JPS6127489A - By-raw material preheating automatic charging facility on steel manufacture - Google Patents

By-raw material preheating automatic charging facility on steel manufacture

Info

Publication number
JPS6127489A
JPS6127489A JP14849284A JP14849284A JPS6127489A JP S6127489 A JPS6127489 A JP S6127489A JP 14849284 A JP14849284 A JP 14849284A JP 14849284 A JP14849284 A JP 14849284A JP S6127489 A JPS6127489 A JP S6127489A
Authority
JP
Japan
Prior art keywords
raw material
auxiliary raw
auxiliary
pipe
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14849284A
Other languages
Japanese (ja)
Other versions
JPS6352309B2 (en
Inventor
キム ヨウン スウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14849284A priority Critical patent/JPS6127489A/en
Publication of JPS6127489A publication Critical patent/JPS6127489A/en
Publication of JPS6352309B2 publication Critical patent/JPS6352309B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、製鋼、特に、鋳鋼の際酸化期と還元期とに
大別される精錬期に投入する副原料を電気炉で発生する
産気ガスの高熱を利用して豫熱し、上記の各時期別に要
求される副原料の定量を自動的に投入する製鋼の際副原
料豫熱自動投入設備に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is directed to the production of steel, in particular, the production of auxiliary raw materials that are input in the refining stage, which is roughly divided into the oxidation stage and the reduction stage, in an electric furnace. This invention relates to automatic heating equipment for adding heat to auxiliary raw materials during steelmaking, which uses the high heat of air gas to heat the auxiliary raw materials and automatically inputs the required amount of auxiliary raw materials for each period mentioned above.

[従来の技術] 一般的に製鋼、特に鋳鋼においては主原料を電気炉に装
入し、熔解する熔解機と、熔解される溶鋼に生石灰を投
入して脱リンと炭素を酸化させる酸化期と、更に生石灰
とFe−3iおよびFe−Mnを投入して脱酸及び成分
の調整する還元期とになる精錬期と区分されるところ、
従来には精錬期に投入する副原料を常温状態で手動投入
したり、別途の熱源によって副原料を豫熱し、手動投入
して、電気炉にて発生する高温の産気ガスはそのまま放
出していた。
[Prior art] In general, steel manufacturing, especially cast steel, involves a melting machine in which main raw materials are charged into an electric furnace and melted, and an oxidation stage in which quicklime is added to the molten steel to dephosphorize and oxidize carbon. , further divided into the refining period, which is the reduction period in which quicklime, Fe-3i and Fe-Mn are added to deoxidize and adjust the components.
Conventionally, the auxiliary raw materials used in the refining stage were manually charged at room temperature, or the auxiliary raw materials were heated using a separate heat source and then manually charged, and the high-temperature production gas generated in the electric furnace was released as is. Ta.

[発明が解決しようとする問題点] したがって、従来には、副原料を常温から熔解点の温度
まで昇温させるに必要な熱量を電気炉のアーク熱又は別
途の熱源にたよっていたので、製鋼操業上での熱損失が
多かった。産気ガスの高熱を利用せず、殆どそのまま放
出したので、エネルギの効率的な利用が不可能であった
。常温の副原料を投入する場合には、副原料が熔解され
るまでの時間が長くなるので、溶湯とスラグの界面反応
時間が相対的に短縮され炉内反応性の低下によって鋼質
が劣化される弊害があった。副原料を操業者の経験に依
存して、手動的に投入することによる生産性の低下と鋼
質の不均一な不良品が大量に発生するなどの問題点があ
った。
[Problems to be Solved by the Invention] Therefore, in the past, the amount of heat necessary to raise the temperature of auxiliary raw materials from room temperature to the melting point temperature was dependent on the arc heat of an electric furnace or a separate heat source. There was a lot of heat loss during operation. Since the high heat of the production gas was not utilized and was released almost as is, efficient use of energy was impossible. When adding auxiliary raw materials at room temperature, it takes a long time for the auxiliary raw materials to melt, so the interfacial reaction time between the molten metal and slag is relatively shortened, and the reactivity in the furnace decreases, causing deterioration of steel quality. There were some negative effects. There were problems such as a decrease in productivity due to manual input of auxiliary materials depending on the experience of the operator, and a large number of defective products with uneven steel quality.

[発明の目的] この発明はこのような従来の諸問題点を除いて炉内で発
生する高熱の産気ガスを利用して副原料を豫熱し適正な
時期に適正量の副原料を自動的に投入することによって
省エネルギと生産性及び鋼質を改善することができるの
で精錬期の半自動化を期することができる豫熱自動投入
設備を提供するものである。
[Purpose of the invention] This invention eliminates these conventional problems and automatically produces the appropriate amount of auxiliary materials at the appropriate time by heating the auxiliary materials using high-temperature gas generated in the furnace. The purpose of the present invention is to provide an automatic heat injection equipment that can save energy, improve productivity, and improve steel quality by adding heat to the furnace, thereby allowing for semi-automation of the refining process.

[問題点を解決するための手段] この目的を達成するためにこの発明は、真気ガス導入管
(9)を通じて、直線管(8)に連通されて、下段に副
原料排出管(24)が設置された副原料収容空間(4)
と産気ガスの排出管(7)を通じて、煙突(13)が設
置された蓄熱室(l2)に連通された産気ガスの循環空
間(5)が通気孔(6)によって、連通された副原料の
豫熱室(1)と産気ガスの循環空間(5)を連通された
副原料供給管(20)が分岐された副原料供給ホッパ(
19)と、豫熱室(1)の下段部に設置されて副原料投
入管(28)に連通された副原料投入準備ホッパ(27
)とに構成されることを特徴とする。
[Means for Solving the Problems] In order to achieve this object, the present invention has an auxiliary raw material discharge pipe (24) connected to the straight pipe (8) through the pure gas introduction pipe (9), and an auxiliary raw material discharge pipe (24) at the lower stage. Auxiliary raw material storage space (4)
The circulation space (5) for the production gas is communicated with the heat storage chamber (l2) in which the chimney (13) is installed through the production gas exhaust pipe (7), and the secondary gas communication space (5) is communicated with the heat storage chamber (l2) in which the chimney (13) is installed. An auxiliary raw material supply hopper (20) is branched from an auxiliary raw material supply pipe (20) that communicates with the raw material heating chamber (1) and the production gas circulation space (5).
19), and an auxiliary raw material input preparation hopper (27) installed in the lower part of the heat chamber (1) and communicating with the auxiliary raw material input pipe (28).
).

[実施例] 図において、1は副原料の豫熱室で、耐火煉瓦と鉄板と
で構成される内壁2と外壁3とになっており、内壁2に
は副原料の収容空間4と産気ガスの循環空間5とを連通
ずる多数の通気孔6が穿設されている。
[Example] In the figure, 1 is a heating chamber for auxiliary raw materials, and has an inner wall 2 and an outer wall 3 made of firebrick and iron plate. A large number of ventilation holes 6 are provided to communicate with the gas circulation space 5.

各副原料の豫熱室lの上段面には既存設備である電気炉
7の直線管8の中間に連通ずる真気ガス導入管9が分岐
連通設置されており、真気ガス導入管9の導入孔の下段
部の産気ガス循環空間5には産気ガスの流れを調節する
脚気ガス操向コーン10が設置されている。各副原料供
給管1の真気ガス循環空間5の下段部には産気ガスの排
出管11が連通設置されてあり、この排出管11は蓄熱
煉瓦などで構成された蓄熱室12を経て煙突13を通じ
て既存の集塵装置(図示せず)を通って大気の中へ開放
されている。
On the upper surface of the heating chamber l for each auxiliary raw material, a true gas introduction pipe 9 is installed in branch communication with the middle of the straight pipe 8 of the electric furnace 7, which is an existing equipment. A beriberi gas steering cone 10 is installed in the production gas circulation space 5 at the lower stage of the introduction hole to adjust the flow of production gas. A discharge pipe 11 for producing air gas is installed in communication with the lower part of the true gas circulation space 5 of each sub-material supply pipe 1, and this discharge pipe 11 passes through a heat storage chamber 12 made of heat storage bricks, etc., and then passes through a chimney. 13 to the atmosphere through an existing dust collector (not shown).

既存煙突8と産気ガスの導入管9の連結部には同期モー
タ14によって稼動される方向転換ダンパ15が設置さ
れており、煙突13には同期モータ14と電気的に接続
されるモータ16によって転換ダンパ15が直線管8の
開鎖と導入管9の開放を開始する時に煙突13を開放し
、ダンパ15が導入管9を閉鎖した時に煙突13を閉鎖
する逆流止め用ダンパ17が設置されている。
A direction changing damper 15 operated by a synchronous motor 14 is installed at the connection between the existing chimney 8 and the production gas introduction pipe 9. A backflow prevention damper 17 is installed that opens the chimney 13 when the conversion damper 15 starts opening the straight pipe 8 and opening the introduction pipe 9, and closes the chimney 13 when the damper 15 closes the introduction pipe 9. .

