JPS58110673A - Reactive sputtering device - Google Patents

Reactive sputtering device

Info

Publication number
JPS58110673A
JPS58110673A JP20689981A JP20689981A JPS58110673A JP S58110673 A JPS58110673 A JP S58110673A JP 20689981 A JP20689981 A JP 20689981A JP 20689981 A JP20689981 A JP 20689981A JP S58110673 A JPS58110673 A JP S58110673A
Authority
JP
Japan
Prior art keywords
substrate
target
chamber
reactive
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20689981A
Other languages
Japanese (ja)
Other versions
JPS6127462B2 (en
Inventor
Tokusuke Takagaki
高垣 篤補
Yoshio Nakagawa
宣雄 中川
Katsuo Abe
勝男 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20689981A priority Critical patent/JPS58110673A/en
Publication of JPS58110673A publication Critical patent/JPS58110673A/en
Publication of JPS6127462B2 publication Critical patent/JPS6127462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0068Reactive sputtering characterised by means for confinement of gases or sputtered material, e.g. screens, baffles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a titled device which can control reactive gaseous pressure near the substrate in a wide range, by providing a partition wall having many small holes between a target and the substrate disposed to face the target and separately forming an electric discharge chamber on the target side and a thin film forming chamber on the substrate side. CONSTITUTION:A target 2 supported with a support 3 and a substrate which is supported with a support 5 mounted with a rotating device 13 and is to be formed with thin films thereon are disposed in a vacuum vessel 1 of a titled reactive sputtering device. The vessel 1 is divided to two chambers; an electric discharge chamber on the target 2 side and a thin film forming chamber on the substrate 4 side by means of a partition wall 11 having length 1-2 times the hole diameter and many small holes. An introducing device 6 for an inert gas such as Ar is mounted in the discharge chamber and an introducing device 7 for a reactive gas such as O2N2 in the thin film forming chamber. Evacuating devices 8, 9 are mounted respectively to the above-mentioned chambers. With such constitution, a >=10 times difference can be given in the concn. of the reactive gas between the discharge chamber and the thin film forming chamber, and since the plasma generated in the discharge chamber is shut off by the wall 11, there are virtually no increase in the substrate temp. and the damage of the formed films and the distributions of the film thickness are made uniform.

Description

【発明の詳細な説明】 本発明は、反応性スパッタリング法を用いて反応物質膜
を形成する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for forming a reactant film using a reactive sputtering method.

単体物質をターゲットとして放電を起こさせる不活性ガ
スの中に、酸素、窒素、メタン、硫化水素などの反応性
ガスを混入してスパッタリングし、ターゲットに対向し
た基板上にターゲット物質の酸化物、窒化物、炭化物、
硫化物などの反応生成物を形成する反応性スパッタリン
グ技術において、ターゲットを反応性ガス濃度の低い雰
囲気で扱い、基板近傍での反応性ガス濃度を高め、反応
性ガスと不活性ガスの分離をはかった反応性スパッタリ
ング装置が提案されている。これは、従来の平行平板二
極スパッタリング法では反応性ガスがターゲットに接触
するため、先ずターゲット上で反応してしまい、その反
応生成物をスパッタリングすることになるため成膜速度
が一般に遅く、また一方ターゲット上で反応させないよ
うに大きなスパッタリングパワーを投入し、ターゲット
物質の反応物質を基板上で形成しようとした時、膜の反
応度合を制御することが困難で中間反応物質の形成が難
しいという欠点があった。
Sputtering is performed by mixing a reactive gas such as oxygen, nitrogen, methane, or hydrogen sulfide into an inert gas that causes a discharge using a single substance as a target, and sputtering the oxide or nitride of the target substance onto a substrate facing the target. matter, carbide,
In reactive sputtering technology that forms reaction products such as sulfides, the target is treated in an atmosphere with a low concentration of reactive gas, the concentration of reactive gas is increased near the substrate, and the reactive gas and inert gas are separated. A reactive sputtering device has been proposed. This is because in the conventional parallel plate bipolar sputtering method, the reactive gas comes into contact with the target, so it reacts on the target first, and the reaction product is sputtered, so the film formation rate is generally slow. On the other hand, when trying to form reactants of the target material on the substrate by applying high sputtering power to avoid reactions on the target, it is difficult to control the degree of reaction of the film and it is difficult to form intermediate reactants. was there.

