JPS61274847A - Method of monitoring overload in nc device - Google Patents

Method of monitoring overload in nc device

Info

Publication number
JPS61274847A
JPS61274847A JP11625585A JP11625585A JPS61274847A JP S61274847 A JPS61274847 A JP S61274847A JP 11625585 A JP11625585 A JP 11625585A JP 11625585 A JP11625585 A JP 11625585A JP S61274847 A JPS61274847 A JP S61274847A
Authority
JP
Japan
Prior art keywords
machining
value
load
limit value
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11625585A
Other languages
Japanese (ja)
Other versions
JPH0313028B2 (en
Inventor
Toshio Ishihara
石原 敏夫
Norio Yano
矢野 則夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP11625585A priority Critical patent/JPS61274847A/en
Publication of JPS61274847A publication Critical patent/JPS61274847A/en
Publication of JPH0313028B2 publication Critical patent/JPH0313028B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To improve machining accuracy by setting a limit value with the maximum value of variation in load on machining a model as the reference value and comparing a variation in load at the time of machining an actual workpiece with said reference value and monitoring said variation in load, in an NC device having a CRT display. CONSTITUTION:Machining of a model is carried out prior to actual machining by means of an NC device, and a model machining maximum load rate judging circuit 8 compares data on load rate which are coming at every defined time, with a value stored in a reference memory 81. When the whole process of model machining is competed, the maximum value of the load condition in the whole process is stored in the memory 81 as the data of the reference value Ls. And, the limit value of a load condition is operated from this reference value Ls by a limit value operating circuit 9 and stored in a limit value memory 91. And, then, both of a load condition at the time of actual machining and the maximum value of load conditions up to that time, together with the reference value of load conditions up to that time, together with the reference value Ls and the limit value, are displayed on a CRT display device 71 via a display control part 7. Also, when a load rate is above a load condition at the time of actual machining, a warning device 101 operates.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、CR1画面などの表示装置を具備したNO
(数値制御)装置の、加工時における負荷状態の監視方
式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical field of the invention) This invention relates to a NO.
This invention relates to a method for monitoring the load condition of a (numerical control) device during processing.

(発明の技術的背景とその問題点) NORMにより加工する場合において、被加工物の材質
や形状の違い、また工具の摩耗、折損などにより主軸モ
ータや送り軸モータが過負荷状yEとなり、この状態が
長く続くと機械や加工工具の耐久性が劣化することにな
る。常時オペレータが側にいて異常音を聞くこと等によ
り監視できればよいが、無人加工の場合には、この過負
荷状態の監視をNC装置にさせなければならない、そこ
で従来、NC装置による実際の加工時における上記負荷
状態、即ち主軸や各送り軸モータの電流値をこのモータ
の連続定格電流値で割った百分率を負荷率として演算し
、第5図に示すように、CR7表示装置にこの負荷率を
棒グラフにして1区間L+ (0〜100%) 、L2
 (100〜150%)。
(Technical background of the invention and its problems) When machining by NORM, the main spindle motor and feed axis motor may become overloaded due to differences in the material and shape of the workpiece, as well as wear and breakage of tools, etc. If this condition continues for a long time, the durability of machines and processing tools will deteriorate. It would be fine if an operator was always present and could monitor by listening for abnormal sounds, etc., but in the case of unmanned machining, it is necessary to have the NC device monitor this overload condition. In other words, the percentage of the current value of the main shaft and each feed shaft motor divided by the continuous rated current value of this motor is calculated as the load factor, and this load factor is displayed on the CR7 display as shown in Figure 5. 1 section L+ (0-100%), L2 as a bar graph
(100-150%).

L3(150〜200%)により色別表示している。と
ころが、第4図に示すように加工工程に従って切削昔が
変化するたびにこの負荷率も変化するが、第5図に示す
この負荷率を示すCR7画面上に表示された棒グラフは
リアルタイム表示されており、この棒グラフも変化する
ため、負荷率の最大値が一瞬しか表示されず、加工工程
全体における最大負荷率が分からないという欠点がある
It is displayed in different colors according to L3 (150 to 200%). However, as shown in Fig. 4, this load factor changes every time the cutting distance changes according to the machining process, but the bar graph displayed on the CR7 screen showing this load factor shown in Fig. 5 is not displayed in real time. Since this bar graph also changes, the maximum value of the load factor is displayed only momentarily, and there is a drawback that the maximum load factor in the entire machining process cannot be known.

