JPS6127462B2 - - Google Patents

Info

Publication number
JPS6127462B2
JPS6127462B2 JP20689981A JP20689981A JPS6127462B2 JP S6127462 B2 JPS6127462 B2 JP S6127462B2 JP 20689981 A JP20689981 A JP 20689981A JP 20689981 A JP20689981 A JP 20689981A JP S6127462 B2 JPS6127462 B2 JP S6127462B2
Authority
JP
Japan
Prior art keywords
substrate
target
chamber
reactive gas
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20689981A
Other languages
Japanese (ja)
Other versions
JPS58110673A (en
Inventor
Atsusuke Takagaki
Yoshio Nakagawa
Katsuo Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20689981A priority Critical patent/JPS58110673A/en
Publication of JPS58110673A publication Critical patent/JPS58110673A/en
Publication of JPS6127462B2 publication Critical patent/JPS6127462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0068Reactive sputtering characterised by means for confinement of gases or sputtered material, e.g. screens, baffles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、反応性スパツタリング法を用いて反
応物質膜を形成する装置に関するものである。 単体物質をターゲツトとして放電を起こさせる
不活性ガスの中に、酸素、窒素、メタン、硫化水
素などの反応性ガスを混入してスパツタリング
し、ターゲツトに対向した基板上にターゲツト物
質の酸化物、窒化物、炭化物、硫化物などの反応
生成物を形成する反応性スパツタリング技術にお
いて、ターゲツトを反応性ガス濃度の低い雰囲気
で覆い、基板近傍での反応性ガス濃度を高め、反
応性ガスと不活性ガスの分離をはかつた反応性ス
パツタリング装置が提案されている。これは、従
来の平行平板二極スパツタリング法では反応性ガ
スがターゲツトに接触するため、先ずターゲツト
上で反応してしまい、その反応生成物をスパツタ
リングすることになるため成膜速度が一般に遅
く、また一方ターゲツト上で反応させないように
大きなスパツタリングパワーを投入し、ターゲツ
ト物質の反応物質を基板上で形成しようとした
時、膜の反応度合を制御することが困難で中間反
応物質の形成が難しいという欠点があつた。 このような欠点に対処して提案された装置は、
ターゲツトを真空槽内でシールド板で囲みシール
ド室として分離し、不活性ガスをそのシールド室
内に導入し、反応性ガスは基板付近に導入するよ
うな構成である。 しかし、シールド板には当然ターゲツトからス
パツタされた粒子を通過させる窓が開いており、
この窓のコンダクタンスが大きいことと、シール
ド室に排気系を持たないことから、不活性ガスと
反応性ガスとの分離はほとんどできない。 また、スパツタされた粒子は真空槽の壁面に広
く付着し、それによるゲツター作用により反応性
ガス分圧が実効的には非常に低くなり、反応性の
制御の上で問題である。 さらに、基板はプラズマに直接的にさらされる
ため、基板温度が上昇し、基板温度の制御が困難
なこと、及びイオンの衝突による形成膜の損傷な
どの問題がある。 本発明の目的は、上記した従来技術の欠点をな
くし、基板付近での反応性ガス圧を広範囲に制御
でき、かつ基板温度の上昇を抑制できる反応性ス
パツタリング装置を提供するにある。 本発明の特徴は、ターゲツトとそのターゲツト
に対向して設けられた基板との間に、多数の適度
な長さを持つ小孔を有する隔壁を設け、真空槽を
ターゲツト側の放電室と基板側の薄膜形成室との
2室に分割し、放電室には不活性ガス導入装置
を、また薄膜形成室には反応性ガス導入装置を接
続し、さらに各々の室に排気装置を接続すること
により、2室において不活性ガスと反応性ガスの
分離が容易でターゲツト上での反応を防止できる
点にある。 本発明の他の特徴は、放電がターゲツトと上記
の隔壁との間でのみ生じるため、基板が直接プラ
ズマにさらされることがなく、基板温度が上昇し
にくい点にある。 本発明の他の特徴は、ゲツター作用による反応
性ガス分圧への影響を少なくした点にある。 本発明の他の特徴は、隔壁が多数の小孔を有す
るため、膜厚分布の均一化が容易な点にある。 以下本発明を実施例で説明する。 実施例 1 本例の構成を第1図及び第2図に示す。第1図
は、装置の全体構成図であり、第2図は隔壁に開
けた小孔の配置の一例を示す。第1図において、
1は真空槽、2はターゲツト、3はターゲツト支
持体であり、真空槽1とターゲツト支持体3との
間は電気的に絶縁されている。4は薄膜を形成す
べき基板、5は基板支持体であり、薄膜を均一化
するために基板回転装置13を取り付けてある。
真空槽1は、多数の適当な長さを持つ小孔を有す
る隔壁11により、ターゲツト2側の放電室と基
板4側の薄膜形成室の2室に分割される。放電室
にはアルゴン等の不活性ガス導入装置6、薄膜形
成室には酸素、窒素等の反応性ガス導入装置7を
取り付けてあり、かつ各々の室に排気装置8,9
を取り付けてある。10は放電室の直流又は高周
波電源であり、12は放電によつてターゲツト2
からスパツタされ、隔壁11の小孔を通り抜ける
粒子の飛行経路を示す。 第2図は、隔壁11に開けた小孔111の基板
回転13と組み合わせて膜厚を均一化するための
配置の一例を概念的に示し、小孔111は図のよ
うな螺線112の実線部分上に等間隔に開けられ
ている。螺線の原点は基板回転の中心に合わせて
ある。 次に各部の動作を説明する。まず、本例での不
活性ガスと反応性ガスの濃度に放電室と薄膜形成
室で大きく差をつけられることを示す。隔壁11
の開口部のコンダクタンスをC(/sec)、不活
性ガス導入装置6からの不活性ガス流量をQA
(Torr・/sec)、反応性ガス導入装置7からの
反応性ガス流量をQB(Torr・/sec)、排気装
置8,9による排気速度をそれぞれS1,S2(/
sec)とすると、放電室における不活性ガス分圧
(Torr)、反応性ガス分圧P (Torr)、及び
薄膜形成室における不活性ガス分圧P
(Torr)、反応性ガス分圧P (Torr)は、不活性
ガスと反応性ガスの相互作用を無視すればそれぞ
れ式(1)〜(4)で与えられる。 P =(S+C)Q/S+(S+S
)C……(1) P =CQ/S+(S+S)C……(2
) P =CQ/S+(S+S)C……(3
) P =(S+C)Q/S+(S+S
)C……(4) これらの式より、P /P =(S2+C)QA
CQB、P /P (S1+C)QB/CQAとなる。こ
れからわかるように、両室において不活性ガス、
反応性ガスの分離をはかるためには、両室の排気
速度S1,S2を大きくするか、又は隔壁開口部のコ
ンダクタンスCを小さくする必要がある。しか
し、排気速度S1,S2を大きくした場合、通常のス
パツタリング時のガス圧10-2(Torr)前後を得
るには、ガス流量QA,QBを非常に大きくしなけ
ればならない。従つて、隔壁開口部のコンダクタ
ンスCを小さくする方が適当である。 本例のような隔壁11に開けた小孔の直径を
D、長さをとすると、長さのない小孔の場合に
比してコンダクタンスは1/(3/4D+1)とな り、例えば/D=10とするとコンダクタンスは
1/8.5に落ちる。このような長さを持つ小孔に
よるコンダクタンスの減少を有効に利用し、か
つ、成膜速度の低下をできるだけ少なくするには
1/D20が好ましい。また上記小孔により
スパツタ粒子の飛行方向の開き角を45゜(=
tan-1(D/))以内に制御することができる。 本例の場合、=20(mm)、D=2(mm)の孔
を約2000個開けており(開口部総面積=63cm2)、
そのコンダクタンスC=85(/sec)である。
このような隔壁を用い、排気速度S1=S2=500
(/sec)、QA=4.7(Torr・/sec)(=標準
状態に換算して380c.c./min)、QB=2.35
(Torr・/sec)(=190c.c./min)とし、不活性
ガスとしてアルゴンガス、反応性ガスとして酸素
ガスを用いた場合、下表に示すようにアルゴンガ
スと酸素ガスの濃度に両室で大きく差がつけられ
る。