このような欠点に対島して提案された装置は、ターゲッ
トを真空槽内でシールド板で囲みシールド室として分離
し、不活性ガスをそのシールド室内に導入し、反応性ガ
スは基板付近に導入するような構成である。
In order to overcome these shortcomings, the proposed device separates the target into a shield chamber by surrounding it with a shield plate in a vacuum chamber, introduces an inert gas into the shield chamber, and introduces a reactive gas near the substrate. The configuration is such that

しかし、シールド板には当然ターゲット上トスパッタさ
れた粒子を通過させる窓が関いており、この窓のコンダ
クタンスが大きいことと、シールド室に排気系を持たな
いことから、不活性ガスと反応性ガスとの分離はほとん
どできない。
However, the shield plate naturally has a window that allows the particles sputtered on the target to pass through, and because the conductance of this window is large and the shield chamber does not have an exhaust system, the inert gas and reactive gas separation is almost impossible.

また、スパッタされた粒子は真空槽の壁面に広く付着し
、それによるゲッター作用により反応性ガス分圧が実効
的には非常に低くなり、反応性の制御の上で問題である
Furthermore, the sputtered particles widely adhere to the wall surface of the vacuum chamber, and the resulting getter action effectively reduces the reactive gas partial pressure to a very low level, which is a problem in controlling the reactivity.

さらに、基板はプラズマに直接的にさらされるため、基
板温度が上昇し、基板温度の制御が困難なこと、及びイ
オンの衝突による形成膜の損傷などの問題がある。
Furthermore, since the substrate is directly exposed to plasma, the substrate temperature increases, making it difficult to control the substrate temperature, and causing damage to the formed film due to ion collisions.

本発明の目的は、上記した従来技術の欠点をなくし、基
板付近での反応性ガス圧を広範囲に制御でき、かつ基板
温度の上昇を抑制できる反応性スパッタリング装置を提
供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a reactive sputtering apparatus that eliminates the above-mentioned drawbacks of the prior art, can control reactive gas pressure in the vicinity of a substrate over a wide range, and can suppress a rise in substrate temperature.

本発明の特徴は、ターゲットとそのターゲットに対向し
て設けられた基板との関に、多数の適度な長さを持つ小
孔を有する隔壁を設け、真空槽をターゲット側の放電室
と基板有の*膜形成室との2室に分割し、放電室には不
活性ガス導入装置を、また薄膜形成室には反応性ガス導
入装置を接続し、さらに各々の室に排気装置を接続する
ことにより、2i!において不活性ガスと反応性ガスの
分離が容易でターゲット上での反応を防止できる点にあ
る。
A feature of the present invention is that a partition wall having a large number of small holes of appropriate length is provided between a target and a substrate provided opposite to the target, and a vacuum chamber is connected to a discharge chamber on the target side and a substrate provided with the substrate. *Divided into two chambers, the film formation chamber and the discharge chamber, an inert gas introduction device is connected to the thin film formation chamber, a reactive gas introduction device is connected to the thin film formation chamber, and an exhaust device is connected to each chamber. By 2i! In this method, it is easy to separate the inert gas and the reactive gas, and reactions on the target can be prevented.

本発明の他の特徴は、放電がターゲットと上記の隔壁と
の間でのみ生じるため、基板が直接プラズマにさらされ
ることがなく、基板温度が上昇しにくい点にある。
Another feature of the present invention is that since discharge occurs only between the target and the above-mentioned barrier ribs, the substrate is not directly exposed to plasma and the substrate temperature is less likely to rise.

本発明の他の特徴は、ゲッター作用による反応性ガス分
圧への影響を少なくした点にある。
Another feature of the present invention is that the influence of the getter action on the reactive gas partial pressure is reduced.

本発明の他の特徴は、隔壁が多数の小孔を有するため、
膜厚分布の均一化が容易な点にある。
Another feature of the present invention is that the partition wall has a large number of small holes;
The advantage is that it is easy to make the film thickness distribution uniform.

以下本発明を実施例で説明する。The present invention will be explained below with reference to Examples.