副原料の豫熱室1の上部にはコンベヤ18によって移送
される副原料を豫熱室1に供給するためのホッパ19が
設置してあり、ホッパ19下段の開口部には、各豫熱室
lに副原料を選択的に供給するための副原料供給管20
が分岐されて連通されてあり、各供給管20の下段部に
は圧縮ポンプ21から供給される圧縮空気によって振動
する振動シリンダ22によって稼動されるゲート23が
蔵設されている。
A hopper 19 for supplying the auxiliary raw materials transferred by the conveyor 18 to the auxiliary heating chamber 1 is installed at the upper part of the auxiliary raw material heating chamber 1, and the lower opening of the hopper 19 is provided with a An auxiliary raw material supply pipe 20 for selectively supplying auxiliary raw materials to l
are branched and communicated with each other, and a gate 23 operated by a vibration cylinder 22 that vibrates with compressed air supplied from a compression pump 21 is installed in the lower part of each supply pipe 20.

この設備を適用する該当電気炉の設置空間が狭い場合ホ
ッパ19無しのベルトコンベアタイプにて装入物を副原
料豫熱室1に投入することもできる。
If the installation space of the electric furnace to which this equipment is applied is narrow, the charge can be introduced into the auxiliary raw material heating chamber 1 using a belt conveyor type without a hopper 19.

各副原料豫熱室1の下段には副原料排出管24が副原料
収容空間4と連通設置されており、排出管24は振動シ
リンダ25によって振動されている。
An auxiliary raw material discharge pipe 24 is installed in the lower stage of each auxiliary raw material heating chamber 1 to communicate with the auxiliary raw material storage space 4 , and the discharge pipe 24 is vibrated by a vibration cylinder 25 .

副原料排出管24の開放段の下部には副原料投入準備ホ
ッパ27が設けられ、ホッパ27の下段の開放部は電気
炉7に連結された副原料の投入管28に連通され、振動
シリンダ29によって振動されるゲート30が設置され
ている。
An auxiliary raw material input preparation hopper 27 is provided at the lower part of the open stage of the auxiliary raw material discharge pipe 24, and the open part of the lower stage of the hopper 27 is communicated with the auxiliary raw material input pipe 28 connected to the electric furnace 7, and the vibrating cylinder 29 A gate 30 is installed which is vibrated by.

副原料投入準備ホッパ27の下段部にはホッパ27の上
に供給される副原料の重量を測る重量測定装置31が設
置されている。
A weight measuring device 31 for measuring the weight of the auxiliary raw material to be supplied onto the hopper 27 is installed in the lower part of the auxiliary raw material input preparation hopper 27 .

上記各ダンパとゲートは、電気炉7の溶鋼の温度を測定
する熱電対32と、熱電対32により測定される温度に
よる起電力をチェックする温度探知装置33と、温度探
知装置33からの電気信号と副原料重量測定装置31か
らの電気信号による各時期別に各ダンパとゲートなどを
駆動させるよウニtlt示するコンピュータ装置34及
びこれラノ装置を制御する制御パネル35とにより構成
される制御装置によって自動的に制御される。
Each of the dampers and gates includes a thermocouple 32 that measures the temperature of molten steel in the electric furnace 7, a temperature detection device 33 that checks the electromotive force due to the temperature measured by the thermocouple 32, and an electric signal from the temperature detection device 33. Automatically controlled by a control device consisting of a computer device 34 that indicates the unit TLT to drive each damper, gate, etc. at each time based on electric signals from the auxiliary raw material weight measuring device 31, and a control panel 35 that controls the control device. controlled.

未説明符号36は圧縮ポンプ24からの圧縮空気を各稼
動部に選択的に供給するためのソレノイドバルブのよう
な制御バルブであり、37は既存設備の集熱装置である
An unexplained reference numeral 36 is a control valve such as a solenoid valve for selectively supplying compressed air from the compression pump 24 to each operating part, and 37 is a heat collecting device of the existing equipment.

この発明は以上のような構造によりつくられるものであ
って、以下製鋼操業に伴う作用を説明する。
The present invention is made with the above-described structure, and the functions associated with steelmaking operations will be explained below.

製鋼の初期には、ダンパ15によって産気ガスの導入管
9を閉鎖し、既存煙突を開放しゲート26を閉鎖する状
態において電気炉7に主原料を装入し、電源を供給して
主原料を溶解する。
In the early stages of steelmaking, the main raw material is charged into the electric furnace 7 while the damper 15 closes the production gas introduction pipe 9, the existing chimney is opened, and the gate 26 is closed, and the main raw material is supplied with power. dissolve.

即ち、溶解期においては電気ガス中に塵などが多く、ガ
スが低温であるために既存の電気炉の設備を利用するも
のである。
That is, during the melting period, there is a lot of dust in the electric gas and the gas is at a low temperature, so existing electric furnace equipment is used.

溶解期が進行する間またはその以前からコンベヤ18と
ホッパ19により各豫熱室1の副原料の収容空間4の内
に副原料を収容する。
During or before the melting stage, the conveyor 18 and hopper 19 accommodate the auxiliary raw material in the auxiliary raw material storage space 4 of each heating chamber 1.

この時、各副原料の供給管20に設置されであるゲート
23を選択的に開放して、各副原料の豫熱室1に該当す
る副原料を供給する。
At this time, the gates 23 installed in the supply pipes 20 of each auxiliary raw material are selectively opened to supply the corresponding auxiliary raw materials to the heating chamber 1 of each auxiliary raw material.

次に、制御パネル23によって制御装置を精錬期に相応
する条件の下に設定する。
Next, the control device is set using the control panel 23 under conditions suitable for the refining period.

溶解が進行して電気炉7内の温度が精錬期に該当する温
度までに上昇すると、熱電対32によって測定された温
度による起電力が温度探知装置33に供給され、温度探
知装置33からの電気信号がコンピュータ装置34へ伝
達される。コンピュータ装置34に記載された精錬期の
各時期別温度条件と温度探知装置33から伝達された電
気信号が一致されると、コンピュータ装置34は同期モ
ータ14に指令を送って転換ダンパ15によって既存煙
突8を閉鎖しながら産気ガス導入管9を開放させる。
When melting progresses and the temperature in the electric furnace 7 rises to a temperature corresponding to the refining period, electromotive force due to the temperature measured by the thermocouple 32 is supplied to the temperature detection device 33, and electricity from the temperature detection device 33 is A signal is communicated to computer device 34. When the temperature conditions for each period of the refining period written in the computer device 34 match the electric signal transmitted from the temperature detection device 33, the computer device 34 sends a command to the synchronous motor 14 and uses the conversion damper 15 to remove the existing chimney. While closing 8, the production gas introduction pipe 9 is opened.

この際、ダンパ15が脚気ガス導入管9の開放をはじめ
る時にモータ16は同期モータ14に連動するので、ダ
ンパ17は煙突13を開放する。
At this time, since the motor 16 is interlocked with the synchronous motor 14 when the damper 15 starts opening the beriberi gas introduction pipe 9, the damper 17 opens the chimney 13.

脚気ガス導入管9が開放されると、電気炉から発生する
産気ガスは導入管9を通じて、各副原料豫熱室1の副原
料の収容空間4内に導入され、導入される産気ガスは副
原料の粒子の間を通過しながら副原料を加熱する。
When the beriberi gas introduction pipe 9 is opened, the production gas generated from the electric furnace is introduced into the auxiliary raw material storage space 4 of each auxiliary raw material heating chamber 1 through the introduction pipe 9, and the produced production gas is introduced. heats the auxiliary raw material while passing between the particles of the auxiliary raw material.

次に産気ガスは豫熱室1の内壁2に穿設された通気孔6
を通して産気ガスの循環空間5へ流入されて、産気ガス
排出管11を通じて蓄熱室12へ排出され、残熱は蓄熱
室12の内部の蓄熱煉瓦によって蓄熱され、煙突13と
集塵装置(図示せず)を通じて大気中に放出される。
Next, the production gas is passed through the ventilation holes 6 drilled in the inner wall 2 of the heat chamber 1.
The production gas flows into the circulation space 5 through the production gas exhaust pipe 11 and is discharged to the heat storage chamber 12.The residual heat is stored by the heat storage bricks inside the heat storage chamber 12, and the remaining heat is stored in the chimney 13 and the dust collector (Fig. (not shown) into the atmosphere.

この時、副原料は常温から650〜850℃まで加熱さ
れる。
At this time, the auxiliary raw material is heated from room temperature to 650 to 850°C.

次に電気炉内の温度が制御パネル35に設定された酸化
期の副原料投入温度に至ると制御装置によって該当副原
料豫熱室lの副原料排出管24のゲート26が開放され
た副原料に投入準備ホッパ27に積置される。
Next, when the temperature in the electric furnace reaches the auxiliary material input temperature for the oxidation period set on the control panel 35, the control device opens the gate 26 of the auxiliary material discharge pipe 24 of the corresponding auxiliary material heating chamber l. It is stacked in the input preparation hopper 27.