The present invention relates to an apparatus for forming a reactant film using a reactive sputtering method. A reactive gas such as oxygen, nitrogen, methane, or hydrogen sulfide is mixed into an inert gas that causes a discharge using a single substance as a target, and sputtering is performed to form oxides or nitrides of the target substance on a substrate facing the target. In reactive sputtering technology, which forms reaction products such as carbides, sulfides, etc., the target is covered with an atmosphere with a low concentration of reactive gas, increasing the concentration of the reactive gas near the substrate, and separating the reactive gas and inert gas. A reactive sputtering device has been proposed that separates . This is because in the conventional parallel plate bipolar sputtering method, the reactive gas comes into contact with the target, so it first reacts on the target and the reaction product is sputtered, so the film formation rate is generally slow. On the other hand, when trying to form reactants of the target material on the substrate by applying large sputtering power to prevent reactions on the target, it is difficult to control the degree of reaction of the film, making it difficult to form intermediate reactants. There was a drawback. The device proposed to address these shortcomings is
The target is surrounded by a shield plate in a vacuum chamber and separated into a shield chamber, an inert gas is introduced into the shield chamber, and a reactive gas is introduced near the substrate. However, the shield plate naturally has a window that allows particles spattered from the target to pass through.
Because the conductance of this window is large and the shielded chamber does not have an exhaust system, it is almost impossible to separate the inert gas and the reactive gas. Further, the sputtered particles widely adhere to the wall surface of the vacuum chamber, and the resulting getter action effectively reduces the reactive gas partial pressure to a very low level, which is problematic in terms of reactivity control. Furthermore, since the substrate is directly exposed to plasma, the substrate temperature increases, making it difficult to control the substrate temperature, and causing damage to the formed film due to ion collisions. SUMMARY OF THE INVENTION An object of the present invention is to provide a reactive sputtering apparatus that eliminates the above-mentioned drawbacks of the prior art, can control reactive gas pressure in the vicinity of a substrate over a wide range, and can suppress an increase in substrate temperature. A feature of the present invention is that a partition wall having a large number of small holes of appropriate length is provided between a target and a substrate provided opposite to the target, and a vacuum chamber is connected to a discharge chamber on the target side and a substrate side. The discharge chamber is connected to an inert gas introduction device, the thin film formation chamber is connected to a reactive gas introduction device, and each chamber is connected to an exhaust device. , the inert gas and the reactive gas can be easily separated in the two chambers, and reactions on the target can be prevented. Another feature of the present invention is that since the discharge occurs only between the target and the above-mentioned barrier ribs, the substrate is not directly exposed to plasma and the temperature of the substrate is less likely to rise. Another feature of the present invention is that the influence of getter action on the reactive gas partial pressure is reduced. Another feature of the present invention is that since the partition wall has a large number of small holes, it is easy to make the film thickness distribution uniform. The present invention will be explained below with reference to Examples. Example 1 The configuration of this example is shown in FIGS. 1 and 2. FIG. 1 is an overall configuration diagram of the device, and FIG. 2 shows an example of the arrangement of small holes formed in the partition wall. In Figure 1,
