JPS6127467B2 - - Google Patents

Info

Publication number
JPS6127467B2
JPS6127467B2 JP53125135A JP12513578A JPS6127467B2 JP S6127467 B2 JPS6127467 B2 JP S6127467B2 JP 53125135 A JP53125135 A JP 53125135A JP 12513578 A JP12513578 A JP 12513578A JP S6127467 B2 JPS6127467 B2 JP S6127467B2
Authority
JP
Japan
Prior art keywords
treatment solution
ions
phosphate treatment
phosphate
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53125135A
Other languages
Japanese (ja)
Other versions
JPS5554576A (en
Inventor
Kuniharu Yashiro
Akimitsu Fukuda
Chugo Morya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP12513578A priority Critical patent/JPS5554576A/en
Publication of JPS5554576A publication Critical patent/JPS5554576A/en
Publication of JPS6127467B2 publication Critical patent/JPS6127467B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/13Orthophosphates containing zinc cations containing also nitrate or nitrite anions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、亜鉛イオン又は亜鉛イオン及びカル
シウムイオンを含むリン酸塩処理液で鉄鋼を処理
する鉄鋼のリン酸塩皮膜化成処理方法に関するも
のである。 従来、鉄鋼のリン酸塩処理法においては、リン
酸塩処理液に反応促進剤としてNO―3,NO―2
CO―,H2O2等の酸化剤を添加すると処理
時間が5分以内に短縮され作業性が向上するので
広く産業界で実施されている。リン酸塩処理液に
添加する反応促進剤としてのNO―3,NO―2,C
O―,H2O2等の酸化剤には次の3つの作用
がある。 (1) H―e+OH―→H2O H++e→Hのカソード反応によつて生じたH
をH2Oに酸化して復極させる作用。 (2) Fe−2e→Fe2+ 鉄を第一鉄イオン化する。即ちアノード反応に
直接寄与する作用。 (3) Fe2+―e→Fe3+ 第一鉄イオンを酸化して第二鉄イオンとし不溶
性のFeO4を生ぜしめて反応系外に至らしめ、
もつて(2)の反応を促進させる作用。 NO―2は通常NO- 2+NO―3併用又はNO―2
NO―3+CO―併用の形で使用されており、
NO―2は酸性水溶液中では大部分はHNO2の形を
とり、リン酸塩処理液のpH域は1〜5であるこ
とからリン酸塩処理液中ではNO―2はNHO2の形
をとつている。NO―2は酸性水溶液中では次の反
応により不均一分解する。 (4) NO―2+H+→HNO2 (5) 3HNO2→NO- 3+2NO↑+H2O+H+ この不均一分解はpHに依存し、HNO2の半減期
はpHが低いほど短い。リン酸塩処理液を作るた
めの原液(以下建浴剤と略す)や処理液組成を維
持するために使用する濃厚液(以下補給剤と略
す)はいずれもpHが1〜2と低い事及び或る程
度の在庫期間を考慮する必要がある事からNO―2
を共存させることが出来ないので、NO―2を補給
するに当つては主成分の補給剤の他にNaNO2
溶液を別に加える2液補給を実施している。 最近リン酸塩処理製品の均等化及び作業性の向
上を目的として、リン酸塩処理液の電気伝導度を
感知し、リン酸塩処理液の濃度を自動的に制御す
る方法が行われるようになつたが、NaNO2を反
応促進剤として使用すると、リン酸塩処理液中で
は下記(6)式の反応が起りNa+イオンが蓄積し、又
前記(5)式の分解反応によりNO―3イオンも蓄積
し、建浴当初よりもリン酸塩処理液の電気伝導度
が増加するため、電気伝導度によりリン酸塩処理
液の濃度を自動制御するのが困難であつた。 (6) NaNO2+H+→HNO2+Na+ 又、Na+等のアルカリ金属イオン及びNO―3
はリン酸塩皮膜形成物質ではなく、例えばリン酸
塩処理液へのNa+の増加はZn2+,Mn2+,Ca2+
の皮膜形成カチオンの当該液中への溶存量を減少
させるので、必然的に此等のカチオンはNa+イオ
ンの混入に比例して、不溶性のリン酸塩となりス
ラツジとして析出することから、スラツジの生成
量がそれだけ増加し、リン酸塩処理液の電気伝導
度の測定精度を低下させると云う欠点があつた。 本発明は、亜鉛イオン又は亜鉛イオン及びカル
シウムイオンを含むリン酸塩処理液で鉄鋼を処理
する方法に於いて、前記リン酸塩処理液中のスラ
ツジを従来より減少させて電気伝導度の測定精度
を向上させ、リン酸塩処理液濃度を電気伝導度に
より容易に制御可能ならしめることを目的として
いる。 本発明者が前記目的を達成させる為に種々研究
した結果、亜鉛イオン又は亜鉛イオン及びカルシ
ウムイオンを含むリン酸塩処理液で鉄鋼表面に化
成皮膜を形成する方法において、反応促進剤とし
て亜硝酸亜鉛又は亜硝酸亜鉛と亜硝酸カルシウム
とを添加し、前記リン酸塩処理液におけるアルカ
リ金属イオンの蓄積を防止すると共に、電気伝導
手段によつてリン酸塩処理液の濃度を制御して建
浴当初の成分に維持できるようにしたことにより
本発明を完成した。 亜鉛イオン又は亜鉛イオン及びカルシウムイオ
ンを含むリン酸塩処理液としては公知のものを使
用する事が出来、濃厚液を調製後水で希釈し反応
促進剤を添加して処理液とする。 亜鉛イオンを含むリン酸塩処理液はZn2+0.3〜
10g/,Ni2+0〜3g/,PO ―3〜30g/
,NO3―1〜30g/,Na+0〜5g/,
NO―20.02〜0.6g/で全酸度と遊離酸度の比即
ち酸比は5〜80である。 尚全酸度は指示薬フエノールフタレン及び
0.1NNaOHを用いた滴定によつて決定され、滴定
に要したml数を全酸度ポイント数とする。遊離酸
度は指示薬メチルオレンジ及び0.1N NaOHを用
いた滴定によつて決定され滴定に要したml数を遊
離酸度ポイント数とする。 又亜鉛イオン及びカルシウムイオンを含むリン
酸塩処理液はZn2+0.3〜10g/,Ca2+0.3〜10
g/,PO ―3〜30g/,NO―32〜60g/
,Na+0〜20g/,NO2―0.02〜0.6g/で
酸比4〜40である。 必要に応じては反応促進剤としてのNi2+
CO2+,Cu2+等の重金属イオン、CO―
H2O2等の酸化剤、BF―等の弗化物、SO4―等の
アニオン等を0.05〜5g/添加する事が出来
る。 亜鉛イオンとリン酸イオンは皮膜形成によつて
消費されるので、リン酸塩処理液の全酸度を検査
して全酸度は所定のポイントの±5%以内に維持
するようにする。 消費した亜鉛イオン、リン酸イオン、硝酸イオ
ン、亜硝酸イオン等をリン酸塩処理液に再供給
し、処理液組成を維持するために使用する補給剤
は、皮膜形成に直接あずかるZn2+,Mn2+,Ca2+
等のカチオンとリン酸及び硝酸、塩素酸等の酸化
剤更に必要に応じて少量のアニオンからなる濃厚
な酸性水溶液である。 補給剤は、亜鉛イオンを含むリン酸塩処理液に
補給する場合は、Zn2+10〜100g/,Ni2+0〜30
g/,PO ―100〜500g/,NO3―0〜100
g/、酸比2〜8であるが、リン酸塩処理液が
建浴当初のZn2+及びNO3―量を維持するように補
給剤中のZn及びNO3量を調整する。 又補給剤は亜鉛イオン及びカルシウムイオンと
を含むリン酸塩処理液に補給する場合は、Zn2+10
〜100g/,Ni2+0〜30g/,PO ―100〜500
g/,NO3―0〜200g/、酸比1.5〜8であ
るが、リン酸塩処理液が建浴当初のZn2+及び
NO―3量を維持するように補給剤中のZn及びNO3
量を調整する。処理液中のカルシウムイオンの調
整は促進剤で行う。 必要に応じては塩素酸等の酸化剤、BF―等の
弗化物、SO4―等のアニオンを添加する事が出来