実施例1 本例の構成を第1図及び第2図に示す。第1図は、装置
の全体構成図であり、第2図は隔壁に開けた小孔の配置
の一例を示す。第1図において、1は真空槽、2はター
ゲット、3はターゲット支持体であり、真空槽1とター
ゲット支持体3との間は電気的に絶縁されている。4は
薄膜を形成すべき基板、5は基板支持体であり膜厚を均
一化するために基板回転装置13を取り付けである。真
空槽1は、多数の適当な長さを持つ小孔を有する隔壁1
1により、ターゲット2側の放電室と基板4@の薄膜形
成室の2室に分割される。放電室にはアルゴン等の不活
性ガス導入装置6、薄膜形成室には酸素、窒素等の反応
性ガス導入装置7を取り付けてあり、かつ各々の室に排
気装置8,9を取り付けである。10は放電用の直流又
は高周波電源であり、12は放電によってターゲット2
からスパッタされ、隔壁11の小孔を通り抜ける粒子の
飛行経路を示す。
Example 1 The configuration of this example is shown in FIGS. 1 and 2. FIG. 1 is an overall configuration diagram of the device, and FIG. 2 shows an example of the arrangement of small holes formed in the partition wall. In FIG. 1, 1 is a vacuum chamber, 2 is a target, and 3 is a target support, and the vacuum chamber 1 and the target support 3 are electrically insulated. 4 is a substrate on which a thin film is to be formed; 5 is a substrate support to which a substrate rotation device 13 is attached in order to make the film thickness uniform; The vacuum chamber 1 has a partition wall 1 having a large number of small holes of appropriate length.
1, it is divided into two chambers: a discharge chamber on the target 2 side and a thin film forming chamber on the substrate 4@. The discharge chamber is equipped with an inert gas introduction device 6 such as argon, the thin film forming chamber is equipped with a reactive gas introduction device 7 such as oxygen and nitrogen, and each chamber is equipped with exhaust devices 8 and 9. 10 is a DC or high frequency power supply for discharging, and 12 is a target 2 by discharging.
The flight path of the particles sputtered from the partition wall 11 and passing through the small holes in the partition wall 11 is shown.

第2図は、隔壁11に開けた小孔111の基板回転15
と組み合わせて膜厚を均一化するための配置の一例を概
念的に示し、小孔111は図のような綿線112の実線
部分上に等間隔に開けられている。綿線の原点は基板回
転の中心に合わせである。
FIG. 2 shows the substrate rotation 15 of the small hole 111 made in the partition wall 11.
This conceptually shows an example of an arrangement for making the film thickness uniform in combination with the above, and the small holes 111 are opened at equal intervals on the solid line portion of the cotton wire 112 as shown in the figure. The origin of the cotton wire is aligned with the center of substrate rotation.

次に各部の動作を説明する。まず、本例での不活性ガス
と反応性ガスの濃度に放電室と薄膜形成室で大きく差を
つけられることを示す。隔壁11の開口部のコンダクタ
ンスなC(L/5ee)、不活性ガス導入装置6からの
不活性ガス流量をQa (Torr @ AΔ)、反応
性ガス導入装置7からの反応性ガス流量をQB (To
rr * L /see ) 、排気装置8,9による
排気速度をそれぞれSt j 、s、 (t/sc)と
すると、放電室における不活性ガス分圧P−(Torr
 ) 、反応性ガス分圧P’、 (Torr )、及び
薄膜形成室における不活性ガス分圧p: (Torr 
) 、反応性ガス分圧PF (Terr )は、不活性
ガスと反応性ガスの相互作用を無視すればそれぞれ式(
1)〜(4)で与えられる。
Next, the operation of each part will be explained. First, it will be shown that in this example, the concentrations of the inert gas and the reactive gas can be significantly different between the discharge chamber and the thin film formation chamber. The conductance of the opening of the partition wall 11 is C (L/5ee), the inert gas flow rate from the inert gas introducing device 6 is Qa (Torr @ AΔ), and the reactive gas flow rate from the reactive gas introducing device 7 is QB ( To
rr*L/see), and the exhaust speeds of the exhaust devices 8 and 9 are Stj, s, (t/sc), respectively, the inert gas partial pressure P-(Torr
), reactive gas partial pressure P', (Torr), and inert gas partial pressure p in the thin film forming chamber: (Torr
) and reactive gas partial pressure PF (Terr) are respectively expressed by the formula (
It is given by 1) to (4).

”””’d吾楔6  ・・・・・・・・・・・・・・・
(1)pF ==Σ−浄−丁ア  ・ (2」Qa ””y;πTび下F ・・・・・・・・・・・・・・・
(5)PF= s *’+”(”’t+’t ”   
 (4’コFt、b〕式ヨリ、PF /pt =(St
 十’ ) QA/CQJ *Pr/p:=<s、+c
)Qx/cqtトttyb。これかられかるように1両
室において不活性ガス、反応性ガスの分離をはかるため
には、両室の排気速度S、、S、を大きくするか、又は
隔彎開口部のコンダクタンスC°を小さくする必要があ
る。しかし、排気速度”IIS!を大きくした場合、通
常のスパッタリング時のガス圧1Q −” (Torr
 )前後を得るには、ガス流量QA、Qnを非常に大き
くしなければならない。従って、隔壁開口部のコンダク
タンスC“を小さくする方が適当である。
"""'d Gokusabi 6 ・・・・・・・・・・・・・・・
(1) pF ==Σ-Ji-Dinga ・ (2"Qa ""y; πT and lower F ・・・・・・・・・・・・・・・
(5) PF=s *'+"("'t+'t"
(4' Ft, b) formula, PF /pt = (St
10') QA/CQJ *Pr/p:=<s, +c
)Qx/cqtttyb. In order to separate the inert gas and the reactive gas in one and both chambers, as we will see, we must either increase the pumping speed S, S, of both chambers, or decrease the conductance C° of the diaphragm opening. There is a need to. However, when the pumping speed "IIS!" is increased, the gas pressure 1Q - " (Torr
), the gas flow rates QA and Qn must be made very large. Therefore, it is more appropriate to reduce the conductance C'' of the partition wall opening.