1 is a vacuum chamber, 2 is a target, and 3 is a target support, and the vacuum chamber 1 and the target support 3 are electrically insulated. 4 is a substrate on which a thin film is to be formed, 5 is a substrate support, and a substrate rotation device 13 is attached to the substrate in order to make the thin film uniform.
The vacuum chamber 1 is divided into two chambers, a discharge chamber on the target 2 side and a thin film forming chamber on the substrate 4 side, by a partition wall 11 having a large number of small holes of appropriate length. The discharge chamber is equipped with an inert gas introduction device 6 such as argon, and the thin film formation chamber is equipped with a reactive gas introduction device 7 such as oxygen and nitrogen, and exhaust devices 8 and 9 are installed in each chamber.
is installed. 10 is a DC or high frequency power source in the discharge chamber, and 12 is a target 2 by discharge.
The flight path of the particles sputtered from the partition wall 11 and passing through the small holes in the partition wall 11 is shown. FIG. 2 conceptually shows an example of the arrangement of a small hole 111 made in a partition wall 11 in combination with the substrate rotation 13 to make the film thickness uniform. They are evenly spaced on the section. The origin of the spiral is aligned with the center of substrate rotation. Next, the operation of each part will be explained. First, it will be shown that in this example, the concentrations of the inert gas and the reactive gas can be significantly different between the discharge chamber and the thin film formation chamber. Partition wall 11
The conductance of the opening is C (/sec), and the inert gas flow rate from the inert gas introducing device 6 is Q A
(Torr・/sec), the reactive gas flow rate from the reactive gas introduction device 7 is Q B (Torr・/sec), and the exhaust speeds by the exhaust devices 8 and 9 are S 1 and S 2 (/sec), respectively.
sec), the inert gas partial pressure P A 1 (Torr) in the discharge chamber, the reactive gas partial pressure P B 1 (Torr), and the inert gas partial pressure P A 2 in the thin film forming chamber.
(Torr) and reactive gas partial pressure P B 2 (Torr) are given by equations (1) to (4), respectively, if the interaction between the inert gas and the reactive gas is ignored. P A 1 =(S 2 +C)Q A /S 1 S 2 +(S 1 +S 2
)C……(1) P B 1 =CQ B /S 1 S 2 +(S 1 +S 2 )C……(2
) P A 2 = CQ A /S 1 S 2 + (S 1 + S 2 ) C……(3
) P B 2 = (S 1 + C) Q B /S 1 S 2 + (S 1 + S 2
)C...(4) From these formulas, P A 1 /P B 1 = (S 2 +C)Q A /
CQ B , P B 2 /P A 2 (S 1 +C) Q B /CQ A. As you can see, in both chambers, inert gas,
In order to separate the reactive gas, it is necessary to increase the pumping speeds S 1 and S 2 of both chambers or to decrease the conductance C of the partition opening. However, when the pumping speeds S 1 and S 2 are increased, the gas flow rates Q A and Q B must be made extremely large in order to obtain a gas pressure of around 10 -2 (Torr) during normal sputtering. Therefore, it is more appropriate to reduce the conductance C of the partition opening. If the diameter of the small hole made in the partition wall 11 as in this example is D and the length is, the conductance will be 1/(3/4D+1) compared to the case of a small hole with no length, for example /D= When set to 10, the conductance drops to 1/8.5. In order to effectively utilize the reduction in conductance due to small holes having such a length and to minimize the decrease in film formation rate, 1/D20 is preferable. In addition, the opening angle of the sputter particles in the flight direction is set to 45° (=
It can be controlled within tan -1 (D/)). In this example, approximately 2000 holes of =20 (mm) and D = 2 (mm) are opened (total opening area = 63 cm 2 ),
Its conductance C=85 (/sec).
Using such a partition, the pumping speed S 1 = S 2 = 500
(/sec), Q A = 4.7 (Torr・/sec) (= 380 c.c./min in standard condition), Q B = 2.35
(Torr・/sec) (=190c.c./min), and when argon gas is used as the inert gas and oxygen gas is used as the reactive gas, the concentrations of argon gas and oxygen gas are both equal as shown in the table below. It makes a big difference in the room.