(発明の目的) この発明は上述のような事情によりなされたものであり
、この発明の目的はNC装置での実際の加工に先立って
モデル加工を行ない、上記モデル加工時におけるNC装
置の負荷変動の状況を検出し、その最大値を基準値とし
て制限値を設定し、 CR7表示装置にこの基準値と制
限値を表示するとともに、実際のワーク加工時における
上記負荷変動の現在値と現時点までの最大値とを合わせ
て表示することにより、実際のワーク加工時における負
荷変動の状態を上記基準値及び制限値と比較しながら監
視できるNC装置における過負荷監視方式を提供するこ
とにある。
(Object of the invention) This invention was made in view of the above-mentioned circumstances, and an object of the invention is to perform model processing prior to actual processing with an NC device, and to reduce the load fluctuation of the NC device during model processing. Detects the situation, sets a limit value using the maximum value as a reference value, displays this reference value and limit value on the CR7 display, and displays the current value of the above load fluctuation during actual workpiece machining and the current value up to the present time. It is an object of the present invention to provide an overload monitoring method for an NC device that can monitor the state of load fluctuation during actual workpiece machining while comparing it with the above-mentioned reference value and limit value by displaying the maximum value together with the maximum value.

(発明の概要) 加工時における負荷状態を表示する表示装置を具備した
NC装置における過負荷監視方式において、上記NC装
置による実際の加工に先立ってモデル加工を行ない、上
記モデル加工時の負荷状態を所定の時間ごとに検出し、
このモデル加工時の全工程の負荷状態の最大値を基準値
として記憶し、この基準値から負荷状態の制限値を演算
して記憶し、実際の加工時における負荷状態と、その時
点までのこの負荷状態の最大値を、上記基準値及び上記
制限値とあわせて上記表示装置に表示し、実際の加工時
における負荷状態を目視確認できるようにするとともに
、上記実際の加工時の負荷状態を超えた時警報を発する
NC装置における過負荷監視方式である。
(Summary of the Invention) In an overload monitoring method for an NC device equipped with a display device that displays the load state during machining, a model is processed prior to actual machining by the NC device, and the load state during the model machining is monitored. Detected every predetermined time,
The maximum value of the load state of all processes during machining of this model is stored as a reference value, and the limit value of the load state is calculated and stored from this reference value, and the load state during actual machining and this value up to that point are stored. The maximum value of the load condition is displayed on the above display device together with the above reference value and the above limit value, so that the load condition during actual machining can be visually confirmed, and the load condition exceeding the above load condition during actual machining is displayed. This is an overload monitoring method for NC equipment that issues an alarm when an overload occurs.