本例のような隔壁11に開けた小孔の直径なり、長さを
tとすると、長さのない小孔の場合に比してコンダクタ
ンスは1/()4+1)となり、例えばL/D=1oと
するとコンダクタンスは’ /a、sに落ちる。このよ
うな長さを持つ小孔によるコンダクタンスの減少を有効
に利用し、かつ、成膜速度の低下をできるだけ少なくす
るには1≦l/D≦20が好ましい。
If the diameter and length of the small hole made in the partition wall 11 as in this example are t, the conductance will be 1/()4+1) compared to the case of a small hole with no length, and for example, L/D= When set to 1o, the conductance falls to '/a,s. In order to effectively utilize the reduction in conductance due to the small holes having such a length and to minimize the decrease in the film formation rate, it is preferable that 1≦l/D≦20.

本例の場合、t=20 (w) 、 D=2 (wa)
の孔を約2000個開けており(開口部総面積= 65
al )、そのコンダクタンx t゛= ss (t/
5ac)である。このような隔壁を用い、排気速度51
=s、=so。
In this example, t=20 (w), D=2 (wa)
Approximately 2,000 holes are drilled (total opening area = 65
al), its conductance x t゛=ss (t/
5ac). Using such a partition, the pumping speed is 51
=s, =so.

(t/5IIe) t QA=4.7 (Torr −
j/sc) (=標準状態に換算して” 0” /” 
) * Qj ” 2.35 (Torr e Z/s
se )(= 190 cc 7m )とし、不活性ガ
スとしてアルゴンガス、反応性ガスとして酸素ガスを用
いた場合、下表に示すようにアルゴンガスと酸素ガスの
濃度に両室で大きく差がつけられる。
(t/5IIe) t QA=4.7 (Torr −
j/sc) (=converted to standard state "0"/"
) * Qj ” 2.35 (Torr e Z/s
se ) (= 190 cc 7 m ), and when argon gas is used as the inert gas and oxygen gas is used as the reactive gas, there is a large difference in the concentration of argon gas and oxygen gas between the two chambers, as shown in the table below. .

表 本例の装置を用いれば3、両室での反応性ガス分圧と不
活性ガス分圧をほぼ独立に制御でき、反応の度合を容易
に制御できる。
If the apparatus of this example is used, the reactive gas partial pressure and the inert gas partial pressure in both chambers can be controlled almost independently, and the degree of reaction can be easily controlled.

また、本例の装置において、反応性ガスの供給を止めて
通常のスパッタ装置として使用した場合、薄膜形成室で
の残留不純物ガスを低く抑えることができ質の良い膜が
得られる。
Further, in the apparatus of this example, when the supply of reactive gas is stopped and the apparatus is used as a normal sputtering apparatus, the residual impurity gas in the thin film forming chamber can be suppressed to a low level, and a high-quality film can be obtained.

ターゲット2のスパッタリングは、ターゲット2と隔1
111又はそれと導通なとった真空槽1と間に接続した
放電用高周波電源10によって生じさせる。ターゲット
2が良導体の場合、電源10は直流電源でもよい。この
際、放電はターゲット2と隔壁11との間で発生し、タ
ーゲットからスパッタされた粒子は矢印12のように隔
1111の小孔を通過して基板に達する。スパッタ粒子
は飛行中あるいは基板上で反応性ガスと反応する。
Sputtering of target 2 is performed at a distance of 1 from target 2.
111 or the vacuum chamber 1 which is electrically connected thereto, and the high frequency power source 10 for discharge connected therebetween. If the target 2 is a good conductor, the power source 10 may be a DC power source. At this time, discharge occurs between the target 2 and the partition wall 11, and particles sputtered from the target pass through the small holes of the partition wall 1111 as indicated by arrow 12 and reach the substrate. Sputtered particles react with reactive gases while in flight or on the substrate.

この時、基板は直接プラズマにさらされることはな(、
基板温度の上昇は低く抑えることができ、また形成され
た膜のイオン衡機による損傷は少ない。
At this time, the substrate is not directly exposed to plasma (
The increase in substrate temperature can be suppressed to a low level, and the formed film is less likely to be damaged by the ion balance device.