【表】 本例の装置を用いれば、両室での反応性ガス分
圧と不活性ガス分圧をほぼ独立に制御でき、反応
の度合を容易に制御できる。 また、本例の装置において、反応性ガスの供給
を止めて通常のスパツタ装置として使用した場
合、薄膜形成室での残留不純物ガスを低く抑える
ことができ質の良い膜が得られる。 ターゲツト2のスパツタリングは、ターゲツト
2と隔壁11又はそれと導通をとつた真空槽1と
間に接続した放電用高周波電源10によつて生じ
させる。ターゲツト2が良導体の場合、電源10
は直流電源でもよい。この際、放電はターゲツト
2と隔壁11との間で発生し、ターゲツトからス
パツタされた粒子は矢印12のように隔壁11の
小孔を通過して基板に達する。スパツタ粒子は飛
行中あるいは基板上で反応性ガスと反応する。 この時、基板は直接プラズマにさらされること
はなく、基板温度の上昇は低く抑えることがで
き、また形成された膜のイオン衝激による損傷は
少ない。 また、矢印12からもわかるように、隔壁11
に開けた小孔111がある長さを持つていること
から、スパツタ粒子が一方向性を持つ。これは、
磁性体薄膜などのように膜の配向性を制御する上
で有利である。 さらに、本例の場合スパツタ粒子の大半は放電
室壁面に付着することから、たとえそのスパツタ
粒子が反応性ガスに対して強いゲツター作用を持
つていたとしても薄膜形成室での反応性ガス分圧
に対する影響は極めて少ない。これを本例で数値
を上げた例に則して示すと、次のようになる。酸
素に対して強いゲツター作用を持つ、アルミニウ
ム、鉄等が真空槽内に付着すると、酸素に対して
の排気速度が104(/sec)程度にまでなる。そ
こで(4)式においてS1=104(/sec)とし、他の
数値は前例のままとしてみると薄膜形成室での酸
素分圧は4.0×10-3(Torr)となり全く変化しな
いことがわかる。このように、本例装置はゲツタ
ー作用による反応性ガスの消費は極めて少なく、
基板上に付着する膜の反応に反応性ガスが有効に
使われることがわかる。 次に、第2図に示した小孔の配置を有する隔壁
を用いた時の膜厚分布の均一化について説明す
る。1つの小孔を通過したスパツタ粒子は、基板
回転により基板上では中心半径付近で最大膜厚と
なるような帯状の膜を形成する。この帯の半径付
近で分布を均一にするためには、基板回転半径の
わずかに異なる小孔からの寄与を重ね合わせれば
良い。さらに、基板回転半径方向の膜厚分布を均
一化するには、基板回転半径に比例した数の小孔
の寄与を重ね合わせれば良いことになる。そのよ
うな小孔配置を行なうための一例としては、第2
図に示したような極座標表示でγ=Aθで表わさ
れる螺線上に等間隔に配置することが上げられ
る。 本例の場合、A=2(mm/rad)とした螺線1
12の実線部分上に小孔111(直径2mm)を中
心間距離4mmの等間隔が配置したが、このときの
基板支持体半径方向の分布は第3図に実線で示し
たように非常に均一である。第3図の点線は、小
孔111を、同一間隔で螺線112上のより内部
及び外部に開けたときの膜厚分布を示す。この点
線からわかるように、基板回転の中心部では膜厚
分布を均一にできない。従つて本例の場合、磁気
デイスク等のように基板回転中心部に膜形成する
必要のない場合に適している。 本例の隔壁を用いて、鉄をターゲツトとし、不
活性ガスをアルゴンガス、反応性ガスを酸素とし
て、Fe3O4又はα−Fe2O3を形成した場合、成膜
速度は約0.05Å/minであり非常に小さい。ター
ゲツトとして、マグネトロン型のものを使用し、
穴の大きさ、配置をそれに合わせて適当なものと
した場合、成膜速度は1桁以上向上する。 実施例 2 本例の概略構成を、第4図及び第5図に示し
た。第4図は、偏心基板回転装置付きスパツタ装
置概略構成図であり、第5図は隔壁の小孔配置概
念図である。本例の特徴は基板回転装置13の回
転中心を偏心させた点であり、実施例1に比して
大型の基板に適用できる。その他の構成およびそ
れらの動作は実施例1と同様である。 以上説明したように、本発明による装置構成に
より反応性ガス濃度を放電室と薄膜形成室とで10
倍以上の差をつけることができる。 また、放電室に発生させるプラズマが隔壁によ
りさえぎられるためイオン衝激による基板温度の
上昇、形成膜の損傷がほとんどない。 また、隔壁の存在により薄膜形成室の壁面にス
パツタ粒子が付着することがほとんどないため、
そのゲツター作用による反応性ガスの減少が極め
て少なく、反応性ガスがスパツタ粒子の反応に有
効に使われる。 また、隔壁が多数の小孔を有するため、その配
置と基板回転の組み合わせにより膜厚分布の均一
化が容易に行なえる。 さらに、隔壁の小孔が細長いことにより、スパ
ツタ粒子の飛行方向が、開き角で45度以下にでき
る。
[Table] Using the apparatus of this example, the reactive gas partial pressure and the inert gas partial pressure in both chambers can be controlled almost independently, and the degree of reaction can be easily controlled. Furthermore, when the apparatus of this example is used as a normal sputtering apparatus with the supply of reactive gas stopped, the residual impurity gas in the thin film forming chamber can be kept low and a high quality film can be obtained. Sputtering of the target 2 is caused by a discharge high frequency power source 10 connected between the target 2 and the partition wall 11 or the vacuum chamber 1 which is electrically connected thereto. If target 2 is a good conductor, power supply 10
may be a DC power supply. At this time, discharge occurs between the target 2 and the partition wall 11, and the particles sputtered from the target pass through the small holes in the partition wall 11 as indicated by arrow 12 and reach the substrate. Spatter particles react with reactive gases while in flight or on the substrate. At this time, the substrate is not directly exposed to plasma, the rise in substrate temperature can be kept low, and the formed film is less likely to be damaged by ion bombardment. Further, as can be seen from the arrow 12, the partition wall 11