(発明の実施例) 第1図はこの発明のNC装置における過負荷監視方式を
実施する装置の一例を示すブロック構成図であり、 N
C装置の主軸モータ011)11及び送り軸モータ(M
2〜Mn) 12〜Inの電流値を所定時間ごとに電流
検出器2で検出し、この電流検出器2で検出された電流
値をA/D変換器3でディジタル変換し、負荷率演算回
路4において、上記A/D変換器3でディジタル変換さ
れた電流値を予め設定されている上記各モータの連続定
格電流値で除した百分率を負荷率(連続定格電流値を1
00%とした各電流値%)として演算し、切換装置5が
外部から操作されることにより、実際の加工時には“a
″側、モデル加工時にはb″側と!fi続され、上記負
荷率データを出力する。ここにおいて、上述のような電
流値の検出〜負荷率の演算というデータ処理工程は、各
モータについて実施されるが、全モータについて共通す
るので、以下の説明においては一つのモータたとえばX
軸の送り軸モータについて説明すると、モデル加工時に
おいては、モデル加工最大負荷率判別回路8が所定時間
ごとに送られてくるE記負荷率Lm(t)データと、そ
れ以前に既に送られた負荷率データのうちの現に最大値
であり、最大負荷率として基準値メモリ81に記憶して
いる偵Law(t’)とを比較し、大きい方の値をその
時点(1)での最大負荷率Lmm(t)として基準値メ
モリ81に記憶しているデータを書換えて記憶する。そ
してモデル加工の全工程に亘って上述のような動作を繰
り返し、モデル加工の全工程を終了すると、このモデル
加工時の上記モータの最大負荷率データが基準値Lsと
して基準値メモリ81に記憶されていることなる。そし
て、制限値波3I回路9は、この基準値Lsデータを受
けて予め設定されている係数1.係数2をこの基準値L
sに乗算し、第1制限値り立l、第2制限値LJ12と
して制限値メモリ91に記憶するにこにおいて、各制限
値を演算する時用いられる各係数は、各モータの特性や
加工物の形状等により異なり、予めオペレータがキーボ
ード等を操作して任意に設定できるようになっている。
(Embodiment of the Invention) FIG. 1 is a block diagram showing an example of a device implementing an overload monitoring method in an NC device of the present invention.
Main shaft motor 011) 11 and feed shaft motor (M
2 to Mn) A current value of 12 to In is detected at predetermined time intervals by a current detector 2, and the current value detected by this current detector 2 is digitally converted by an A/D converter 3, and the load factor calculation circuit 4, the load factor (continuous rated current value divided by 1
By operating the switching device 5 from the outside, the switching device 5 is operated from the outside, so that during actual machining,
″ side, and b″ side when processing the model! fi is connected to output the load factor data. Here, the data processing process from detecting the current value to calculating the load factor as described above is performed for each motor, but since it is common to all motors, in the following explanation, only one motor, e.g.
To explain about the axis feed axis motor, during model processing, the model processing maximum load rate determination circuit 8 receives the load factor Lm(t) data sent at predetermined time intervals and the data already sent before that. The current maximum value of the load factor data is compared with Law(t') stored in the reference value memory 81 as the maximum load factor, and the larger value is determined as the maximum load at that time (1). The data stored in the reference value memory 81 is rewritten and stored as the ratio Lmm(t). The above-described operations are repeated throughout the entire process of model machining, and when the entire process of model machining is completed, the maximum load factor data of the motor during this model machining is stored in the reference value memory 81 as the reference value Ls. That's what happens. Then, the limit value wave 3I circuit 9 receives this reference value Ls data and uses a preset coefficient 1. Coefficient 2 is this standard value L
s is multiplied and stored in the limit value memory 91 as the first limit value L and the second limit value LJ12, each coefficient used when calculating each limit value depends on the characteristics of each motor and the workpiece. It varies depending on the shape of the machine, etc., and can be set arbitrarily by the operator using a keyboard or the like.

一方、上述のようなモデル加工の後に実施される実際の
監視付加工時においては、上述記モデル加工時と同じよ
うにして演算された負荷率L(t)データは1表示制御
部7を介してCRT表示装f171に各モータに対応し
て表示されるとともに、監視付加工最大負荷率判別φ保
持回路6に送られ、この判別保持回路6において、上述
のように、それ以前に送られた負荷率データのうち現に
最大値であり、最大負荷率として保持されている値L■
ax(t’)とを比較し、大きい方の値をその時点まで
の最大値として保持していた最大負荷率Lmax(t’
)に変えてその時点(1)での最大負荷率Lmax(t
)として保持し、合わせて表示制御部7を介してCR7
表示装置71に識別して表示する。また上記負荷率L(
t)データは、上記第1制限値り又1及び第2制限値し
見2データと比較器10で比較され、負荷率L(t)が
上記各制限値を超えると警報m!totが作動して所定
の動作を行なうようになっている。
On the other hand, during the actual monitored machining performed after the model machining described above, the load factor L(t) data calculated in the same manner as during the model machining described above is displayed via the 1 display control unit 7. is displayed on the CRT display f171 corresponding to each motor, and is also sent to the monitoring machining maximum load rate discrimination φ holding circuit 6. In this discrimination holding circuit 6, as mentioned above, the previously sent The value L that is currently the maximum value among the load factor data and is held as the maximum load factor
ax(t'), and the maximum load factor Lmax(t') is held as the maximum value up to that point.
) and the maximum load rate Lmax(t
) and is also displayed as CR7 via the display control unit 7.
It is identified and displayed on the display device 71. In addition, the above load factor L (
t) The data is compared with the first limit value 1 and the second limit value 2 data by the comparator 10, and when the load factor L(t) exceeds each of the above limit values, an alarm m! tot is activated and performs a predetermined operation.