る。 補給剤中に沈殿物が析出しない均一な水溶液の
状態を維持するためには補給剤中のアニオン/カ
チオン当量比が3以上であることが必要である。
特に冬期貯蔵時においても補給剤から沈殿物が析
出しないようにするには、該補給剤におけるアニ
オン/カチオン当量比が3に近い場合には硝酸を
含有させる必要がある。 補給に際しそはリン酸塩処理液に亜硝酸亜鉛、
亜硝酸カルシウムを固体又は液体で添加する。 リン酸塩処理液の処理温度は30〜80℃で処理時
間30秒〜30分間でスプレー法、浸漬法等の公知の
方法で鉄鋼を処理する。 リン酸塩処理液中の反応促進剤として亜硝酸亜
鉛又は亜硝酸亜鉛及び亜硝酸カルシウムを用いた
のでNa+イオンの蓄積がなくそれに伴なう沈澱物
も減少し、リン酸塩処理液の主成分を含有する補
給剤中のZn及びNO3量をリン酸塩処理液が建浴当
初のZn2+及びNO3―イオン量を維持するように調
整したのでリン酸塩処理液中のZn2+及びNO3―イ
オン量は建浴当初と変動することがない。従つ
て、リン酸塩処理液の電気伝導度は建浴当初と変
動することなく正確に測定される。 又、リン酸亜鉛カルシウム処理液に対し、反応
促進剤として亜硝酸カルシウムを用い、該処理液
中の亜鉛イオン及びカルシウムイオンを建浴当初
の濃度に維持するために、リン酸亜鉛カルシウム
補給剤中の亜鉛イオン及びカルシウムイオン量を
任意に調整したものを使用することにより、リン
酸塩処理液の成分の安定化を計ることができる。 以上の如く本発明を実施することにより、建浴
時のリン酸塩処理液の電気伝導度を維持しながら
正確に電気伝導度を測定することができるので、
リン酸塩処理液の濃度を容易に自動制御すること
ができる。 以下実施例を挙げて本発明を説明する。 実施例 1 0.06×20×30cmの市販の軟鋼板(JIS−
G3141)を第1表の工程順及び工程条件で処理し
た。 処理にともなうリン酸塩処理液の変動に対処す
るため全酸度が一定に維持されるよう第2表の補
給剤を補給した。 又反応促進剤濃度が一定に維持されるように第
2表の反応促進剤を添加した。 上記のようにして連続処理実験を進めリン酸塩
処理液1当り10m2の処理を行つた。
The present invention relates to a method for chemical conversion treatment of phosphate coatings on steel, in which steel is treated with a phosphate treatment solution containing zinc ions or zinc ions and calcium ions. Conventionally, in the phosphate treatment method for steel, NO- 3 , NO- 2 ,
Addition of an oxidizing agent such as CO- 3 or H2O2 shortens the processing time to less than 5 minutes and improves workability, so it is widely practiced in industry. NO- 3 , NO- 2 , C as a reaction accelerator added to the phosphate treatment solution
Oxidizing agents such as O- 3 and H2O2 have the following three effects. (1) H produced by the cathodic reaction of H―e+OH―→H 2 O H + +e→H
The action of oxidizing and depolarizing H 2 O. (2) Fe−2e→Fe 2+ ionizes iron into ferrous iron. In other words, it is an action that directly contributes to the anode reaction. (3) Fe 2+ ―e → Fe 3+ oxidizes ferrous ions to ferric ions to generate insoluble FeO 4 and remove it from the reaction system,
An action that promotes the reaction of Motsute (2). NO― 2 is usually combined with NO - 2 + NO― 3 or NO― 2 +
It is used in combination with NO― 3 + CO― 3 ,
NO- 2 is mostly in the form of HNO 2 in an acidic aqueous solution, and since the pH range of the phosphate treatment solution is 1 to 5, NO- 2 is in the form of NHO 2 in the phosphate treatment solution. It's getting better. NO- 2 decomposes heterogeneously in an acidic aqueous solution through the following reaction. (4) NO− 2 +H + →HNO 2 (5) 3HNO 2 →NO 3 +2NO↑+H 2 O+H + This heterogeneous decomposition depends on pH, and the lower the pH, the shorter the half-life of HNO 2 . The undiluted solution for making the phosphate treatment solution (hereinafter referred to as bath building agent) and the concentrated solution used to maintain the treatment solution composition (hereinafter referred to as replenisher) both have a low pH of 1 to 2. NO- 2 as it is necessary to consider a certain amount of inventory period.
Therefore, when replenishing NO- 2 , a two-part replenishment method is used in which an aqueous solution of NaNO2 is added separately in addition to the main component replenisher. Recently, with the aim of equalizing phosphate-treated products and improving workability, a method has been developed to automatically control the concentration of the phosphate-treated solution by sensing the electrical conductivity of the phosphate-treated solution. However, when NaNO 2 is used as a reaction accelerator, the reaction of formula (6) below occurs in the phosphate treatment solution and Na + ions accumulate, and the decomposition reaction of formula (5) above causes NO- 3 Ions also accumulate and the electrical conductivity of the phosphate treatment solution increases compared to when the bath was first constructed, making it difficult to automatically control