Since the small holes 111 formed in the sputtered particles have a certain length, the spatter particles have unidirectionality. this is,
This is advantageous in controlling the orientation of films such as magnetic thin films. Furthermore, in this example, most of the spatter particles adhere to the wall surface of the discharge chamber, so even if the spatter particles have a strong getter effect on the reactive gas, the partial pressure of the reactive gas in the thin film forming chamber will increase. The impact on this is extremely small. If this is shown in accordance with the example in which the numerical value is increased in this example, it will be as follows. If aluminum, iron, etc., which have a strong getter effect on oxygen, adhere to the inside of the vacuum chamber, the pumping speed for oxygen will reach approximately 10 4 (/sec). Therefore, if we set S 1 = 10 4 (/sec) in equation (4) and leave the other values as before, the oxygen partial pressure in the thin film formation chamber will be 4.0 × 10 -3 (Torr), which will not change at all. Recognize. In this way, the device of this example consumes extremely little reactive gas due to getter action.
It can be seen that the reactive gas is effectively used in the reaction of the film deposited on the substrate. Next, a description will be given of how to make the film thickness distribution uniform when using a partition wall having the arrangement of small holes shown in FIG. The sputtered particles that have passed through one small hole form a band-shaped film on the substrate due to the rotation of the substrate, with the maximum film thickness near the center radius. In order to make the distribution uniform near the radius of this band, it is sufficient to overlap the contributions from small holes with slightly different substrate rotation radii. Furthermore, in order to make the film thickness distribution in the direction of the rotation radius of the substrate uniform, it is sufficient to superimpose the contributions of the small holes in the number proportional to the rotation radius of the substrate. An example of such a small hole arrangement is the second hole arrangement.
An example of this is to arrange them at equal intervals on a spiral represented by γ=Aθ in polar coordinates as shown in the figure. In this example, spiral 1 with A=2 (mm/rad)
Small holes 111 (diameter 2 mm) were arranged at equal intervals of 4 mm between centers on the solid line portion of 12, and the distribution in the radial direction of the substrate support at this time was very uniform as shown by the solid line in Fig. 3. It is. The dotted line in FIG. 3 shows the film thickness distribution when the small holes 111 are opened at the same intervals on the inside and outside of the spiral line 112. As can be seen from this dotted line, the film thickness distribution cannot be made uniform at the center of substrate rotation. Therefore, this example is suitable for cases such as magnetic disks where there is no need to form a film at the center of rotation of the substrate. When Fe 3 O 4 or α-Fe 2 O 3 is formed using the partition wall of this example with iron as the target, argon gas as the inert gas, and oxygen as the reactive gas, the film formation rate is approximately 0.05 Å. /min, which is very small. Use a magnetron type target as a target,
