | |
US1137005A (en) | Coagulant for water purification and process for making same. | |
JPH02248327A (en) | Production of manganese sulfate solution | |
JP2722711B2 (en) | Ozone supply device | |
EP0259747A2 (en) | Continuous dissolution method and apparatus for spent nuclear fuel | |
RU2038292C1 (en) | Method for preparing nitrate of metal | |
US1763435A (en) | Method of treating arsenious ore | |
JPS61270220A (en) | Method for suppressing generation of nitrogen oxide in dissolution of iron with nitric acid | |
JPS61271087A (en) | Treatment of waste water containing phosphate | |
SU373257A1 (en) | METHOD FOR DECOMPOSITION OF TITANIUM CONCENTRATES | |
JP3626519B2 (en) | Substoichiometric or stoichiometric nitrate solution preparation method | |
JP3220564B2 (en) | Etching equipment | |
JPS5644091A (en) | Treating method of hydrazine content waste fluid | |
DE3663941D1 (en) | Process for preparing purified solid benzoic acid | |
JPS6155078B2 (en) | ||
RU1816747C (en) | Exothermic composition for heater | |
SU1594143A1 (en) | Method of producing ferrous (111) chloride | |
JPS5322866A (en) | Treating method for waste liquid contained colloidal metals and waste liquid contained acid metal salts | |
JPS5365598A (en) | Method and device for metallic sodium stabilizing treatment | |
KR910001579B1 (en) | Method for reproduction of cupper and the equipment | |
JP2939474B2 (en) | Etching equipment |