また、矢印12からもわかるように、隔壁11に開けた
小孔111がある長さを持っていることから、スパッタ
粒子が一方向性を持つ。これ体、磁性体薄膜などのよう
に膜の配向性を制御する上で有利である。
Further, as can be seen from the arrow 12, since the small holes 111 formed in the partition wall 11 have a certain length, the sputtered particles have unidirectionality. This material is advantageous in controlling the orientation of films such as magnetic thin films.

さらに、本例の場合スパッタ粒子の大半は放電室壁直に
付着することから、たとえそのスパッタ粒子が戊応性ガ
スに対して強いゲッター作用を持っていたとしても薄膜
形成室での反応性ガス分圧に対する影響は極めて少ない
。これを本例で数値を上げた例に則して示すと、次のよ
うになる。酸素に対して強いゲッター作用を持つ、アル
ミニウム、鉄等が真空槽内に付着すると、酸素に対して
の排気速度が10’ (17w )程度にまでなる。そ
こで(4)式においてS、=104(t/111e)と
し、他の数値は前例のままとしてみると薄膜形成室での
酸素分圧は4.OX 10−s(7’ayy )  と
なり全く変化しないことがわかる。このように、本例装
置はゲッター作用による反応性ガスの消費が極めて少な
く、基板上に付着する膜の反応に反応性ガスが有効に使
われることがわかる。
Furthermore, in this example, most of the sputtered particles adhere directly to the walls of the discharge chamber, so even if the sputtered particles have a strong getter effect on the reactive gas, the amount of reactive gas in the thin film forming chamber is The effect on pressure is extremely small. If this is shown in accordance with the example in which the numerical value is increased in this example, it will be as follows. If aluminum, iron, or the like, which has a strong getter effect on oxygen, adheres to the inside of the vacuum chamber, the pumping speed for oxygen will reach about 10' (17W). Therefore, in equation (4), if S = 104 (t/111e) and other values remain as in the previous example, the oxygen partial pressure in the thin film forming chamber is 4. It can be seen that OX 10-s (7'ayy) and there is no change at all. Thus, it can be seen that the device of this example consumes very little reactive gas due to the getter action, and that the reactive gas is effectively used for the reaction of the film deposited on the substrate.

次に、第2図に示した小孔の配置を有する隔壁を用いた
時の膜厚分布の均一化について説明する。1つの小孔を
通過したスパッタ粒子は、基板回転により基板上では中
心半径付近で最大膜厚となるような帯状の膜を形成する
。この帯の半径付近で分布を均一にするためには、基板
回転半径のわずかKJ!なる小孔からの寄与な重ね合わ
せれば良い。さらに、基板回転半径方向の膜厚分布を均
一化するには、基板回転半径に比例した数の/h孔の寄
与を重ね合わせれば良いことになる。そのような小孔配
置を行なうための一例としては、第2図に示したような
極座標表示でr=Aθで表わされる螺縁上に等間隔に配
置することが上げられる。
Next, a description will be given of how to make the film thickness distribution uniform when using a partition wall having the arrangement of small holes shown in FIG. The sputtered particles that have passed through one small hole form a band-shaped film on the substrate due to the rotation of the substrate, with the maximum film thickness near the center radius. In order to make the distribution uniform near the radius of this band, it is necessary to make the distribution uniform by a fraction of the radius of rotation of the substrate! It is sufficient to overlap the contributions from the small holes. Furthermore, in order to make the film thickness distribution in the direction of the rotation radius of the substrate uniform, it is sufficient to superimpose the contributions of the /h holes in proportion to the rotation radius of the substrate. An example of such arrangement of small holes is to arrange them at equal intervals on a spiral edge represented by r=Aθ in polar coordinates as shown in FIG.

本例の場合、Δ= 2 (g/ rad )とした#!
1112の実線部分上に小孔111(直径2 m )を
中心間距離4■の等間隔で配置したが、このときの基板
支持体半径方向の分布はW、5図に実線で示したように
非常に均一である。第6図の点線は、小孔111を、同
一間隔で14IIii112上のより内部及び外部に開
けたときの膜厚分布を示す。この点線かられかるように
、基板回転の中心部では膜厚分布を均一にできない。従
って本例の場合、磁気ディスク等のように基板回転中心
部に膜形成する必要のない場合に適している。
In the case of this example, Δ=2 (g/rad) #!
Small holes 111 (diameter 2 m) were placed on the solid line portion of 1112 at equal intervals of 4 cm between centers, and the distribution in the radial direction of the substrate support at this time was W, as shown by the solid line in Figure 5. Very uniform. The dotted line in FIG. 6 shows the film thickness distribution when the small holes 111 are opened at the same intervals on the inside and outside of the 14IIIi 112. As can be seen from this dotted line, the film thickness distribution cannot be made uniform at the center of substrate rotation. Therefore, this example is suitable for cases where it is not necessary to form a film at the center of rotation of the substrate, such as in magnetic disks.