以下、第2図に示すこの発明のNC装置にお1する過負
荷監視方式の動作を説明する70−チヤート奢参照し、
てこの発明の詳細な説明する。
Hereinafter, reference will be made to the 70-chart illustrating the operation of the overload monitoring system for the NC device of the present invention shown in FIG.
A detailed explanation of the invention will now be given.

NC装置による加工プログラムをスタートさせると、ア
際の加工を行なう前に、まず実際と同じ状態でモデル加
工が行なわれ(ステップSl) 、このモデル加工時の
監視したい主軸モータ(Ml)lll送送軸モー’) 
(M2〜Mm)12〜inナトの負荷状態である電流値
が、予め設定された所定の時間毎にサンプリングされ、
上記電流検出器2及びA/D変換器3を介して、負荷率
演算回路4で上記負荷率り鳳(1)として演算され(ス
テップS2)、外部からの操作により“b″側に切換え
られた切換装置5を経てモデル加工最大負荷率判別回路
8に接続され、上述のように最大負荷率り膳m(t)が
判別され、上記基準値メモリ8Iに記憶される(ステッ
プS3)、そして、モデル加工の全1程に亘ってステッ
プS2に戻ってと述のような動作が繰返され、モデル加
工が終了する(ステップS0と、上記基準値メモリ81
に記憶されている最大負荷率を&1s値Lsとして設定
しくステップS5)、制限値演算回路9において、この
基準値に上記係数1.係a2が乗算され、第1制限値り
文!、第2制限値Lu2が演算され(ステップS6)、
この第1制限値Lll及び第2制限値り交2が制限値メ
モリ31に記憶される(ステップS7)。
When a machining program by the NC device is started, before the actual machining is performed, model machining is first performed in the same state as in reality (step SL), and the spindle motor (Ml) lll feed that is to be monitored during this model machining is Axis motor')
(M2~Mm) The current value that is the load state of 12~in is sampled at every preset predetermined time,
Via the current detector 2 and A/D converter 3, the load factor calculation circuit 4 calculates the load factor R (1) (step S2), and switches it to the "b" side by external operation. It is connected to the model processing maximum load rate determination circuit 8 through the switching device 5, and the maximum load rate table m(t) is determined as described above and stored in the reference value memory 8I (step S3). , the above-mentioned operations are repeated over the entire model processing step S2, and the model processing is completed (step S0 and the reference value memory 81 mentioned above).
The maximum load factor stored in the &1s value Ls is set as the &1s value Ls (step S5), and the limit value calculation circuit 9 sets this reference value to the above coefficient 1. The coefficient a2 is multiplied and the first limit value statement! , a second limit value Lu2 is calculated (step S6),
The first limit value Lll and the second limit value 2 are stored in the limit value memory 31 (step S7).