If the size and arrangement of the holes are made appropriate, the film formation rate can be improved by more than one order of magnitude. Example 2 The schematic structure of this example is shown in FIGS. 4 and 5. FIG. 4 is a schematic diagram of the sputtering apparatus equipped with an eccentric substrate rotation device, and FIG. 5 is a conceptual diagram of the arrangement of small holes in the partition wall. The feature of this example is that the center of rotation of the substrate rotation device 13 is eccentric, and can be applied to larger substrates compared to the first embodiment. The other configurations and their operations are the same as in the first embodiment. As explained above, the device configuration according to the present invention allows the reactive gas concentration to be reduced to 10% in the discharge chamber and the thin film forming chamber.
You can make more than double the difference. Furthermore, since the plasma generated in the discharge chamber is blocked by the partition wall, there is almost no rise in substrate temperature or damage to the formed film due to ion bombardment. In addition, due to the presence of the partition wall, there is almost no chance of spatter particles adhering to the wall surface of the thin film forming chamber.
The reduction of reactive gas due to its getter action is extremely small, and the reactive gas is effectively used for the reaction of sputtered particles. Further, since the partition wall has a large number of small holes, the film thickness distribution can be easily made uniform by a combination of the arrangement thereof and the rotation of the substrate. Furthermore, since the small holes in the partition wall are long and narrow, the flying direction of the spatter particles can be kept at an opening angle of 45 degrees or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるスパツタ装置の一実施例
を示す構成側面図、第2図は隔壁に開けた小孔の
配置を概念的に示す図、第3図はその小孔配置と
基板回転による膜厚分布を示す図、第4図は大型
の基板に対する本発明によるスパツタ装置の一実
施例を示す構成側面図、第5図はその時の隔壁に
開けた小孔の配置を示す図である。 1……真空槽、2……ターゲツト、3……ター
ゲツト支持体、4……基板、5……基板支持体、
6……不活性ガス導入装置、7……反応性ガス導
入装置、8,9……排気装置、10……放電用電
源、11……小孔を有する隔壁、12……スパツ
タ粒子の飛行方向、13……基板回転装置、11
1……小孔、112……小孔配置をする螺線。
Fig. 1 is a side view of the configuration of an embodiment of the sputtering device according to the present invention, Fig. 2 is a conceptual diagram showing the arrangement of small holes in the partition wall, and Fig. 3 is a diagram showing the arrangement of the small holes and the rotation of the substrate. FIG. 4 is a diagram showing the film thickness distribution, FIG. 4 is a side view of the construction of an embodiment of the sputtering apparatus according to the present invention for a large substrate, and FIG. 5 is a diagram showing the arrangement of small holes formed in the partition walls. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Target, 3... Target support, 4... Substrate, 5... Substrate support,
6...Inert gas introduction device, 7...Reactive gas introduction device, 8, 9...Exhaust device, 10...Discharge power source, 11...Partition wall having small holes, 12...Flight direction of spatter particles , 13...Substrate rotation device, 11
1...Small hole, 112...Spiral for arranging the small hole.