本例の隔壁を用いて、鉄をターゲットとし、不活性ガス
をアルゴンガス、反応性ガスを酸素として、71m(7
a又は−FgtUs を形成した場合、成膜速度は約o
、o s :47− であり非常に小さい。
Using the partition wall of this example, iron was the target, argon gas was used as the inert gas, and oxygen was used as the reactive gas.
When a or -FgtUs is formed, the film formation rate is approximately o
, o s :47-, which is very small.

ターゲットとして、マグネトロン製のものを使用し、穴
の大きさ、配置をそれに合わせて適当なものとした場合
、成膜速度は1桁以上向上する。
If a magnetron-made target is used and the hole size and arrangement are adjusted accordingly, the film formation rate can be improved by more than one order of magnitude.

実施例2 本例の概略構成を、第4図及び第5図に示した。第4図
は、偏心基板回転装置付きスパッタ装置概略構成図であ
り、第5図は隔壁の)」1孔装置概念図である。本例の
特徴は基板回転装置150回転中心を偏心させた点であ
り、実施例1に比して大型の基板に適用できる。その他
の構成およびそれらの動作は実施例1と同様である。
Example 2 The schematic structure of this example is shown in FIGS. 4 and 5. FIG. 4 is a schematic diagram of a sputtering apparatus equipped with an eccentric substrate rotating device, and FIG. 5 is a conceptual diagram of a one-hole apparatus with a partition wall. The feature of this example is that the rotation center of the substrate rotation device 150 is eccentric, and can be applied to larger substrates than the first embodiment. The other configurations and their operations are the same as in the first embodiment.

以上説明したように、本発明による装置構成により反応
性ガス濃度を放電室と薄膜形成室とで10倍以上の差を
つげることができる。
As explained above, the apparatus configuration according to the present invention can increase the difference in reactive gas concentration between the discharge chamber and the thin film forming chamber by more than 10 times.

また、放電室に発生させるプラズマが隔壁によりさえぎ
られるためイオン衡機による基板温度の上昇、形成膜の
損傷がほとんどない。
Furthermore, since the plasma generated in the discharge chamber is blocked by the partition wall, there is almost no rise in substrate temperature caused by the ion balancer and no damage to the formed film.

また、隔壁の存在により薄膜形成室の壁面にスパッタ粒
子が付着することがほとんどないため、そのゲッター作
用による反応性ガスの減少が極めて少なく、反応性ガス
がスパッタ粒子の反応に有効に使われる。
In addition, since the sputtered particles hardly adhere to the wall surface of the thin film forming chamber due to the presence of the partition wall, the decrease in reactive gas due to the getter action is extremely small, and the reactive gas is effectively used for the reaction of the sputtered particles.

また、隔壁が多数の小孔を有するため、その配置と基板
回転の組み合わせにより膜厚分布の均一化が容易に行な
える。
Further, since the partition wall has a large number of small holes, the film thickness distribution can be easily made uniform by a combination of the arrangement thereof and the rotation of the substrate.

さらに、隔壁の小孔が細長いことにより、スパッタ粒子
の飛行方向が、開き角で1度以下にできる。
Furthermore, since the small holes in the partition wall are long and narrow, the flight direction of the sputtered particles can be set to an opening angle of 1 degree or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるスパッタ装置の一実施例を示す構
成側面図、第2図は隔壁に開けた小孔の配置を概念的に
示す図、第3図はその小孔配置と基板回転による膜厚分
布を示す図、第4図は大屋の基板に対する本発明による
スパッタ装置の一実施例な示す構成側面図、第5図はそ
の時の隔壁に開けた小孔の配置を示す図である。 1・・・真空槽 2・・・ターゲット 5・・・ターゲット支持体 4・・・基板 5・・・基板支持体 6・・・不活性ガス導入装− 7・・・反応性ガス導入装置 8.9・・・排気装置 10・・・放電用電源 11・・・小孔を有する隔壁 12・・・スパッタ粒子の飛行方向 13・・・基板回転装置 111・・・小孔 112・・・小孔配置を示す綿線 A−1閉 オ 3 図 11次叉列令千径(m箪) ″−25WJ
FIG. 1 is a side view of the configuration of an embodiment of a sputtering apparatus according to the present invention, FIG. 2 is a conceptual diagram showing the arrangement of small holes in the partition wall, and FIG. 3 is a diagram showing the arrangement of the small holes and the rotation of the substrate. FIG. 4 is a diagram showing the film thickness distribution, FIG. 4 is a side view showing the construction of an embodiment of the sputtering apparatus according to the present invention for Oya's substrate, and FIG. 5 is a diagram showing the arrangement of small holes made in the partition wall at that time. 1... Vacuum chamber 2... Target 5... Target support 4... Substrate 5... Substrate support 6... Inert gas introduction device - 7... Reactive gas introduction device 8 9...Exhaust device 10...Discharge power source 11...Partition wall 12 with small holes...Flight direction of sputtered particles 13...Substrate rotation device 111...Small hole 112...Small Cotton wire showing hole arrangement A-1 closed hole 3

Claims (1)

【特許請求の範囲】 t 真空槽内にターゲットとそれに対向する基板とを有
し、その槽内を不活性ガスと反応性ガスの混合ガス雰囲
気にして放電させ、ターゲット物質と反応性ガスとの反
応物質を基板上に形成する反応性スパッタリング装置に
おいて、ターゲットと基板との間に孔径に対して1〜2
0倍の長さを持つ小孔を有する隔壁が設けられ、かつタ
ーゲット側と基板側にそれぞれ排気機構が設けられたこ
とを特徴とする反応性スパッタリング装置。 2、 真空槽内にターゲットとそれに対向する基板とを
有し、その槽内な不活性ガスと反応性ガスの混合ガス雰
囲気にして放電させ、ターゲット物質と反応性ガスとの
反応物質を基板上に形成する反応性スパッタリング装置
において、基板回転機構が設けられ、ターゲットと基板
との間に孔径に対し【1〜20倍の長さを持つ小孔を有
する隔壁が設けられ゛かつターゲット側と基板側にそれ
ぞれ排気機構が設けられたことを特徴とする反応性スパ
ッタリング装置。
[Claims] t A target and a substrate facing the target are provided in a vacuum chamber, and the chamber is made into a mixed gas atmosphere of an inert gas and a reactive gas, and a discharge is caused to occur between the target material and the reactive gas. In a reactive sputtering device that forms a reactant on a substrate, there is a gap between the target and the substrate of 1 to 2
A reactive sputtering apparatus characterized in that a partition wall having a small hole having a length of 0 times is provided, and exhaust mechanisms are provided on each of the target side and the substrate side. 2. A target and a substrate facing it are placed in a vacuum chamber, and a mixed gas atmosphere of an inert gas and a reactive gas is generated in the chamber, and a discharge is caused to cause a reaction material between the target material and the reactive gas to be transferred onto the substrate. In a reactive sputtering apparatus for forming a sputtering device, a substrate rotation mechanism is provided, a partition wall having a small hole having a length of 1 to 20 times the hole diameter is provided between the target and the substrate, and the target side and the substrate are separated from each other. A reactive sputtering device characterized by having an exhaust mechanism provided on each side.
JP20689981A 1981-12-23 1981-12-23 Reactive sputtering device Granted JPS58110673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20689981A JPS58110673A (en) 1981-12-23 1981-12-23 Reactive sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20689981A JPS58110673A (en) 1981-12-23 1981-12-23 Reactive sputtering device

Publications (2)

Publication Number Publication Date
JPS58110673A true JPS58110673A (en) 1983-07-01
JPS6127462B2 JPS6127462B2 (en) 1986-06-25

Family

ID=16530898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20689981A Granted JPS58110673A (en) 1981-12-23 1981-12-23 Reactive sputtering device

Country Status (1)

Country Link
JP (1) JPS58110673A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551460A1 (en) * 1983-09-02 1985-03-08 Leybold Heraeus Gmbh & Co Kg METHOD AND DEVICE FOR REACTIVE SPRAY DEPOSITION OF METAL COMPOUNDS AND SEMICONDUCTORS
JPS6357764A (en) * 1986-08-27 1988-03-12 Teijin Ltd Magnetron sputtering device
JPS63161162A (en) * 1986-12-23 1988-07-04 Toshiba Corp Sputtering device
JPH01116070A (en) * 1987-10-29 1989-05-09 Internatl Business Mach Corp <Ibm> Sputtering apparatus
JPH0198164U (en) * 1987-12-17 1989-06-30
JPH04116164A (en) * 1990-08-31 1992-04-16 Nec Corp Device for producing oxide superconducting thin film
JPH0684826A (en) * 1992-02-26 1994-03-25 Internatl Business Mach Corp <Ibm> Method for formation of embedded metal in substrate
JPH093644A (en) * 1995-06-23 1997-01-07 Chugai Ro Co Ltd Reactive sputtering device
EP0860514A2 (en) * 1997-02-19 1998-08-26 Canon Kabushiki Kaisha Reactive sputtering apparatus and process for forming thin film using same
EP0860513A2 (en) * 1997-02-19 1998-08-26 Canon Kabushiki Kaisha Thin film forming apparatus and process for forming thin film using same
EP0908531A2 (en) * 1997-10-08 1999-04-14 Canon Kabushiki Kaisha Apparatus and method for forming a thin film of a compound

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3332840B2 (en) * 1997-02-19 2002-10-07 キヤノン株式会社 Reactive sputtering apparatus and thin film forming method using the same
JP3332839B2 (en) * 1997-02-19 2002-10-07 キヤノン株式会社 Thin film forming apparatus and thin film forming method using the same
JP4664061B2 (en) * 2004-12-22 2011-04-06 株式会社アルバック Film forming apparatus and film forming method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551460A1 (en) * 1983-09-02 1985-03-08 Leybold Heraeus Gmbh & Co Kg METHOD AND DEVICE FOR REACTIVE SPRAY DEPOSITION OF METAL COMPOUNDS AND SEMICONDUCTORS
JPS60155673A (en) * 1983-09-02 1985-08-15 ライボルト・アクチェンゲゼルシャフト Reactive sputtering method for metal or semiconductor compound and device therefor
JPS6357764A (en) * 1986-08-27 1988-03-12 Teijin Ltd Magnetron sputtering device
JPS63161162A (en) * 1986-12-23 1988-07-04 Toshiba Corp Sputtering device
JPH01116070A (en) * 1987-10-29 1989-05-09 Internatl Business Mach Corp <Ibm> Sputtering apparatus
JPH0198164U (en) * 1987-12-17 1989-06-30
JPH0527490Y2 (en) * 1987-12-17 1993-07-13
JPH04116164A (en) * 1990-08-31 1992-04-16 Nec Corp Device for producing oxide superconducting thin film
JPH0684826A (en) * 1992-02-26 1994-03-25 Internatl Business Mach Corp <Ibm> Method for formation of embedded metal in substrate
JPH093644A (en) * 1995-06-23 1997-01-07 Chugai Ro Co Ltd Reactive sputtering device
EP0860514A2 (en) * 1997-02-19 1998-08-26 Canon Kabushiki Kaisha Reactive sputtering apparatus and process for forming thin film using same
EP0860513A2 (en) * 1997-02-19 1998-08-26 Canon Kabushiki Kaisha Thin film forming apparatus and process for forming thin film using same
EP0860514A3 (en) * 1997-02-19 1998-09-30 Canon Kabushiki Kaisha Reactive sputtering apparatus and process for forming thin film using same
EP0860513A3 (en) * 1997-02-19 2000-01-12 Canon Kabushiki Kaisha Thin film forming apparatus and process for forming thin film using same
US6200431B1 (en) 1997-02-19 2001-03-13 Canon Kabushiki Kaisha Reactive sputtering apparatus and process for forming thin film using same
US6451184B1 (en) 1997-02-19 2002-09-17 Canon Kabushiki Kaisha Thin film forming apparatus and process for forming thin film using same
EP0908531A2 (en) * 1997-10-08 1999-04-14 Canon Kabushiki Kaisha Apparatus and method for forming a thin film of a compound
EP0908531A3 (en) * 1997-10-08 2002-05-15 Canon Kabushiki Kaisha Apparatus and method for forming a thin film of a compound

Also Published As

Publication number Publication date
JPS6127462B2 (en) 1986-06-25

Similar Documents

Publication Publication Date Title
JPS58110673A (en) Reactive sputtering device
US6238527B1 (en) Thin film forming apparatus and method of forming thin film of compound by using the same
JPS6254078A (en) Apparatus for depositing membrane to substrate by cathodic sputtering treatment
JPS6341013A (en) Forming device for thin-film
EP0823944A1 (en) Sputtering device
Serikawa et al. Effect of N2 Ar mixing on the reactive sputtering characteristics of silicon
US6090247A (en) Apparatus for coating substrates
JPH0521347A (en) Sputtering device
JPH0641733A (en) Reactive sputtering device
WO2020218598A1 (en) Sputtering device
JPH03166366A (en) Method and device for reactive sputtering
US4705700A (en) Chemical vapor deposition method for the thin film of semiconductor
JPS5947728A (en) Method and apparatus for plasma coating
JP2646664B2 (en) Microwave plasma film deposition equipment
JPH0559985B2 (en)
JPS6197838A (en) Formation of thin film
JPH0772347B2 (en) Sputtering device
JPH0361377A (en) Microwave-plasma film depositing device
JPH03115565A (en) Sputtering device and film forming method
JPS6057613A (en) Device for plasma chemical vapor deposition
JPH04325671A (en) Sputtering apparatus and sputtering method
JP2001040473A (en) Reactive sputtering method and device therefor
JPH06212413A (en) Reactive sputtering system
Fomin et al. Magnetron sputtering system stabilisation for high rate deposition of AlN films
JPH03271367A (en) Sputtering apparatus