次に、上述のようなモデル加工を終了し、実際の監視付
加工が開始されると(ステップ5tO)、第3図に示す
ように上記基準値Ls、第1制限値し文l 、第2制限
値L12が表示制御部7を介してそれぞれ識別されCR
T表示装!71に表示される(ステップ5ll)、ここ
において、上記表示は監視対象となる各モータについて
行なわれることは言うまでもない0次に上述のように負
荷率演算回路4で@算された(ステップ512)上記モ
ータの負荷率L(t)データは、外部からの操作により
“a”側に切換えられた切換装置5を介して監視付加工
最大負荷率判別・保持回路6に送られ、h述のようにし
て、その時点(1)までの最大負荷率Lmax(t)が
演算され保持される(ステップ513)、そして、この
現在の負荷率L(t)と現在までの最大負荷率Lmax
(t)が上記CR7表示装置71に、第3図に示すよう
に線種や銀色を変えることにより識別して棒グラフに表
示される(ステップSlO,それと同時に、上記負荷率
t(t)は、比較器10においてまず上記第1制限値L
ulと比較され(ステップ515)、この負荷率L(t
)がこの第1制限値141より大きければ警報装置10
1により警報を発しくステップS+8)、さらに、第2
制限値L12よりも大まければ(ステップ517)、N
C装置を停止して(ステップ520)この過負荷監視動
作を終了する。そして、上記ステップS15において上
記負荷率L(t)が第1制限値り見lを超えていない場
合、また、上記ステップS17において上記負荷率L(
t)がi2制限値り文2を超えていない場合は、一つの
ワークに対するこの監視付加工の全工程が終了するまで
上記ステップS12に戻って上述のような動作を繰返し
くステップ5xs)、第3図に示すように、全加工工程
におけるその時点(1)での負荷率L(t)と、その時
点までの最大負荷率Lmax(t)が常時表示されると
ともに、上記比較器lOにより警報装置101とも接続
され、監視付加工が実施される。そして一つのワークの
全加工工程を終Tすると、上記モデルと同一の加工を実
施するワークがある限り、上記ステップS12に戻り上
述のような動作を繰返しくステップ519)、同一モデ
ルに対する全ワークの加工を終了すると、この発明によ
るNC装置における過負荷監視方式は終了する。
Next, when the above-described model processing is finished and actual monitored processing is started (step 5tO), the reference value Ls, the first limit value L, and the second limit value are set as shown in FIG. The limit value L12 is identified via the display control unit 7 and CR
T display! 71 (step 5ll), and it goes without saying that the above display is performed for each motor to be monitored. The motor load factor L(t) data is sent to the monitoring machining maximum load factor determination/holding circuit 6 via the switching device 5, which is switched to the "a" side by external operation, as described in h. Then, the maximum load factor Lmax(t) up to that point (1) is calculated and held (step 513), and this current load factor L(t) and the maximum load factor Lmax up to the current time are calculated and held (step 513).
(t) is displayed on the CR7 display device 71 as a bar graph by changing the line type and silver color as shown in FIG. In the comparator 10, first, the first limit value L
ul (step 515), and this load factor L(t
) is larger than this first limit value 141, the alarm device 10
1 to issue an alarm (step S+8), and then step S+8).
If it is greater than the limit value L12 (step 517), N
The C device is stopped (step 520) and this overload monitoring operation is ended. Then, in step S15, if the load factor L(t) does not exceed the first limit value L, in step S17, the load factor L(t)
If t) does not exceed i2 limit value statement 2, return to step S12 and repeat the above operations until all steps of this monitored machining for one workpiece are completed.Step 5xs) As shown in Figure 3, the load factor L(t) at that point (1) in the entire machining process and the maximum load factor Lmax(t) up to that point are constantly displayed, and an alarm is issued by the comparator IO. It is also connected to the device 101 to perform monitored processing. When all the machining steps for one workpiece are finished T, as long as there is a workpiece to be machined the same as the above model, the process returns to step S12 and repeats the above operation (step 519), in which all the workpieces for the same model are processed. When the machining is completed, the overload monitoring method in the NC device according to the present invention ends.

(発明の変形例) 上述の実施例において、基準値Ls、第1制限値り文l
及び第2制限値L12は、一つのモデルについて各モー
タごとに一つずつとしたが、たとえば、一つのモデルの
全加工工程を数工程に区分し、各工程ごとに上記基準値
、第1制限値、第2制限値を設定するようにしてもよい
(Modification of the invention) In the above embodiment, the reference value Ls, the first limit value L
The second limit value L12 is one for each motor in one model, but for example, if the entire machining process of one model is divided into several processes, the above reference value and the first limit L12 are set for each process. It is also possible to set a value and a second limit value.

また、図示していないキーボードなどの入力手段を用い
、たとえば監視付加工工程の途中においても、一時加工
を中断し、上記CR7画面を見ながら上記基準値、第1
制限値、第2制限値をその加に工程に適した値に修正で
きるようにしてもよい。
In addition, using input means such as a keyboard (not shown), for example, even in the middle of a monitored machining process, the machining can be temporarily interrupted, and while looking at the CR7 screen, the above reference value and the first
In addition, the limit value and the second limit value may be modified to values suitable for the process.