the concentration of the phosphate treatment solution based on the electrical conductivity. (6) NaNO 2 +H + →HNO 2 +Na + Also, alkali metal ions such as Na + and NO- 3 are not phosphate film-forming substances; for example, an increase in Na + in the phosphate treatment solution is caused by Zn. Since this reduces the amount of film-forming cations such as 2+ , Mn 2+ , and Ca 2+ dissolved in the solution, these cations naturally dissolve insoluble phosphoric acid in proportion to the contamination of Na + ions. Since it turns into salt and precipitates as sludge, the amount of sludge produced increases accordingly, which has the disadvantage of lowering the accuracy of measuring the electrical conductivity of the phosphate treatment solution. The present invention provides a method for treating steel with a phosphate treatment solution containing zinc ions or zinc ions and calcium ions, in which the amount of sludge in the phosphate treatment solution is reduced compared to the conventional method, thereby improving the accuracy of measuring electrical conductivity. The purpose is to make it possible to easily control the concentration of the phosphate treatment solution by controlling the electrical conductivity. As a result of various studies conducted by the present inventor in order to achieve the above object, zinc nitrite is used as a reaction accelerator in a method of forming a chemical conversion film on a steel surface using a phosphating solution containing zinc ions or zinc ions and calcium ions. Alternatively, zinc nitrite and calcium nitrite are added to prevent the accumulation of alkali metal ions in the phosphate treatment solution, and the concentration of the phosphate treatment solution is controlled by an electrically conductive means. The present invention has been completed by making it possible to maintain the same composition. A known phosphate treatment solution containing zinc ions or zinc ions and calcium ions can be used, and after preparing a concentrated solution, it is diluted with water and a reaction accelerator is added to prepare the treatment solution. Phosphating solution containing zinc ions is Zn 2+ 0.3 ~
10g/, Ni 2+ 0~3g/, PO 3 4 -3~30g/
, NO 3 -1~30g/, Na + 0~5g/,
The ratio of total acidity to free acidity, that is, the acid ratio, is 5 to 80 at 0.02 to 0.6 g/NO- 2 . The total acidity is measured using the indicator phenolphthalene and
Determined by titration using 0.1N NaOH, the number of ml required for titration is the total number of acidity points. Free acidity is determined by titration using indicator methyl orange and 0.1N NaOH, and the number of ml required for titration is defined as the number of free acidity points. In addition, the phosphate treatment solution containing zinc ions and calcium ions contains Zn 2+ 0.3 to 10 g/, Ca 2+ 0.3 to 10
g/, PO 3 4 -3~30g/, NO- 3 2~60g/
, Na + 0 to 20 g/, NO 2 -0.02 to 0.6 g/, and the acid ratio is 4 to 40. Ni 2+ as a reaction accelerator if necessary,
Heavy metal ions such as CO 2+ , Cu 2+ , CO- 3 ,
Oxidizing agents such as H 2 O 2 , fluorides such as BF-, anions such as SO 4 -, etc. can be added at a rate of 0.05 to 5 g. Since zinc and phosphate ions are consumed by film formation, the total acidity of the phosphating solution is tested to ensure that the total acidity is maintained within ±5% of a predetermined point. The replenisher used to resupply consumed zinc ions, phosphate ions, nitrate ions, nitrite ions, etc. to the phosphate treatment solution and maintain the treatment solution composition is Zn 2+ , which directly participates in film formation. Mn 2+ , Ca 2+
It is a concentrated acidic aqueous solution consisting of cations such as, oxidizing agents such as phosphoric acid, nitric acid, chloric acid, and a small amount of anions as necessary. When replenishing a phosphate treatment solution containing zinc ions, the replenisher should be Zn 2+ 10 to 100 g/, Ni 2+ 0 to 30