ホッパ27に積置された副原料の重量は測定装置31に
よって測定され、各時期別に適正な重量に近づくとゲー
ト26が振動シリンダ25によって振動しながらますま
すその開度を狭めて排出管24を閉鎖してオーバチャー
ジングを防止する。
The weight of the auxiliary raw materials stacked in the hopper 27 is measured by the measuring device 31, and when the weight approaches the appropriate weight for each period, the gate 26 is vibrated by the vibration cylinder 25 and its opening is further narrowed to close the discharge pipe 24. Closed to prevent overcharging.

次に電気炉内の温度が時期別に副原料の投入適正な温度
に至ると、制御装置によって副原料の投入ゲート30が
開放され、副原料は投入管28を通じて電気炉7内に投
入され、ホッパ27に積置された副原料が完全に投入さ
れるゲート30は自動的に帰って閉鎖される。
Next, when the temperature in the electric furnace reaches a temperature appropriate for charging the auxiliary raw materials at different times, the control device opens the auxiliary raw material input gate 30, and the auxiliary raw materials are charged into the electric furnace 7 through the input pipe 28, and then placed in the hopper. The gate 30, into which the auxiliary materials stored in the gate 27 are completely input, automatically returns and closes.

また、溶解期の状態に帰ると、煙突13はダンパ17に
よって、閉鎖されるので蓄熱室12に蓄熱された熱気が
産気ガス排出管11を通じて逆流し、各副原料の豫熱室
9内に伝達されて、副原料を豫熱するようになる。
When the state returns to the melting stage, the chimney 13 is closed by the damper 17, so the hot air stored in the heat storage chamber 12 flows back through the production gas discharge pipe 11 and flows into the heat chamber 9 for each auxiliary material. The heat is transferred to heat the auxiliary raw materials.

上記の各ダンパ15.17と各ゲート23.26.30
は制御装置の機能が故障の際、手動作業ができるように
設置されている。このような方式で精錬期の各時期別に
副原料が自動的に電気炉内に投入されるもので、−回の
製鋼が完了されると、再び溶解期の状態に帰るものであ
る。
Each damper 15.17 and each gate 23.26.30 above
is installed so that manual work can be performed in the event of a malfunction of the control device. In this way, auxiliary raw materials are automatically introduced into the electric furnace at each stage of the refining stage, and when the -th round of steelmaking is completed, the state returns to the melting stage.

以上のように、この発明によると、電気炉から発生する
、高熱の産気ガスを副原料豫熱室へ導入して副原料を豫
熱するので副原料の加熱に必要な熱量を大幅に節減させ
ることができ、豫熱された副原料を投入することによっ
て溶鋼とスラグとの反応時間が延長されたので、炉内反
応性の改善による鋼質を改善することができる。
As described above, according to this invention, the high-temperature production gas generated from the electric furnace is introduced into the auxiliary raw material heating chamber to heat the auxiliary raw material, thereby significantly reducing the amount of heat required to heat the auxiliary raw material. Since the reaction time between molten steel and slag is extended by introducing the heated auxiliary raw material, the quality of the steel can be improved by improving the reactivity in the furnace.

また、適正量の副原料を各時期別に自動的に適期に投入
するので鋼質の改善と操業の簡単化を計ることができ、
これによる生産原価を節減できるなど大きな効果がある
ものである。
In addition, since the appropriate amount of auxiliary materials are automatically added at the appropriate time for each period, it is possible to improve steel quality and simplify operations.
This has great effects such as reducing production costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一つの実施例を図示する全体の斜
視図、第2図はこの発明設備の脚気ガス系統図、第3図
はこの発明設備の副原料系統図、第4図は制御装置の概
略図である。 図において、■は副原料豫熱室、4は副原料収容空間、
5は廃気ガス循環空間、6は通気鋼、8は直線管、9は
脚気ガス導入管、1oは廃気ガス操向コーン、11は産
気ガス排出管、12は蓄熱室、13は煙突、14は同期
モータ、15は方向転換ダンパ、16はモータ、17は
逆流止めダンパ、19はホッパ、20は副原料供給管、
22・25・29は振動シリンダ、23・26・30は
ゲート、24は副原料排出管、27は副原料投入準備ホ
ッパ、31は副原料重量測定装置、32は熱電対、33
は温度探知装置、34はコンピュータ装置、35は制御
パネルである。 代理人 弁理士 西 郷 義 美 〃 弁理士原田幸男 手続補正書(自船 昭和60年10月16日 特許庁長官 宇 賀 道 部  殿 昭和59年特許願第148492号 2、発明の名称 製鋼用の副原料線熱自動投入設備 3、補正をする者 事件との関係  特許出願人 住 所 韓国、インチニオン、ナムーグ、ヨンギュン 
3−トング、351 氏 名 キム ヨウン スウ 国 籍 韓国 4、代理人  〒105  置  03−438−22
41  (代表)住 所 東京都港区虎ノ門3丁目4番
17号鹿友第3ビル4階 氏名(8005)弁理士西卯μ義美 5、補正命令の日付  自発 7、補正の内容 (1、発明の名称を[製鋼用の副原料線熱自動投入設備
」に補正する。 (2)  別紙のとおり (3)第5図、第6図(イ)、(ロ)、(ハ)、を別紙
のとおり追加する。 全文訂正明細書 1、発明の名称 製鋼用の副原料線熱自動投入設備 2、特許請求の範囲 1、陥入ガス導入管(9)を連立直線管(8)に連通さ
れ、下段に副原料排出管(24)が設置されて内部には
産気ガス操向コーン(10)が設置された副原料収容空
間(4)と廃気ガス排出管(11)をIグ煙突(13)
が設置された公知の蓄熱室(12)に連通された産気ガ
ス循環空間(5)が通気孔(6)によって連通旦た副原
料投入管(1)を設置し収容空r&1(4)に連通され
た念■■副原料供給管(20)が分岐u1された副原料
供給ホッパ(19)反グ豫熱室(1)の下部に設置され
副原料投入管(28)に連通された副原料投入準備ホッ
パ(27)を設置して上記廃気(24)及び投入準備ホ
ッパ(27)の排出段部には、各々ゲート(26)  
(30)を設置して投の副原料線熱自動投入設備。 ↓、副原料排出管(24)に設置されたゲート(26)
を炉内の温度にイ影、て各時期側に開閉制御し1副原料
投入準備ホッパ(27)の下段に設置されたゲー)(3
0)を副原料重量測定装置(31)の測定値に伴った各
時期側に開閉制御す動投入設備。 ↓、自動制御装置は、電気炉(7)の溶鋼の温度を測定
する熱電’!ltF (32)と熱電圭(32)点又測
定された温度による起電力をチェックする温度探知装置
(33)と、副原料重量測定装置(31)1の測定値に
よって各ゲートの開閉信号を発するコンピュータ(34
)iffこれらを市+1 i卸する動投入設備。 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は、製鋼、特に鋳鋼の際酸化期と還元期とに大
別される精錬期に投入する副原料を電気炉で発生する廃
気ガスの高熱を利用して豫熱し、上記の各時期別に要求
される副原料の定量を自動的に投入する製鋼用の副原料
豫熱自動投入設備に関するものである。 〔従来の技術〕 一般的に製鋼、特に鋳鋼においては主原料を電気炉に装
入し、溶解する溶解機と、溶解される溶鋼に生石灰を投
入して脱リンと炭素を酸化させる酸化期と、更に生石灰
とFe−3iおよびFe−Mnを投入して脱酸及び成分
の調整する還元期とになる精錬期と区分されるところ、
従来には精錬期に投入する副原料を常温状態で手動投入
したり、別途の熱源によって副原料を豫熱し、手動投入
して、電気炉にて発生する高温の廃気ガスはそのまま放
出していた。 〔発明が解決しようとする問題点〕 したがって、従来には、副原料を常温から溶解点の温度
まで昇温させるに必要な熱量を電気炉のアーク熱又は別
途の熱源にたよっていたので、製鋼操業上での熱損失が
多かった。廃気ガスの高熱を利用せず、殆どそのまま放
出したので、エネルギの効率的な利用が不可能であった
。常温の副原料を投入する場合には、副原料が溶解され
るまでの時間が長くなるので、溶湯とスラグの界面反応
時間が相対的に短縮され炉内反応性の低下によって鋼質
が劣化される弊害があった。副原料を操業者の経験に依
存して、手動的に投入することによる生産性の低下と鋼
質の不均一な不良品が大量に発生するなどの問題点があ
った。 〔発明の目的〕 この発明はこのような従来の諸問題点を除いて炉内で発
生する高熱の廃気ガスを利用して副原料を豫熱し適正な
時期に適正量の副原料を自動的に投入することによって
省エネルギと生産性及び鋼質を改善することができるの
で精錬期の半自動化を期することができる線熱自動投入
設備を提供するものである。 〔問題点を解決するための手段〕 この目的を達成するためにこの発明は、廃気ガス導入管
(9)を通り直線管(8)に連通され、下段に副原料排
出管(24)が設置されて内部には廃気ガス操向コーン
(10)が設置された副原料収容空間(4)と廃気ガス
排出管(11)を通り煙突(13)が設置された公知の
蓄熱室(12)に連通された廃気ガス循環空間(5)が
通気孔(6)によって連通した副原料豫熱室(1)を設
置し収容空間(4)に連通された公知の副原料供給管(
20)が分岐設置された副原料供給ホッパ(19)及び
線熱室(1)の下部に設置され副原料投入管(28)に
連通された副原料投入準備ホッパ(27)を設置して上
記廃気ガス導入管(9)と直線管(8)との連通部には
方向転換ダンパ(15)を、煙突(13)には逆流防止
用ダンパ(17)を各に設置し、排出管(24)及び投
入準備ホッパ(27)の排出段部には、各々ゲート(2
6)(30)を設置して投入準備ホッパ(27)の下部
には副原料重量測定装置(31)を設置したことを特徴
とする。 〔実施例〕 図において、1は副原料の線熱室であり、耐火煉瓦と鉄
板とで構成された内壁2と外壁3とになりたってあり、
内壁2には副原料の収容空間4と廃気ガスの循環空間5
とを連通ずる多数の通気孔6が穿設されている。 各副原料の線熱室1の上段面には既存設備である電気炉
7の直線管8の中間に連通された廃気ガス導入管9が分
岐連通設置されており、廃気ガス導入管9の導入孔下部
の副原料収容空間4には廃気ガスの流れを調整する廃気
ガス操行コーン10が設置されている。 各副原料豫熱室lの廃気ガス循環空間5の下段部には廃
気ガスの排出管11が連通設置してあり、この排出管1
1は蓄熱煉瓦などで構成され蓄熱室12を通過して煙突
13と既存の集塵装置(図示せず)とを通って大気中へ
開放されている。 既存の直線管8と廃気ガス導入管9の連結部には、同期
モータ14によって稼動される転換ダンパ15が設置し
てあり、煙突13には同期モータ14と電気的に接続さ
れたモータ16によって、転換ダンパ15が直線管8の
閉鎖と廃気ガス導入管9の開放を開始する時に煙突13
を開放し、転換ダンパ15が廃気ガス導入管9を閉鎖し
た時に煙突13を閉鎖するのができるように逆流防止用
ダンパ17が設置されている。 副原料豫熱室1の上部には、コンベヤ18によって移送
された副原料を線熱室1に供給するように供給ホッパ1
9が設置してあり、供給ホッパ19の下段開口部には、
各線熱室1に副原料を選択的に供給するように公知の副
原料供給管20が分岐されて連通してあり、各供給管2
0の下段部には圧縮ポンプ21から供給される圧縮空気
で振動する振動シリンダ22によって稼動するゲート2
3が内装設置されである。 各副原料豫熱室1の下段には副原料排出管24が副原料
収容空間4と連通設置してあり、排出管24には振動シ
リンダ25によって振動するゲート26が各々設置され
である。 副原料排出管24の開放段下部には副原料の投入準備ホ
ッパ27が設置してあり、投入準備ホッパ27の下段開
放部は電気炉7に連結された副原料投入管′28に連通
してあり、振動シリンダ29によって開閉するゲート3
0が設置しである。 副原料投入準備ホッパ27の下段部には、投入準備ホッ
パ27上に供給された副原料の重量を測量する重量測定
装置31が設置されている。 上記各転換ダンパ15、逆流防止用ダンパ17及びゲー
ト23は、操業者によって手動操作され、ゲート26.
30は電気炉7の溶鋼の温度を測定する熱電帯32と熱
電帯32とで測定された温度による起電力をチェックす
る温度探知装置33での電気信号と副原料重量測定装置
31での電気信号による各時期別に各ゲート26.30
を駆動するように指示するコンピュータ34及び、これ
ら装置を制御する制御パネル35で構成された制御装置
によって自動的に制御できる。 上記ゲート26.30は第5図に図示したように、熱電
帯32で測定された温度による信号と、重量測定装置3
1で測定された重量による信号によって開閉されるので
ある。即ち、熱電帯32で測定された温度による信号は
A/D変換器でデジタル信号に変換され、コンピュータ
34のI10ボートを通ってCPUに入力され、その信
号と設置された温度が一致するとCPUからの指令信号
がI10ボートでD/A変換器を通ってアナログ信号に
変換され、自動制御パネル35を通じてゲート26.3
0に送られ、ゲート26は開放し、ゲート30は閉鎖さ
れる。 ゲート26が開放されると、線熱室1内で線熱された副
原料が投入準備ホッパ27に積載され重量測定装置31
によってその重量が測定され、電気的信号でA/D変換
器でさらにデジタル信号に変換され、I10ボートを通
じてCPUに入力され、その信号を積算して設定値に至
ると、CPUからの指令信号がI10ボートでD/A変
換器を通してアナログ信号に変換し、自動制御パネル3
5を通じてゲート26とゲート30に送られてゲート2
6が閉鎖し、ゲート30は開放して副原料重量測定が完
了して副原料が投入されるのである。 副原料投入が完了するとさらにゲート30も閉鎖され、
次の段階に続くと次の段階では上記の動作を反復するの
である。 この説明の符号36は圧縮ポンプ21からの圧縮空気を
各稼動部に選択的に供給するためのソレノイドバルブと
同じ制御バルブで、37は既存設備の燃焼室である。 本発明は、以上のような構造で成り立ち、以下は製鋼操
業に伴う作りを説明する。 前回の溶鋼を出鋼した後、簡易補修を行って、電気炉に
主原料である古鉄を装入して電力を投入し、溶解期作業
に入る。 この溶解期作業時には廃気ガス粉塵が多く、精錬期の廃
熱よりも低温であるため、副原料の線熱には利用せず転
換ダンパ15によって廃気ガス導入管9と逆流防止用ダ
ンパ17で煙突13を閉鎖し、既存設備である直線管8
を開放して、廃気ガスをそのまま既存集塵装置(図示せ
ず)を通って大気中に排出させる(第6図(イ)ブロッ
ク51)。 溶解期、出鋼間の補修中は転換ダンパ15、逆流防止用
ダンパ17によって廃気ガス導入管9、煙突13を閉鎖
し、直線管8を開放した状態で、コンベヤ18で副原料
を搬送して、副原料供給ホッパ19に連結された公知の
副原料供給管20に設置しであるゲート23を副原料の
種類によって選択的に手動で開放して各副原料傍熱室1
に副原料を種類別に充填収容する。 副原料の充填が完了すると、ゲート23は供給管20を
閉鎖する(第6図(イ)ブロック52)。 主原料の溶解期が終って溶落ち以後精錬期に発生する高
熱の廃気ガスを副原料豫熱に利用するために、同期モー
タ14とモータ16を作動させ、転換ダンパ15、逆転
防止用ダンパ17で既存直線管8を閉鎖し、廃気ガス導
入管9と蓄熱室12以後の煙突13を開放させ、高熱の
廃気ガスが副原料傍熱室1に吸込むように誘導し、誘導
された高熱の廃気ガスは円陣型の廃気ガス操行コーン1
0によって副原料傍熱室1内に均一に分布して流れるよ
うに調整する。 副原料傍熱室1内に誘導された高熱の廃気ガスは、副原
料粒子間を1ffl過して、通気孔6を経て廃気ガス循
環空間5を通る間に廃熱を回収する直接像熱と、廃気ガ
ス循環空間5を通る間に廃気ガス排出管11を通って蓄
熱室12に誘導される間に通気孔6と廃気ガス循環空間
5との間で成り立つ内壁2の耐火煉瓦築造方策効果に強
制熱交換方式による間接傍熱との2通りの廃熱回収方式
で副原料傍熱室1に充填収容された各種の副原料を60
0〜800℃で豫熱する(第6図(イ)ブロック52)
。 その以後産気ガスは廃気ガス排出管11を通じて蓄熱室
12に誘導され残熱は蓄熱室12の内部蓄熱煉瓦に蓄熱
され煙突13と集塵装置(図示せず)とを通って大気中
に放出される。 溶解期が終ると主原料の装入量、目標製品の化学成分と
溶落ちでの溶鋼の化学成分とを考慮して各種副原料の投
入量を計算して、精錬期中、酸化期と還元期とを3〜4
段階に区分して、各段階別に、溶鋼温度によって、副原
料の投入時期と副原料の種類とをコンピュータ34のプ
ログラムに設定して記憶させる(第6図(イ)ブロック
53)。 第6図(イ)、(ロ)のフローチャートは3種類の副原
料(SMl)、(S、M2)、(S M 3 )を3段
階(ステップl)、(ステップ2)、(ステップ3)に
区分して投入する製鋼操業の1例を示したものである。 第6図(イ)のブロック54.55にて例えば段階(ス
テップ1)は精錬期中酸化期に該当し、段階(ステップ
2)、(ステップ3)は還元期に該当する副原料(S 
M 1)は生石灰、副原料(8M2)はFe−3i、副
原料(3M3)はFe−Mnである。 上記各段階(ステップ1)、(ステップ2)、(ステッ
プ3)での副原料投入温度(溶鋼温度)は操業パターン
によって設定されるもので、通常製鋼中酸化期に該当す
る温度は約1580℃、還元期中1段階は約1600℃
、2段階は1620℃であるので、上記各段階別設定温
度(STI)、(ST2)、(S T 3 )は操業パ
ターンによって算出して設定する。 また、段階別副原料投入量(重量)も製鋼パターンによ
って決定されるものなので、ここでは数値的表現を避は
記号で表示する。 即ち、段階(ステップ1)での副原料(SMl)の投入
量はswl、段階(ステップ2)での副原料(S M 
s )と(S M 2 )の投入量は各々sw、 −s
 w、2で段階(ステップ3)での副原料(SMl)と
(3M3)の投入量は各k 5W13 ・5W33で表
示する(第6図(イ)ブロック54.55)。 精錬期が進行している間開原料は続けて豫熱され、操業
者がコンピュータ34のCPUに精錬期段階に適する該
当プログラムを選択すれば熱電帯32によった溶鋼温度
測定値にしたがう温度探知装置33で、探知された温度
(MTt)は電気信号に変換されコンピュータ34に伝
達される(第6図(ロ)ブロック56)。 測定された温度(MTl)が既設定しである段階(ステ
ップ1)の設定温度(STl)に至ると、コンピュータ
34は設定されたプログラムによって自動制御パネル3
5に指令を出す(第6図(ロ)ブロック57)。 該当段階(ステップl)のプログラムに定めた順序によ
って1種類の副原料(SMl)が収容された傍熱室1下
段部にある副原料排出管24のゲート26を開放さセる
(第6図(ロ)ブロック58)。 傍熱された副原料(SMI)は副原料排出管24を通っ
て副原料投入準備ホッパ27に積載され重量測定装置3
1によって計量される(第6図(ロ)ブロック59)。 副原料の重量(MWl)をコンピュータ34で感知し、
副原料が設定された重量(S W 11 )に近づくと
ゲート26の振動シリンダ25を振動させゲート26の
開度を漸次狭くして排出管24を閉鎖し過多なる副原料
が積載されないようになる(第6図(ロ)ブロック60
)。 副原料(SMr)での計量が終ると(SWll−M W
 1)コンピュータ34での指令信号が自動制御パネル
35を通り振動シリンダ29に伝達されゲート30が開
放して副原料投入管28を通って副原料(SMl)は電
気炉7内の溶鋼界面に投入される(第6図(ロ)ブロッ
ク61)。 1段階(ステップ1)の副原料(S M 1)の投入が
完了するとコンピュータ34の指令によってゲート30
が閉鎖する(第6図(ロ)ブロック62)。 1段階副原料投入が完了して溶鋼の温度(MT2)が段
階(ステップ2)の設定温度(ST2)に達すると(第
6図(ロ)ブロック57)上述した1段階(ステップl
)と同し順序によって2段階(ステップ2)副原料(S
Ml)、(3M2)を投入して(ブロック58.59.
60.61.62)又3段階(ステップ3)副原料(S
Ml)、(SM:l)を投入するのである。(ブロック
57.58.59.60.61.62)。 ここで、2段階(第6図(ハ)ブロック63)、及び3
段階(第6図(ハ)ブロック64)では副原料が2種類
であるので、先に副原料(SMl)をブロック58.5
9.60によって、計量完了し、更に、同一順序で副原
料(S M 2 )又は(SM 3 )を計量した後こ
れらを積算してBLOCK61.62によって投入完了
する。 即ち、2段階(ステップ2)では、測定及び、積算重量
(MW2)が副原料(SMt)と(3M2)の設定重量
(S W I2+ S W22 )と一致した際に投入
するし、3段階(ステップ3)では測定積算重量(MW
3)が副原料(SMt)と(3M3)の設定重量(SW
ll + 5W3B )に一致する時に投入するのであ
る。 このようにして精錬期で要求される溶鋼の化学成分が目
標成分に達し出鋼温度に至ると溶鋼を出鋼して、1回の
操業と終らすのである。 上記ゲート26.30はコンピュータ34と自動制御パ
ネル35の技能故障の時等を考慮して手動操作も可能に
設置するのが良い。 以上のように本発明によると、電気炉が発生する、高熱
の産気ガスを各副原料豫熱室に導入して副原料を傍熱す
るので、副原料に加熱に必要な熱量を大幅に節減できる
し、傍熱された副原料を投入することによって、Itl
fjlとスラグとの反応時間が延長され炉内反応性改善
による鋼質を改善することができる。 また、適正量の副原料を各時期側に自動的に適期に投入
するによって鋼質の改善に操業の単純化を伴うことがで
きるので、これによる生産原価の節減と至大なる効果を
得られるのである。 4、図面の簡単な説明 第1図は、この発明の一つの実施例を図示する全体の斜
視図、第2図はこの発明設備の産気ガス系統図、第3図
はこの発明設備の副原料系統図、第4図は制御装置の概
略図、第5図はこの発明設備のブロック図、第6図(イ
)、(ロ)、(ハ)はこの発明の詳細な説明するフロー
チャートである。 図において、1は副原料豫熱室、4は副原料収容空間、
5は産気ガス循環空間、6は通気孔、8は直線管、9は
産気ガス導入管、10は廃気ガス操行コーン、11は産
気ガス排出管、12は蓄熱室、13は煙突、14は同期
モータ、15は転換ダンパ、16はモータ、17は逆流
防止用ダンパ、19は供給ホッパ、20は副原料供給管
、22・25・29は振動シリンダ、23・26・30
はゲート、24は副原料排出管、27は副原料投入準備
ホッパ、31は副原料重量測定装置、32は熱電帯、3
3は温度探知装置、34はコンピュータ、35は制御パ
ネルである。
Fig. 1 is an overall perspective view illustrating one embodiment of the present invention, Fig. 2 is a beriberi gas system diagram of this inventive equipment, Fig. 3 is an auxiliary raw material system diagram of this inventive equipment, and Fig. 4 is It is a schematic diagram of a control device. In the figure, ■ is an auxiliary raw material heating chamber, 4 is an auxiliary raw material storage space,
5 is an exhaust gas circulation space, 6 is a ventilation steel, 8 is a straight pipe, 9 is a beriberi gas introduction pipe, 1o is an exhaust gas steering cone, 11 is a production gas discharge pipe, 12 is a heat storage chamber, 13 is a chimney , 14 is a synchronous motor, 15 is a direction change damper, 16 is a motor, 17 is a backflow prevention damper, 19 is a hopper, 20 is an auxiliary raw material supply pipe,
22, 25, 29 are vibration cylinders, 23, 26, 30 are gates, 24 is an auxiliary raw material discharge pipe, 27 is an auxiliary raw material input preparation hopper, 31 is an auxiliary raw material weight measuring device, 32 is a thermocouple, 33
34 is a temperature detection device, 34 is a computer device, and 35 is a control panel. Agent Patent Attorney Yoshimi Saigo Patent Attorney Yukio Harada Procedural Amendment (October 16, 1985 Michibe Uga, Commissioner of the Patent Office, Patent Application No. 148492 2, 1982, Title of Invention: For steel manufacturing) Automatic heating equipment for auxiliary raw material wire 3, relationship with the case of the person making the amendment Patent applicant address Yong-gyun, Namoogu, Inchineon, South Korea
3-Tong, 351 Name Kim Young-soo Nationality South Korea 4 Agent Address: 105 03-438-22
41 (Representative) Address: 4th floor, Kakuto Building 3, 3-4-17 Toranomon, Minato-ku, Tokyo Name (8005) Patent Attorney Yoshimi Nishio 5 Date of amendment order Voluntary action 7 Contents of amendment (1. Invention (2) As shown in the attached sheet, (3) Figures 5, 6 (a), (b), and (c) are revised to "automatic input equipment for auxiliary raw material wire heat for steelmaking." Addition as follows. Full text amended specification 1, title of the invention automatic wire heat injection equipment for steel making 2, claim 1, an invaginated gas introduction pipe (9) is connected to a continuous straight pipe (8), An auxiliary raw material discharge pipe (24) is installed in the lower stage, and an auxiliary raw material storage space (4) in which a production gas steering cone (10) is installed, and an exhaust gas discharge pipe (11) are connected to an I-type chimney ( 13)
A production gas circulation space (5) connected to a known heat storage chamber (12) in which a heat storage chamber (12) is installed is connected to a storage space r&1 (4) by installing an auxiliary raw material input pipe (1) that communicates with it through a ventilation hole (6). The connected auxiliary raw material supply pipe (20) is branched to the auxiliary raw material supply hopper (19), and the auxiliary raw material feed pipe (28) installed at the bottom of the heating chamber (1) is connected to the auxiliary raw material input pipe (28). A raw material input preparation hopper (27) is installed, and gates (26) are installed at the discharge stage of the waste gas (24) and the input preparation hopper (27).
(30) is installed to automatically feed the auxiliary raw material wire heat. ↓、Gate (26) installed in the auxiliary raw material discharge pipe (24)
The opening and closing are controlled at each stage depending on the temperature in the furnace.1 A game (3) installed at the bottom of the auxiliary material input preparation hopper (27)
0) is controlled to open and close at each time according to the measured value of the auxiliary raw material weight measuring device (31). ↓, The automatic control device is a thermoelectric device that measures the temperature of molten steel in the electric furnace (7)! A temperature detection device (33) that checks the electromotive force due to the temperature measured at ltF (32) and thermoelectricity (32) points, and an auxiliary raw material weight measurement device (31) generates an opening/closing signal for each gate based on the measured values of 1. Computer (34
)if A dynamic input facility that wholesales these items. 3. Detailed Description of the Invention [Field of Industrial Application] This invention utilizes waste gas generated in an electric furnace as an auxiliary material to be input into the refining stage, which is roughly divided into an oxidation stage and a reduction stage, during steel manufacturing, particularly casting steel. This invention relates to automatic heating equipment for adding heat to auxiliary raw materials for steelmaking, which uses the high heat of gas to heat the gas and automatically inputs the required amount of auxiliary raw materials for each period mentioned above. [Prior art] In general, steelmaking, especially cast steel, involves a melting machine in which the main raw materials are charged into an electric furnace and melted, and an oxidation stage in which quicklime is added to the molten steel to dephosphorize and oxidize carbon. , further divided into the refining period, which is the reduction period in which quicklime, Fe-3i and Fe-Mn are added to deoxidize and adjust the components.
Conventionally, the auxiliary raw materials used in the refining stage were manually charged at room temperature, or the auxiliary raw materials were heated using a separate heat source and then manually charged, and the high-temperature waste gas generated in the electric furnace was released as is. Ta. [Problem to be solved by the invention] Therefore, in the past, the amount of heat necessary to raise the temperature of auxiliary raw materials from room temperature to the melting point temperature was dependent on the arc heat of an electric furnace or a separate heat source. There was a lot of heat loss during operation. The high heat of the waste gas was not utilized and was released almost as is, making it impossible to use energy efficiently. When adding auxiliary raw materials at room temperature, it takes a long time for the auxiliary raw materials to be melted, so the interfacial reaction time between the molten metal and slag is relatively shortened, and the reactivity in the furnace decreases, causing deterioration of steel quality. There were some negative effects. There were problems such as a decrease in productivity due to manual input of auxiliary materials depending on the experience of the operator, and a large number of defective products with uneven steel quality. [Purpose of the invention] This invention eliminates these conventional problems and automatically produces the appropriate amount of auxiliary materials at the appropriate time by heating the auxiliary materials using high-temperature waste gas generated in the furnace. The purpose of the present invention is to provide an automatic wire heat input equipment that can save energy, improve productivity, and improve steel quality by inputting steel into the steel, thereby allowing for semi-automation of the refining process. [Means for solving the problem] In order to achieve this object, the present invention includes a waste gas inlet pipe (9) that is connected to the straight pipe (8), and an auxiliary raw material discharge pipe (24) at the lower stage. A well-known heat storage chamber (4) with an auxiliary material storage space (4) in which a waste gas steering cone (10) is installed and a chimney (13) installed through a waste gas discharge pipe (11). An auxiliary raw material heating chamber (1) is installed in which an exhaust gas circulation space (5) communicated with the exhaust gas circulation space (5) communicated with the auxiliary raw material supply pipe (12) is communicated with the storage space (4) through a vent hole (6).
20) is installed as a branch, and an auxiliary raw material supply hopper (19) and an auxiliary raw material input preparation hopper (27) installed at the bottom of the wire heating chamber (1) and communicated with the auxiliary raw material input pipe (28) are installed. A direction changing damper (15) is installed at the communication part between the exhaust gas inlet pipe (9) and the straight pipe (8), a backflow prevention damper (17) is installed at each of the chimney (13), and the exhaust pipe ( 24) and the discharge stage of the input preparation hopper (27), there are gates (2
6) (30) is installed and an auxiliary raw material weight measuring device (31) is installed at the bottom of the input preparation hopper (27). [Example] In the figure, 1 is a wire heating chamber for auxiliary raw materials, and the inner wall 2 and outer wall 3 are made of refractory bricks and iron plates.
The inner wall 2 has a storage space 4 for auxiliary raw materials and a circulation space 5 for waste gas.
A large number of ventilation holes 6 are provided to communicate with each other. On the upper surface of the wire heating chamber 1 for each auxiliary raw material, a waste gas introduction pipe 9 is installed in branch communication, which is connected to the middle of the straight pipe 8 of the electric furnace 7, which is an existing equipment. An exhaust gas control cone 10 for regulating the flow of exhaust gas is installed in the auxiliary raw material storage space 4 below the introduction hole. A waste gas discharge pipe 11 is installed in communication with the lower part of the waste gas circulation space 5 of each auxiliary raw material heating chamber l.
1 is made of heat storage bricks, etc., and passes through a heat storage chamber 12, passes through a chimney 13, and an existing dust collector (not shown), and is opened to the atmosphere. A conversion damper 15 operated by a synchronous motor 14 is installed at the connection between the existing straight pipe 8 and the exhaust gas introduction pipe 9, and a motor 16 electrically connected to the synchronous motor 14 is installed in the chimney 13. Accordingly, when the conversion damper 15 starts closing the straight pipe 8 and opening the waste gas introduction pipe 9, the chimney 13
A damper 17 for preventing backflow is installed so that the chimney 13 can be closed when the exhaust gas introduction pipe 9 is opened and the conversion damper 15 closes the exhaust gas introduction pipe 9. A supply hopper 1 is installed above the auxiliary raw material heating chamber 1 to supply the auxiliary raw material transferred by the conveyor 18 to the wire heating chamber 1.
9 is installed in the lower opening of the supply hopper 19.
Known auxiliary raw material supply pipes 20 are branched and communicated so as to selectively supply auxiliary raw materials to each wire heating chamber 1, and each supply pipe 2
0 is a gate 2 operated by a vibration cylinder 22 that vibrates with compressed air supplied from a compression pump 21.
3 is installed inside. An auxiliary raw material discharge pipe 24 is installed in the lower stage of each auxiliary raw material heating chamber 1 to communicate with the auxiliary raw material storage space 4, and a gate 26 vibrated by a vibration cylinder 25 is installed in each of the discharge pipes 24. An auxiliary material input preparation hopper 27 is installed at the lower part of the open stage of the auxiliary raw material discharge pipe 24, and the lower open part of the input preparation hopper 27 communicates with the auxiliary raw material input pipe '28 connected to the electric furnace 7. Yes, gate 3 opened and closed by vibration cylinder 29
0 is installed. A weight measuring device 31 for measuring the weight of the auxiliary raw material supplied onto the input preparation hopper 27 is installed in the lower part of the auxiliary raw material input preparation hopper 27 . The conversion damper 15, the backflow prevention damper 17, and the gate 23 are manually operated by the operator, and the gate 26.
30 is an electric signal from a thermoelectric band 32 that measures the temperature of molten steel in the electric furnace 7, a temperature detection device 33 that checks the electromotive force due to the temperature measured by the thermoelectric band 32, and an electric signal from the auxiliary raw material weight measuring device 31. Each gate 26.30 according to each period
These devices can be automatically controlled by a control device consisting of a computer 34 that instructs the devices to be driven, and a control panel 35 that controls these devices. As shown in FIG.
It is opened and closed by a signal based on the weight measured in step 1. That is, a signal based on the temperature measured by the thermoelectric band 32 is converted into a digital signal by an A/D converter, and is input to the CPU through the I10 board of the computer 34. When the signal matches the installed temperature, the signal is output from the CPU. The command signal is converted into an analog signal by the I10 boat through a D/A converter, and then sent to the gate 26.3 through the automatic control panel 35.
0, gate 26 is opened and gate 30 is closed. When the gate 26 is opened, the auxiliary raw material wire-heated in the wire heating chamber 1 is loaded into the input preparation hopper 27 and transferred to the weight measuring device 31.
The weight is measured by the electric signal, which is further converted into a digital signal by an A/D converter, and input to the CPU through the I10 board. When the signal is integrated and reaches the set value, a command signal is sent from the CPU. Convert it to an analog signal through a D/A converter on the I10 boat, and send it to the automatic control panel 3.
5 to gate 26 and gate 30 and gate 2
6 is closed, the gate 30 is opened, the weight measurement of the auxiliary raw material is completed, and the auxiliary raw material is introduced. When the addition of auxiliary materials is completed, the gate 30 is also closed,
Continuing to the next stage, the above operation is repeated in the next stage. Reference numeral 36 in this description is a control valve that is the same as a solenoid valve for selectively supplying compressed air from the compression pump 21 to each operating part, and 37 is a combustion chamber of the existing equipment. The present invention is comprised of the above-described structure, and the construction involved in steelmaking operations will be explained below. After tapping the previous molten steel, simple repairs are carried out, the main raw material, old iron, is charged into the electric furnace, electricity is turned on, and work begins during the melting stage. During this melting stage work, there is a lot of waste gas dust and the temperature is lower than the waste heat from the refining stage, so it is not used for the wire heat of the auxiliary raw materials, and is connected to the waste gas inlet pipe 9 and the backflow prevention damper 17 by the conversion damper 15. The chimney 13 is closed and the straight pipe 8, which is the existing equipment, is closed.
is opened, and the exhaust gas is directly discharged into the atmosphere through the existing dust collector (not shown) (block 51 in FIG. 6(a)). During the melting period and during repairs between taps, the waste gas introduction pipe 9 and the chimney 13 are closed by the conversion damper 15 and the backflow prevention damper 17, and the auxiliary materials are transported by the conveyor 18 with the straight pipe 8 open. Then, a gate 23 installed in a known auxiliary raw material supply pipe 20 connected to the auxiliary raw material supply hopper 19 is selectively and manually opened depending on the type of auxiliary raw material, and each auxiliary raw material indirect heating chamber 1 is opened.
The auxiliary raw materials are filled and stored by type. When the filling of the auxiliary raw material is completed, the gate 23 closes the supply pipe 20 (block 52 in FIG. 6(a)). In order to use the high-temperature waste gas generated during the refining period after the melting period of the main raw material is finished and burn-through to heat the auxiliary raw material, the synchronous motor 14 and motor 16 are operated, and the conversion damper 15 and the damper for preventing reverse rotation are activated. At step 17, the existing straight pipe 8 is closed, the exhaust gas introduction pipe 9 and the chimney 13 after the heat storage chamber 12 are opened, and the high-temperature exhaust gas is guided to be sucked into the secondary heating chamber 1, and the induced high heat is The exhaust gas is handled by a circular exhaust gas control cone 1.
Adjustment is made so that the auxiliary raw material flows in a uniformly distributed manner within the indirect heating chamber 1 by setting 0. The high-temperature waste gas guided into the secondary raw material indirect heat chamber 1 passes through 1 ffl between the secondary raw material particles, passes through the ventilation hole 6, and passes through the exhaust gas circulation space 5, during which waste heat is recovered. Heat is guided to the heat storage chamber 12 through the exhaust gas discharge pipe 11 while passing through the exhaust gas circulation space 5. Various auxiliary raw materials filled and housed in the auxiliary raw material indirect heating chamber 1 are collected by 60% by using two methods of waste heat recovery, including indirect heating using a forced heat exchange method and indirect heating using a brick construction strategy.
Heat at 0 to 800°C (Figure 6 (a) block 52)
. Thereafter, the produced gas is guided to the heat storage chamber 12 through the exhaust gas discharge pipe 11, and the residual heat is stored in the heat storage bricks inside the heat storage chamber 12, and then passes through the chimney 13 and the dust collector (not shown) into the atmosphere. released. When the melting period is over, the amount of input of various auxiliary materials is calculated taking into consideration the amount of main raw materials charged, the chemical composition of the target product and the chemical composition of molten steel at burn-through, and the amount of input of various auxiliary materials is calculated during the refining period, oxidation period and reduction period. and 3 to 4
The process is divided into stages, and for each stage, depending on the temperature of the molten steel, the timing of charging the auxiliary raw material and the type of the auxiliary raw material are set and stored in the program of the computer 34 (block 53 in FIG. 6(a)). The flowchart in Figure 6 (a) and (b) shows three types of auxiliary raw materials (S Ml), (S, M2), and (S M 3 ) in three stages (step l), (step 2), and (step 3). This figure shows an example of a steelmaking operation in which steel is divided into two categories. In blocks 54 and 55 of FIG. 6(a), for example, the stage (step 1) corresponds to the oxidation stage during the refining stage, and the stages (step 2) and (step 3) correspond to the reduction stage.
M1) is quicklime, the auxiliary raw material (8M2) is Fe-3i, and the auxiliary raw material (3M3) is Fe-Mn. The auxiliary raw material input temperature (molten steel temperature) in each of the above steps (Step 1), (Step 2), and (Step 3) is set depending on the operation pattern, and the temperature that corresponds to the oxidation period during steelmaking is usually about 1580°C. , the first stage during the reduction period is approximately 1600℃
, the second stage is 1620° C., so the set temperatures for each stage (STI), (ST2), and (ST3) are calculated and set according to the operation pattern. In addition, since the amount (weight) of auxiliary raw materials input for each stage is also determined by the steelmaking pattern, numerical expressions are avoided here and are expressed using symbols. That is, the input amount of the auxiliary raw material (S Ml) in the stage (step 1) is swl, and the input amount of the auxiliary raw material (S M1) in the stage (step 2) is swl.
The input amounts of s ) and (S M 2 ) are sw and -s, respectively.
The input amounts of the auxiliary raw materials (SMl) and (3M3) in the step (step 3) are expressed as k 5W13 and 5W33 (blocks 54 and 55 in FIG. 6(a)) with w and 2. While the refining stage is in progress, the open raw material is continuously heated, and if the operator selects a corresponding program suitable for the refining stage in the CPU of the computer 34, the temperature is detected by the thermoelectric band 32 according to the molten steel temperature measurement. In the device 33, the detected temperature (MTt) is converted into an electrical signal and transmitted to the computer 34 (block 56 in FIG. 6(b)). When the measured temperature (MTl) reaches the set temperature (STl) at a preset stage (step 1), the computer 34 controls the automatic control panel 3 according to the set program.
5 (block 57 in FIG. 6 (b)). The gate 26 of the auxiliary raw material discharge pipe 24 located in the lower part of the indirect heating chamber 1 containing one type of auxiliary raw material (SMl) is opened according to the order determined in the program of the corresponding step (step l) (Fig. 6). (b) Block 58). The indirectly heated auxiliary raw material (SMI) is loaded into the auxiliary raw material input preparation hopper 27 through the auxiliary raw material discharge pipe 24, and is loaded into the auxiliary raw material input preparation hopper 27, and then transferred to the weight measuring device 3.
1 (block 59 in FIG. 6(b)). The weight (MWl) of the auxiliary raw material is sensed by the computer 34,
When the weight of the auxiliary material approaches a set weight (S W 11 ), the vibrating cylinder 25 of the gate 26 is vibrated to gradually narrow the opening of the gate 26 and the discharge pipe 24 is closed to prevent excessive auxiliary material from being loaded. (Figure 6 (b) Block 60
). When the measurement of the auxiliary raw material (SMr) is completed (SWll-M W
1) A command signal from the computer 34 is transmitted to the vibration cylinder 29 through the automatic control panel 35, the gate 30 is opened, and the auxiliary raw material (SMl) is introduced into the molten steel interface in the electric furnace 7 through the auxiliary raw material input pipe 28. (Block 61 in FIG. 6(b)). When the input of the auxiliary material (S M 1) in the first stage (step 1) is completed, the gate 30 is opened according to the command from the computer 34.
is closed (Figure 6 (b) block 62). When the first stage of auxiliary raw material input is completed and the temperature of the molten steel (MT2) reaches the set temperature (ST2) of the stage (step 2) (Figure 6 (b) block 57), the first stage (step l) described above is completed.
) in two steps (Step 2) in the same order as the auxiliary raw material (S
Ml), (3M2) and (blocks 58, 59.
60.61.62) Also, 3-stage (Step 3) auxiliary raw material (S
Ml) and (SM:l) are input. (blocks 57.58.59.60.61.62). Here, 2 steps (block 63 in FIG. 6(c)) and 3
Since there are two types of auxiliary raw materials in the step (block 64 in FIG. 6 (c)), the auxiliary raw materials (SMl) are first transferred to block 58.5.
At 9.60, the measurement is completed, and after measuring the auxiliary raw materials (S M 2 ) or (SM 3 ) in the same order, they are integrated and the input is completed at BLOCK 61.62. That is, in the second stage (Step 2), the measured and integrated weight (MW2) is charged when it matches the set weight (S W I2 + S W22 ) of the auxiliary material (SMt) and (3M2), and in the third stage ( In step 3), the measured cumulative weight (MW
3) is the set weight (SW) of auxiliary raw material (SMt) and (3M3)
ll + 5W3B). In this way, when the chemical composition of the molten steel required in the refining period reaches the target composition and reaches the tapping temperature, the molten steel is tapped and the operation ends with one operation. It is preferable that the gates 26 and 30 be installed so that they can be manually operated in case the computer 34 and the automatic control panel 35 are malfunctioning. As described above, according to the present invention, the high-temperature production gas generated by the electric furnace is introduced into each sub-material heating chamber to indirectly heat the sub-materials, thereby significantly reducing the amount of heat required to heat the sub-materials. It can be saved and by inputting indirectly heated auxiliary raw materials, itl
The reaction time between fjl and slag is extended, and steel quality can be improved by improving in-furnace reactivity. In addition, by automatically adding the appropriate amount of auxiliary materials to each stage at the appropriate time, it is possible to improve steel quality and simplify operations, resulting in reductions in production costs and great effects. It is. 4. Brief description of the drawings Fig. 1 is an overall perspective view illustrating one embodiment of this invention, Fig. 2 is a production gas system diagram of the equipment of this invention, and Fig. 3 is a sub-section of the equipment of this invention. A raw material system diagram, FIG. 4 is a schematic diagram of the control device, FIG. 5 is a block diagram of the equipment of this invention, and FIGS. 6 (a), (b), and (c) are flow charts explaining the invention in detail. . In the figure, 1 is an auxiliary raw material heating chamber, 4 is an auxiliary raw material storage space,
5 is a production gas circulation space, 6 is a ventilation hole, 8 is a straight pipe, 9 is a production gas introduction pipe, 10 is a waste gas operation cone, 11 is a production gas discharge pipe, 12 is a heat storage chamber, 13 is a chimney , 14 is a synchronous motor, 15 is a conversion damper, 16 is a motor, 17 is a backflow prevention damper, 19 is a supply hopper, 20 is an auxiliary raw material supply pipe, 22, 25, 29 are vibration cylinders, 23, 26, 30
24 is a gate, 24 is an auxiliary raw material discharge pipe, 27 is a auxiliary raw material input preparation hopper, 31 is an auxiliary raw material weight measuring device, 32 is a thermoelectric band, 3
3 is a temperature detection device, 34 is a computer, and 35 is a control panel.

Claims (1)

【特許請求の範囲】 1、廃気ガス導入管(9)を通じて、直線管(8)に連
通されて、下段に副原料排出管(24)が設置された副
原料収容空間(4)と廃気ガスの排出管(7)を通じて
、煙突(13)が設置された蓄熱室(12)に連通され
た廃気ガスの循環空間(5)が通気孔(6)によって、
連通された副原料の豫熱室(1)と廃気ガスの循環空間
(5)を連通された副原料供給管(20)が分岐された
副原料供給ホッパ(19)と、豫熱室(1)の下段部に
設置されて副原料投入管(28)に連通された副原料投
入準備ホッパ(27)とに構成されることを特徴とする
製鋼の際副原料豫熱自動投入設備。 2、第1項において、豫熱室(1)の副原料の収容空間
(4)内には廃気ガスの操向コーン(10)が設置され
てあり、廃気ガス導入管(9)を直線管(8)の連結部
には方向転換ダンパ(15)が同期モータ(14)によ
って調節可能になるように設置されてあり、煙突(13
)には同期モータ(14)と連動するモータ(16)に
よって開閉される逆流止めダンパ(17)が設置されて
いることを特徴とする製鋼の際副原料豫熱自動投入設備
。 3、第1項において、副原料供給管(20)の下段部と
排出管(24)及びホッパ(27)の排出段部には各々
振動シリンダ(22)(25)(29)によって開閉さ
れるゲート(23)(26)(30)が設置されてあり
、副原料投入準備ホッパ(27)の下部には副原料重量
測定装置(31)が設置されることを特徴とする製鋼の
際副原料豫熱自動投入設備。 4、第1項、第2項、又は第3項において、方向転換ダ
ンパ(15)と逆流止めダンパ(17)及び副原料排出
管(24)に設置されたゲート(26)を炉内の温度に
よる各時期別に開閉制御し、副原料投入準備ホッパ(2
7)の下段に設置されたゲート(29)を副原料重量測
定装置(31)の測定値によって各時期別に開閉制御す
る自動制御装置が設置されることを特徴とする製鋼の際
副原料豫熱自動投入設備。 5、第4項において、自動制御装置は、電気炉の溶鋼の
温度を測定する熱電対(32)と熱電対(32)に測定
された温度による起電力をチェックする温度探知装置(
33)と、温度探知装置(33)からの電気信号と副原
料重量測定装置(31)からの測定値によって、各ダン
パとゲートの開閉信号を発するコンピュータ装置(34
)と、これらを制御する制御パネルとに構成されること
を特徴とする製鋼の際副原料豫熱自動投入設備。
[Claims] 1. The auxiliary raw material storage space (4) is connected to the straight pipe (8) through the waste gas introduction pipe (9), and the auxiliary raw material discharge pipe (24) is installed at the lower stage. The exhaust gas circulation space (5) is connected to the heat storage chamber (12) in which the chimney (13) is installed through the exhaust pipe (7), and the exhaust gas circulation space (5) is connected to the heat storage chamber (12) in which the chimney (13) is installed.
The auxiliary raw material supply hopper (19) is connected to the auxiliary raw material supply pipe (20), which is connected to the auxiliary raw material heat chamber (1) and the exhaust gas circulation space (5), which are connected to each other. 1) A sub-material input preparation hopper (27) installed at the lower stage and communicating with a sub-material input pipe (28). 2. In paragraph 1, a waste gas steering cone (10) is installed in the auxiliary raw material storage space (4) of the heat chamber (1), and the waste gas introduction pipe (9) is installed. A direction changing damper (15) is installed at the joint of the straight pipe (8) so as to be adjustable by a synchronous motor (14), and the chimney (13)
) is equipped with a backflow prevention damper (17) that is opened and closed by a motor (16) that is interlocked with a synchronous motor (14). 3. In item 1, the lower part of the auxiliary raw material supply pipe (20), the discharge pipe (24), and the discharge stage part of the hopper (27) are opened and closed by vibrating cylinders (22), (25), and (29), respectively. Gates (23), (26), and (30) are installed, and an auxiliary raw material weight measuring device (31) is installed at the bottom of the auxiliary raw material input preparation hopper (27). Yu heat automatic injection equipment. 4. In the first, second, or third terms, the direction change damper (15), the backflow prevention damper (17), and the gate (26) installed on the auxiliary material discharge pipe (24) are connected to the temperature inside the furnace. The opening and closing of the auxiliary raw material preparation hopper (2
7) An automatic control device is installed to control the opening and closing of the gate (29) installed at the lower stage according to the measured value of the auxiliary material weight measuring device (31) at each time. Automatic loading equipment. 5. In item 4, the automatic control device includes a thermocouple (32) that measures the temperature of molten steel in the electric furnace, and a temperature detection device (32) that checks the electromotive force due to the temperature measured by the thermocouple (32).
33), and a computer device (34) that generates opening/closing signals for each damper and gate based on the electric signal from the temperature detection device (33) and the measured value from the auxiliary material weight measuring device (31).
) and a control panel for controlling these.
JP14849284A 1984-07-17 1984-07-17 By-raw material preheating automatic charging facility on steel manufacture Granted JPS6127489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14849284A JPS6127489A (en) 1984-07-17 1984-07-17 By-raw material preheating automatic charging facility on steel manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14849284A JPS6127489A (en) 1984-07-17 1984-07-17 By-raw material preheating automatic charging facility on steel manufacture

Publications (2)

Publication Number Publication Date
JPS6127489A true JPS6127489A (en) 1986-02-06
JPS6352309B2 JPS6352309B2 (en) 1988-10-18

Family

ID=15453961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14849284A Granted JPS6127489A (en) 1984-07-17 1984-07-17 By-raw material preheating automatic charging facility on steel manufacture

Country Status (1)

Country Link
JP (1) JPS6127489A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293877A (en) * 2008-06-06 2009-12-17 Toda Iron Works Co Ltd Shutter mechanism of raw material charging chute of electric furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293877A (en) * 2008-06-06 2009-12-17 Toda Iron Works Co Ltd Shutter mechanism of raw material charging chute of electric furnace

Also Published As

Publication number Publication date
JPS6352309B2 (en) 1988-10-18

Similar Documents

Publication Publication Date Title
US4790516A (en) Reactor for iron making
RU2550975C2 (en) Steel production unit
CN108660287A (en) A kind of LF stoves steel scrap adding set and adding method
JP5236926B2 (en) Manufacturing method of molten steel
US2624565A (en) Scrap melting
CN87106488A (en) Metal charge is changed into half-finished equipment and melting and casting method
US2669511A (en) Method for refining ferrous metals
JPS6127489A (en) By-raw material preheating automatic charging facility on steel manufacture
US2034071A (en) Metallurgical furnace
KR850001180B1 (en) Equipment pre-heating of sub-row meterial for steel marking
US1034788A (en) Process of extracting and refining metals and ores.
US2107980A (en) Method for preparing iron and steel
JPH0914865A (en) Scrap preheater for electric furnace and preheating method therefor
JPS6056401B2 (en) Reactor - equipment for iron making
US3690632A (en) Blast furnace control based on measurement of pressures at spaced points along the height of the furnace
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
CN110029202A (en) A kind of method and device of converter steel scrap continuously pre-heating
US1817043A (en) Converter smelting
JPH04309789A (en) Melting furnace with material preheating tower using waste gas
CN217809533U (en) A online baking equipment of steel scrap for ladle argon blowing station
CN204848979U (en) Copper smelting furnace
KR200267439Y1 (en) The Apparatus for Preheating Ferro Alloy
US3930786A (en) Apparatus for heating steel scrap
JP4162276B2 (en) Reduction melting method and reduction melting furnace
US3342470A (en) Method and apparatus for making steel