(発明の効果) この発明のNC装置における過負荷監視方式によれば、
監視付加工工程における各モータの負荷率がCR7画面
上にリアルタイム表示されるだけでなく、その時点まで
の最大負荷率が識別されて表示されるため、あわせて表
示されているこの監視付加工工程の前に実施されたモデ
ル加工時において設定された基準値、第1制限値。
(Effect of the invention) According to the overload monitoring method in the NC device of this invention,
Not only is the load factor of each motor in the monitored machining process displayed in real time on the CR7 screen, but the maximum load factor up to that point is identified and displayed, so this monitored machining process is also displayed. Reference value and first limit value set during model processing performed before.

第2制限値との比較がCR7画面を目視するだけで容易
に確認でき、また、この基準値、第1制限値、第2制限
値を各加工工程に応じて適確に設定できるので、 NC
装置に過負荷をかけることがなく、NC装置及び加工工
具の耐久性を向上させるだけでなく、加工精度が向上で
きるという効果を奏する。
Comparison with the second limit value can be easily checked just by visually checking the CR7 screen, and the reference value, first limit value, and second limit value can be set appropriately according to each processing process, so NC
This has the effect of not only improving the durability of the NC device and machining tools, but also improving machining accuracy without overloading the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のNC装置における過負荷監視方式を
実施する装置の一例を示すブロック構成図、第2図はこ
の発明のNC装置における過負荷監視方式の動作を説明
するフローチャート、第3図はこの発明のNC装置にお
ける過負荷監視方式によりCR7表示装置に表示された
図、第4図はこの発明を説明するための負荷率の変動状
態を示す図、第5図は従来のNC装置における過負荷監
視方式によりCR7表示装置に表示された図である。 2・・・電流検出器、3・・・A/D変換器、4・・・
負荷率演算回路、5・・・切換装2.6・・・監視付加
工最大負荷率判別・保持回路、7・・・表示制御部、8
・・・モデル加工最大負荷率判別回路、9・・・制限値
演算回路、IO・・・比較器、71・・・CR7表示装
置、81・・・基準値メモリ、31・・・制限値メモリ
、+01・・・警報装置。 出願人代理人  安 形 雄 三 烙 4 図 も 5 図
FIG. 1 is a block configuration diagram showing an example of a device implementing the overload monitoring method in the NC device of the present invention, FIG. 2 is a flowchart explaining the operation of the overload monitoring method in the NC device of the present invention, and FIG. is a diagram displayed on the CR7 display device by the overload monitoring method in the NC device of this invention, FIG. 4 is a diagram showing the fluctuation state of the load factor for explaining this invention, and FIG. FIG. 3 is a diagram displayed on a CR7 display device using an overload monitoring method. 2... Current detector, 3... A/D converter, 4...
Load factor calculation circuit, 5... Switching device 2.6... Processing maximum load factor determination/holding circuit with monitoring, 7... Display control unit, 8
...Model processing maximum load rate discrimination circuit, 9...Limit value calculation circuit, IO...Comparator, 71...CR7 display device, 81...Reference value memory, 31...Limit value memory , +01...Alarm device. Applicant's agent Yu Yasugata 4 Figures 5 Figures

Claims (1)

【特許請求の範囲】[Claims] 加工時における負荷状態を表示する表示装置を具備した
NC装置における過負荷監視方式において、前記NC装
置による実際の加工に先立ってモデル加工を行ない、前
記モデル加工時の全工程中の負荷状態の最大値を基準値
として記憶し、前記基準値から負荷状態の制限値を演算
して記憶し、実際の加工時に実際の加工時の負荷状態と
、前記実際の加工時の負荷状態の最大値を検出し、前記
実際の加工時の負荷状態及び前記実際の加工時の負荷状
態の最大値を前記基準値及び前記制限値と合わせて前記
表示装置に表示するとともに、前記実際の加工時の負荷
状態が前記制限値を超えた時警報を発することを特徴と
したNC装置における過負荷監視方式。
In an overload monitoring method for an NC device equipped with a display device that displays the load state during machining, model processing is performed prior to actual machining by the NC device, and the maximum load state during all processes during the model processing is The value is stored as a reference value, a load condition limit value is calculated and stored from the reference value, and the load condition during actual machining and the maximum value of the load condition during actual machining are detected during actual machining. The load state during the actual machining and the maximum value of the load state during the actual machining are displayed on the display device together with the reference value and the limit value, and the load state during the actual machining is displayed on the display device. An overload monitoring method for an NC device, characterized in that an alarm is issued when the limit value is exceeded.
JP11625585A 1985-05-29 1985-05-29 Method of monitoring overload in nc device Granted JPS61274847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11625585A JPS61274847A (en) 1985-05-29 1985-05-29 Method of monitoring overload in nc device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11625585A JPS61274847A (en) 1985-05-29 1985-05-29 Method of monitoring overload in nc device