Claims (1)

【特許請求の範囲】 1 真空槽内にターゲツトとそれに対向する基板
とを有し、その槽内を不活性ガスと反応性ガスの
混合ガス雰囲気にして放電させ、ターゲツト物質
と反応性ガスとの反応物質を基板上に形成する反
応性スパツタリング装置において、ターゲツトと
基板との間に孔径に対して1〜20倍の長さを持つ
小孔を多数有する隔壁を設けてターゲツト側に放
電室、基板側に薄膜形成室を形成し、放電室に不
活性ガスを導入する不活性ガス導入装置と排気す
る排気装置とを接続し、薄膜形成室に反応性ガス
を導入する反応性ガス導入装置と排気する排気装
置とを接続したことを特徴とする反応性スパツタ
リング装置。 2 真空槽内にターゲツトとそれに対向する基板
とを有し、その槽内を不活性ガスと反応性ガスの
混合ガス雰囲気にして放電させ、ターゲツト物質
と反応性ガスとの反応物質を基板上に形成する反
応性スパツタリング装置において、ターゲツトと
基板との間に孔径に対して1〜20倍の長さを持つ
小孔を多数有する隔壁を設けてターゲツト側に放
電室、基板側に薄膜形成室を形成し、放電室に不
活性ガスを導入する不活性ガス導入装置と排気す
る排気装置とを接続し、薄膜形成室に反応性ガス
を導入する反応性ガス導入装置と排気する排気装
置とを接続し、更に薄膜形成室内に基板を回転さ
せる基板回転機構を設けたことを特徴とする反応
性スパツタリング装置。
[Claims] 1. A target and a substrate facing the target are provided in a vacuum chamber, and the chamber is made into an atmosphere of a mixed gas of an inert gas and a reactive gas, and a discharge is caused to occur between the target substance and the reactive gas. In a reactive sputtering device that forms a reactant on a substrate, a partition wall having a large number of small holes with a length of 1 to 20 times the hole diameter is provided between the target and the substrate, and a discharge chamber and a substrate are placed on the target side. A thin film formation chamber is formed on the side, and an inert gas introduction device that introduces an inert gas into the discharge chamber is connected to an exhaust device that exhausts the air, and a reactive gas introduction device that introduces a reactive gas into the thin film formation chamber and an exhaust A reactive sputtering device characterized in that it is connected to an exhaust device that 2 A target and a substrate facing it are placed in a vacuum chamber, and the chamber is made into a mixed gas atmosphere of an inert gas and a reactive gas, and a discharge is caused to cause a reaction substance between the target substance and the reactive gas to be transferred onto the substrate. In a reactive sputtering device for forming a thin film, a partition wall having a large number of small holes with a length 1 to 20 times the hole diameter is provided between the target and the substrate, and a discharge chamber is formed on the target side and a thin film formation chamber is formed on the substrate side. The inert gas introduction device that introduces inert gas into the discharge chamber is connected to the exhaust device that exhausts the air, and the reactive gas introduction device that introduces reactive gas into the thin film formation chamber and the exhaust device that exhausts the air are connected. A reactive sputtering apparatus further comprising a substrate rotation mechanism for rotating the substrate within the thin film forming chamber.
JP20689981A 1981-12-23 1981-12-23 Reactive sputtering device Granted JPS58110673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20689981A JPS58110673A (en) 1981-12-23 1981-12-23 Reactive sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20689981A JPS58110673A (en) 1981-12-23 1981-12-23 Reactive sputtering device

Publications (2)

Publication Number Publication Date
JPS58110673A JPS58110673A (en) 1983-07-01
JPS6127462B2 true JPS6127462B2 (en) 1986-06-25

Family

ID=16530898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20689981A Granted JPS58110673A (en) 1981-12-23 1981-12-23 Reactive sputtering device

Country Status (1)

Country Link
JP (1) JPS58110673A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298753A (en) * 1997-02-19 1998-11-10 Canon Inc Reactive sputtering device, and formation of thin film using this
JPH111771A (en) * 1997-02-19 1999-01-06 Canon Inc Thin film forming apparatus and thin film formation using the same
JP2006176822A (en) * 2004-12-22 2006-07-06 Ulvac Japan Ltd Film deposition system and film deposition method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3331707A1 (en) * 1983-09-02 1985-03-21 Leybold-Heraeus GmbH, 5000 Köln METHOD AND DEVICE FOR REACTIVELY SPRAYING CONNECTIONS FROM METALS AND SEMICONDUCTORS
JPS6357764A (en) * 1986-08-27 1988-03-12 Teijin Ltd Magnetron sputtering device
JPS63161162A (en) * 1986-12-23 1988-07-04 Toshiba Corp Sputtering device
US4824544A (en) * 1987-10-29 1989-04-25 International Business Machines Corporation Large area cathode lift-off sputter deposition device
JPH0527490Y2 (en) * 1987-12-17 1993-07-13
JPH04116164A (en) * 1990-08-31 1992-04-16 Nec Corp Device for producing oxide superconducting thin film
US5262354A (en) * 1992-02-26 1993-11-16 International Business Machines Corporation Refractory metal capped low resistivity metal conductor lines and vias
JP2905421B2 (en) * 1995-06-23 1999-06-14 中外炉工業株式会社 Reactive sputtering equipment
EP0860513A3 (en) * 1997-02-19 2000-01-12 Canon Kabushiki Kaisha Thin film forming apparatus and process for forming thin film using same
KR100277321B1 (en) * 1997-02-19 2001-01-15 미다라이 후지오 Reactive sputtering apparatus and process for forming thin film using same
US6238527B1 (en) * 1997-10-08 2001-05-29 Canon Kabushiki Kaisha Thin film forming apparatus and method of forming thin film of compound by using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298753A (en) * 1997-02-19 1998-11-10 Canon Inc Reactive sputtering device, and formation of thin film using this
JPH111771A (en) * 1997-02-19 1999-01-06 Canon Inc Thin film forming apparatus and thin film formation using the same
JP2006176822A (en) * 2004-12-22 2006-07-06 Ulvac Japan Ltd Film deposition system and film deposition method
JP4664061B2 (en) * 2004-12-22 2011-04-06 株式会社アルバック Film forming apparatus and film forming method

Also Published As

Publication number Publication date
JPS58110673A (en) 1983-07-01

Similar Documents

Publication Publication Date Title
JPS6127462B2 (en)
US5108574A (en) Cylindrical magnetron shield structure
US5384021A (en) Sputtering apparatus
US5464518A (en) Cylindrical magnetron shield structure
JPH06158312A (en) Device and method for vapor deposition of oxidized metal film
US6241857B1 (en) Method of depositing film and sputtering apparatus
US6090247A (en) Apparatus for coating substrates
JPH0521347A (en) Sputtering device
JPH0641733A (en) Reactive sputtering device
JPS60262969A (en) Sputtering target apparatus
US5753090A (en) Small size sputtering target and high vacuum sputtering apparatus using the same
JPH03166366A (en) Method and device for reactive sputtering
JPH11302841A (en) Sputtering system
JPS6376868A (en) Sputtering device
JPH02115359A (en) Formation of compound thin film and device therefor
JP2003105538A (en) Plasma film forming device
JPH0342037Y2 (en)
JPS641548B2 (en)
JP2002121664A (en) Method and system for deposition of transparent conductive thin film
JPH01275754A (en) Multilayered film forming equipment
JPH05222529A (en) Apparatus for coating wafer in cathodic sputtering apparatus
JPS6357762A (en) Sputtering device
JPH06212413A (en) Reactive sputtering system
JP2001040473A (en) Reactive sputtering method and device therefor
JPH1136069A (en) Method for exhausting film forming device