g/, PO 3 4 -100~500g/, NO 3 -0~100
g/, the acid ratio is 2 to 8, but the amounts of Zn and NO 3 in the replenisher are adjusted so that the phosphate treatment solution maintains the amounts of Zn 2+ and NO 3 − at the time of bath preparation. In addition, when replenishing a phosphate treatment solution containing zinc ions and calcium ions, Zn 2+ 10
~100g/, Ni 2+ 0~30g/, PO 3 4 -100~500
g/, NO 3 -0 to 200 g/, acid ratio 1.5 to 8, but the phosphating solution has Zn 2+ and
Zn and NO3 in the supplement to maintain NO- 3 amount
Adjust amount. Calcium ions in the treatment solution are adjusted using an accelerator. If necessary, an oxidizing agent such as chloric acid, a fluoride such as BF-, an anion such as SO 4 - can be added. In order to maintain a uniform aqueous solution state in which no precipitate is deposited in the replenishing agent, it is necessary that the anion/cation equivalent ratio in the replenishing agent is 3 or more.
In order to prevent precipitates from forming from the replenisher especially during winter storage, it is necessary to contain nitric acid when the anion/cation equivalent ratio in the replenisher is close to 3. When replenishing, add zinc nitrite to the phosphate treatment solution.
Calcium nitrite is added in solid or liquid form. The treatment temperature of the phosphate treatment solution is 30 to 80°C, and the treatment time is 30 seconds to 30 minutes, and the steel is treated by a known method such as a spray method or a dipping method. Since zinc nitrite or zinc nitrite and calcium nitrite were used as reaction accelerators in the phosphate treatment solution, there was no accumulation of Na + ions and the associated precipitates were reduced. The amount of Zn and NO 3 in the replenisher containing the ingredients was adjusted so that the phosphate treatment solution maintained the Zn 2+ and NO 3 − ion amount at the time of bath preparation . The amounts of + and NO 3 - ions do not change from when the bath was first constructed. Therefore, the electrical conductivity of the phosphate treatment solution can be accurately measured without changing from the initial value of the bath. In addition, calcium nitrite is used as a reaction accelerator for the zinc calcium phosphate treatment solution, and in order to maintain the concentration of zinc ions and calcium ions in the treatment solution at the initial concentration of the bath, a zinc calcium phosphate replenisher is added. By using a solution in which the amounts of zinc ions and calcium ions are arbitrarily adjusted, the components of the phosphate treatment solution can be stabilized. By carrying out the present invention as described above, it is possible to accurately measure the electrical conductivity while maintaining the electrical conductivity of the phosphate treatment solution at the time of bath preparation.
The concentration of the phosphate treatment solution can be easily and automatically controlled. The present invention will be explained below with reference to Examples. Example 1 A commercially available mild steel plate (JIS-
G3141) was processed according to the process order and process conditions shown in Table 1. In order to cope with fluctuations in the phosphate treatment solution during treatment, the replenishers listed in Table 2 were replenished to maintain a constant total acidity. Further, the reaction accelerators shown in Table 2 were added so that the reaction accelerator concentration was maintained constant. A continuous treatment experiment was carried out as described above, and 10 m 2 of the phosphate treatment solution was treated.

【表】【table】

【表】 建浴当初のリン酸塩処理液及び10m2/処理し
て後のリン酸塩処理液の成分分析結果と電気伝導
度の測定結果第3表に示す。
[Table] Table 3 shows the component analysis results and electrical conductivity measurement results of the phosphate treatment solution at the time of bath construction and after 10 m 2 /treatment.

【表】【table】

【表】 この処理で消費した補給剤と反応促進剤の量及
びタンク内に生成したスラツジ量を第4表に示
す。
[Table] Table 4 shows the amounts of replenisher and reaction accelerator consumed in this process and the amount of sludge produced in the tank.

【表】 対照例 1 実施1の補給剤及び反応促進剤の代わりに第5
表の補給剤と反応促進剤を使用したこと以外は全
く実施例1と同様の条件でリン酸塩処理液1当
り10m2の処理を行つた。 建浴当初のリン酸塩処理液及び10m2/処理し
た後のリン酸塩処理液の成分分析結果と電気伝導
度の測定結果を第6表に示す。
[Table] Control example 1 In place of the replenisher and reaction accelerator in Example 1, No.
A treatment of 10 m 2 per phosphate treatment solution was carried out under the same conditions as in Example 1 except that the replenishing agent and reaction accelerator shown in the table were used. Table 6 shows the results of component analysis and electrical conductivity measurement of the phosphate treatment solution at the time of bath construction and after 10 m 2 /treatment.

【表】【table】

【表】 この処理で消費した補給剤と反応促進剤の量及
びタンク内に生成したスラツジ量を第7表に示
す。
[Table] Table 7 shows the amounts of replenisher and reaction accelerator consumed in this process and the amount of sludge produced in the tank.

【表】 実施例 2 0.06×15×20cmの市販の軟鋼板(JIS G3141)
第8表の工程順及び工程条件で処理した。
[Table] Example 2 0.06×15×20cm commercially available mild steel plate (JIS G3141)
Processing was performed according to the process order and process conditions shown in Table 8.

【表】 処理にともなうリン酸塩処理液の変動に対処す
るため全酸度が一定に維持されるように第9表の
補給剤を補給した。又反応促進剤濃度が一定に維
持されるように第9表の反応促進剤を補給した。
上記のようにして連続処理実験を進めリン酸塩処
理液1当り10m2の処理を行つた。 建浴当初のリン酸塩処理液及び10m2/処理し
た後のリン酸塩処理液の成分分析結果と電気伝導
度の測定結果を第10表に示す。
[Table] In order to cope with fluctuations in the phosphate treatment solution due to treatment, the replenishers listed in Table 9 were added to keep the total acidity constant. In addition, the reaction accelerator shown in Table 9 was replenished so that the reaction accelerator concentration was maintained constant.
A continuous treatment experiment was carried out as described above, and 10 m 2 of the phosphate treatment solution was treated. Table 10 shows the component analysis results and electrical conductivity measurement results of the phosphate treatment solution at the time of bath construction and after 10 m 2 /treatment.

【表】【table】

【表】 この処理で消費した補給剤と反応促進剤の量及
びタンク内に生成したスラツジ量を第11表に示
す。
[Table] Table 11 shows the amounts of replenisher and reaction accelerator consumed in this process and the amount of sludge produced in the tank.

【表】 対照例 2 実施例2の補給剤及び反応促進剤の代わりに第
12表の補給剤と反応促進剤を使用したこと以外は
全く実施例2と同様の条件で、リン酸塩処理液1
当り10m2の処理を行つた。 建浴当初のリン酸塩処理液及び10m2/処理し
た後のリン酸塩処理液の成分分析結果と電気伝導
度の測定結果を第13表に示す。
[Table] Control example 2 In place of the replenisher and reaction accelerator in Example 2,
Phosphate treatment solution 1 was prepared under the same conditions as in Example 2 except that the replenishing agent and reaction accelerator shown in Table 12 were used.
A total of 10 m 2 of water was treated. Table 13 shows the component analysis results and electrical conductivity measurement results of the phosphate treatment solution at the time of bath construction and after 10 m 2 /treatment.

【表】【table】

【表】 この処理で消費した補給剤と反応促進剤の量及
びタンク内に生成したスラツジ量を第14表に示
す。
[Table] Table 14 shows the amounts of replenisher and reaction accelerator consumed in this process and the amount of sludge produced in the tank.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 亜鉛イオン又は亜鉛イオン及びカルシウムイ
オンを含むリン酸塩処理液で鉄鋼表面に化成皮膜
を形成する方法において、反応促進剤として亜硝
酸亜鉛又は亜硝酸亜鉛と亜硝酸カルシウムとを添
加し、前記リン酸塩処理液におけるアルカリ金属
イオンの蓄積を防止すると共に、電気伝導手段に
よつてリン酸塩処理液の濃度を制御して建浴当初
の成分に維持できるようにしたことを特徴とする
鉄鋼のリン酸塩皮膜化成処理方法。
1. In a method of forming a chemical conversion film on a steel surface with a phosphate treatment solution containing zinc ions or zinc ions and calcium ions, zinc nitrite or zinc nitrite and calcium nitrite are added as a reaction accelerator, and the phosphorus A steel treatment solution characterized by preventing the accumulation of alkali metal ions in the phosphate treatment solution, and controlling the concentration of the phosphate treatment solution using electrically conductive means to maintain the composition at the time of bath preparation. Phosphate film chemical conversion treatment method.
JP12513578A 1978-10-13 1978-10-13 Forming method for phosphate film of steel Granted JPS5554576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12513578A JPS5554576A (en) 1978-10-13 1978-10-13 Forming method for phosphate film of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12513578A JPS5554576A (en) 1978-10-13 1978-10-13 Forming method for phosphate film of steel

Publications (2)

Publication Number Publication Date
JPS5554576A JPS5554576A (en) 1980-04-21
JPS6127467B2 true JPS6127467B2 (en) 1986-06-25

Family

ID=14902716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12513578A Granted JPS5554576A (en) 1978-10-13 1978-10-13 Forming method for phosphate film of steel

Country Status (1)

Country Link
JP (1) JPS5554576A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3118375A1 (en) * 1981-05-09 1982-11-25 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR PHOSPHATING METALS AND ITS APPLICATION FOR PRE-TREATMENT FOR ELECTRO DIP PAINTING
JPS59133375A (en) * 1983-12-03 1984-07-31 Nippon Paint Co Ltd Composition for forming zinc phosphate film on metallic surface
DE3407513A1 (en) * 1984-03-01 1985-09-05 Gerhard Collardin GmbH, 5000 Köln METHOD FOR ZINC-CALCIUM PHOSPHATION OF METAL SURFACES AT LOW TREATMENT TEMPERATURE
JP4630326B2 (en) * 1999-08-09 2011-02-09 新日本製鐵株式会社 Method for producing phosphate-treated zinc-plated steel sheet with excellent workability
CA2345929C (en) * 2000-05-15 2008-08-26 Nippon Paint Co., Ltd. Metal surface-treating method
JP4658339B2 (en) * 2001-01-17 2011-03-23 日本ペイント株式会社 Metal surface treatment method
JP4225523B2 (en) * 2000-05-15 2009-02-18 日本化学工業株式会社 Zinc nitrite aqueous solution and method for producing the same
JP2006299379A (en) * 2005-04-25 2006-11-02 Nippon Paint Co Ltd Surface conditioner and surface conditioning method
CN103397324B (en) * 2013-08-07 2016-04-13 彭万焜 A kind of multifunction phosphide liquid and its production and use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819422A (en) * 1971-12-28 1974-06-25 Amchem Prod Method for applying zinc phosphate coatings to metal surfaces
JPS5124535A (en) * 1974-08-23 1976-02-27 Nippon Paint Co Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3819422A (en) * 1971-12-28 1974-06-25 Amchem Prod Method for applying zinc phosphate coatings to metal surfaces
JPS5124535A (en) * 1974-08-23 1976-02-27 Nippon Paint Co Ltd

Also Published As

Publication number Publication date
JPS5554576A (en) 1980-04-21

Similar Documents

Publication Publication Date Title
US5368655A (en) Process for chromating surfaces of zinc, cadmium and alloys thereof
US4824490A (en) Process of producing phosphate coatings on metals
JP2845246B2 (en) Method of forming phosphate film
JPS6127467B2 (en)
IT1167480B (en) PROCESSES AND COMPOSITIONS FOR THE FORMATION OF PHOSPHATIC COATINGS
US4705576A (en) Acidic chromium containing coating solution for zinc or cadmium surfaces
GB1534517A (en) Aqueous zinc phosphatizing solutions and method of coating steel therewith prior to cold deformation
US2540314A (en) Process and compositions for applying phosphate coatings
Avdeev et al. Effect of urotropine on the potential of the Fe (III)/Fe (II) redox couple in mineral acid solutions
US3649371A (en) Coatings for steel
GB2169620A (en) Phosphate coatings
US4089710A (en) Phosphating method with control in response to conductivity change
JPH041073B2 (en)
US2351605A (en) Metal treatment
US3520737A (en) Processes for the production of zinc phosphate coatings
US2975082A (en) Method of providing ferrous articles with phosphate coatings and compositions therefor
US4233087A (en) Phosphate coating process
US4113519A (en) Phosphating of metallic substrate with electrolytic reduction of nitrate ions
US3372064A (en) Method for producing black coatings on metal surfaces
CA1048389A (en) Peroxide acceleration with phosphate neutralization
US3015594A (en) Phosphate coating process
US3723192A (en) Composition and process for treating metal
CA2413646C (en) Improved phosphating operation
US4597806A (en) Process for maintaining the zinc content in zinc phosphate baths
US3671332A (en) Metal treating process