Publications (2)

Publication Number Publication Date
JPS61274847A true JPS61274847A (en) 1986-12-05
JPH0313028B2 JPH0313028B2 (en) 1991-02-21

Family

ID=14682589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11625585A Granted JPS61274847A (en) 1985-05-29 1985-05-29 Method of monitoring overload in nc device

Country Status (1)

Country Link
JP (1) JPS61274847A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04226824A (en) * 1990-07-07 1992-08-17 C & E Fein Gmbh & Co Boring device
FR2693934A1 (en) * 1992-07-21 1994-01-28 Rks Monitoring of machining of part by machine tool - by monitoring anomalies in machining to detect imminent failure of machine tool
JP2014018911A (en) * 2012-07-18 2014-02-03 Fanuc Ltd Control device determining whether cutting is possible
US9486888B2 (en) 2013-08-28 2016-11-08 Fanuc Corporation Controller having function for displaying motor load
JP2020082270A (en) * 2018-11-26 2020-06-04 ファナック株式会社 Machine tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614135A (en) * 1979-07-13 1981-02-10 Hitachi Seiki Co Ltd Detector for cutting abnormality of machine tool
JPS58120455A (en) * 1982-01-08 1983-07-18 Yamazaki Mazak Corp Display method of load condition in numerically controlled machine tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614135A (en) * 1979-07-13 1981-02-10 Hitachi Seiki Co Ltd Detector for cutting abnormality of machine tool
JPS58120455A (en) * 1982-01-08 1983-07-18 Yamazaki Mazak Corp Display method of load condition in numerically controlled machine tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04226824A (en) * 1990-07-07 1992-08-17 C & E Fein Gmbh & Co Boring device
FR2693934A1 (en) * 1992-07-21 1994-01-28 Rks Monitoring of machining of part by machine tool - by monitoring anomalies in machining to detect imminent failure of machine tool
JP2014018911A (en) * 2012-07-18 2014-02-03 Fanuc Ltd Control device determining whether cutting is possible
US9486888B2 (en) 2013-08-28 2016-11-08 Fanuc Corporation Controller having function for displaying motor load
JP2020082270A (en) * 2018-11-26 2020-06-04 ファナック株式会社 Machine tool

Also Published As

Publication number Publication date
JPH0313028B2 (en) 1991-02-21

Similar Documents

Publication Publication Date Title
JP3100406B2 (en) Machine tool failure prediction device
US6961637B2 (en) On demand adaptive control system
US5568028A (en) Tool life management system
US5780725A (en) Method of estimating service life of cutter
US20060184256A1 (en) Controller
EP0666138B1 (en) Tool breakage prevention system
JPH0775936A (en) Machining system by drill
US4714999A (en) Numerical control method
JPS61274847A (en) Method of monitoring overload in nc device
JPH09500331A (en) CNC machine tool controller
WO1996019316A1 (en) Tool breakage detecting system
JPS58158713A (en) Numerical control processing system
JP3193120B2 (en) Tool abnormality detection device
JPH0976144A (en) Machining state monitoring method in machine tool
JPH0569656B2 (en)
JPH0751997A (en) Machining load monitoring method
JPS61249110A (en) Load monitor state setting system for numerical control device
JPH0854915A (en) Machining load monitor system
JPH06304814A (en) Rigid tap control system
JPS59142048A (en) Abnormality detector for tool
JPH01228759A (en) Processing situation indication method
JPH01216747A (en) Device for monitoring machining load of machine tool
JPH04310350A (en) Loaded state display method in numerically controlled machine tool
JPH08234822A (en) Method and device for controlling vibration of machine tool
JPH0885044A (en) Working load monitoring system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees