JPS6127177B2 - - Google Patents

Info

Publication number
JPS6127177B2
JPS6127177B2 JP51045327A JP4532776A JPS6127177B2 JP S6127177 B2 JPS6127177 B2 JP S6127177B2 JP 51045327 A JP51045327 A JP 51045327A JP 4532776 A JP4532776 A JP 4532776A JP S6127177 B2 JPS6127177 B2 JP S6127177B2
Authority
JP
Japan
Prior art keywords
rolling
core material
thin film
rolled
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51045327A
Other languages
Japanese (ja)
Other versions
JPS52128974A (en
Inventor
Takeshi Kamya
Katsuya Yazaki
Rikio Kuroda
Katsumi Yano
Satoshi Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP4532776A priority Critical patent/JPS52128974A/en
Publication of JPS52128974A publication Critical patent/JPS52128974A/en
Publication of JPS6127177B2 publication Critical patent/JPS6127177B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一軸配向薄膜からなる成形品の製造方
法に関する。 更に詳しくは、ロール圧延によつて一軸配向を
なした熱可塑性樹脂薄膜を積層し、管状体、さら
に特殊パイプ或いは中空容器等を成形する方法に
関する。 従来、一般に熱可塑性樹脂シートを延伸し、配
向処理をなした薄膜は、強度、剛性等を始めとす
る機械的特性に優れる事は周知であり、結束資
材、包装資材等に広く用いられている。 然し、これ等の薄膜は大半フイルム分野にその
用途が限られ、一般中空容器、管等のいわゆる型
物に該薄膜を使用するには他の特殊な成形方法と
組み合せて実施しなければならない。例えばこの
機械的性質に優れた延伸薄膜にて前述の型物を成
形する方法として、延伸薄膜を多数回、加圧下、
加熱下に巻回、積層化し、その後加熱収縮により
層間密着を行ない以つて管等の成形品を得る方法
が操業されている。しかるに、延伸した薄膜を用
いて積層巻付けをする場合、工業的実施は簡単に
行ない得ない。即ち引張延伸による薄膜は両耳端
が厚化を起し、その厚みムラを除かなければなら
ぬ為ロスが多い事、表面の微細な凹凸の為に積層
収縮後の層間の密着を完全に均一に行なう事が困
難である事、又、積層体の剛性を高くする為に延
伸薄膜を得る際の、延伸倍率を余り大きくすると
延伸方向に沿つた裂けが発生しやすくなり、積層
巻付け時に裂けやすくなる為慎重に成形操作を行
なわざるを得ず、その結果低生産性を余義なくさ
れる。 本発明者等は積層巻付け法における斯る問題点
を解決すべく鋭意研究を進めた結果、かつて提案
された引張延伸薄膜の代りにロール圧延によつて
得た薄膜を用いると、前述の如き問題点はすべて
解決され、加うるに引張延伸薄膜を用いた場合に
は得られなかつた様な高度な透明性を有する積層
体が得られる事が判明し、本発明に至つたもので
ある。すなわちロール圧延により長手方向に1.5
〜10倍に伸長されて該方向に分子配向された熱可
塑性樹脂シートをその融点より低いまたは軟化点
以下の温度で且つロール圧延時の温度以上の範囲
内の温度に保つたまま、所定の芯材に巻付け積層
し各積層面内を収縮力により圧着した後、該芯材
を取り除くことにより剛性の大きく且つ透明性の
良い管状成形物さらに特殊パイプあるいは中空容
器等を作りうるのである。 即ち、かようなロール圧延によつてその厚さを
減少せしめた圧延薄膜は両耳端の厚化現象は認め
られず、薄膜の表面は至つて平滑であり、且つ伸
長方向に沿う裂け性は引張延伸配向体に比し著し
く低いものである。また圧延フイルム積層体の高
透明性の保持は、薄膜表面の平滑性から生ずる層
間の完全密着性、及び圧延フイルム自身の高透明
性の故である。 又、層間の均一なる密着の為に得られる積層体
の剛性及び圧延薄膜自体の高剛性が相俟つて積層
体の剛性も著しく高くなる。 本発明における要件は、先に記したように熱可
塑性樹脂シートを固体状態でロール圧延させ、且
つ得られた該熱可塑性樹脂薄膜の融点より低いか
又は軟化点以下の温度で且つロール圧延時の温度
以上に保持されることにより、薄膜に張力を附与
させながら芯材を用いて巻付け積層をなし、薄膜
自身の収縮力によつて層間の密着性を得る事であ
る。さらに必要に応じて積層後適宜な加熱装置に
て加熱する事により、より強力な収縮力を得、結
果としてより良い密着性を得る事が出来る。 本発明に使用される熱可塑性樹脂としては、ポ
リエチレン、ポリプロピレン、ポリアミド、ポリ
エステル、ポリスチロール、ポリ塩化ビニル、ポ
リカーボネート等、熱可塑性樹脂として特に制限
はない。又、これ等の共重合体、混合体も含まれ
る。又通常使用される添加剤を加えても差し支え
ない。 本発明に用いるロール圧延法は従来公知の如何
なる方法を用いても良い。すなわち通常一般に行
なわれるロール圧延法は互いに反対方向へ等周速
度で回転せしめられ、且つ被圧延シートの厚さよ
り小さい間隙を有するように調整された一対のロ
ール間を通過せしめる、いわゆる等周速圧延方法
であるが、この場合熱可塑性樹脂薄膜のような粘
弾性体では圧延後の弾性回復の為大きい圧延倍率
を得る事が困難である。さらに圧延倍率を大とす
るには特公昭45―14199号に提案された様な液圧
圧延法があるが、積層化に際して圧延薄膜表面に
付着した液膜の洗滌除去を完全になさねばならな
い。 これ等に対して一対の圧延ロールの周速度を互
いに異ならしめるいわゆる非等周速圧延法は最も
好ましい結果を与える。即ち、前述の等周速圧延
において各ロールの等周速度設定を非等周速にす
るものである。この場合圧延ロールから排出され
る薄膜をそのまま高周速圧延ロール表面へ該ロー
ル全周の1/8以上に密着して沿わせた後これを引
取るか、又は圧延ロールから排出された薄膜をそ
のまま高周速ロールの周面速度と同じ速度で強制
的に引き取ると、容易に圧延倍率を大となす事が
できる(特開昭51―16360)。 前記したようなロール圧延方法により熱可塑性
シートを圧延するのであるが、圧延倍率(圧延前
シートの厚さ/圧延後生じた薄膜の厚さ)は目的
とする成形品によつて異なるが、通常1.5〜10倍
であり、特にシートの圧延効果(配向効果)が顕
著なのは3〜7倍であり、圧延倍率が大きい程、
圧延された薄膜の剛性及び透明度は増大する傾向
にある。また圧延時の条件として一対のロールの
間隙は当然ながら、圧延前のシートの厚さより小
さくなければならないが、該間隙は使用される圧
延前のシートの厚さと所望される圧延倍率によつ
て設定される。さらに圧延時におけるシートの温
度は該シートの融点より下かまたは軟化点以下の
温度であり、固体状態のシートを圧延するのであ
る。融点または軟化点以上の温度でロールに導く
と配向効果は殆んど附与されず圧延でなくなり、
得られたものは剛性も小さく、透明性の悪い薄膜
であり所望する成形品が得られないので好ましく
ない。また一方該圧延温度の下限は、融点もしく
は軟化点より多くとも80℃下まで、好ましくは多
くとも60℃下までとし、かつ該シートが固体状態
を保つ温度とする必要がある。 前記した圧延装置及び圧延条件で作られた圧延
薄膜を芯材に巻付けていくのであるが、この積層
巻付けに当つては一旦巻きとつた該圧延薄膜を繰
り出しても良いし、圧延機から直接積層巻付けに
供しても良い。さらに芯材への巻付けは巻き軸
(芯材)と薄膜長さ方向が直角の関係でも良い
し、又斜めに巻き付ける事も差し支えない。これ
は所望する成形品によつて決定されるべきであつ
て、例えば中空容器等の製造においては巻き軸
(芯材)と直角の関係が好ましく、一方管状体等
の製造においては、該成形品の長さが大きい時は
巻き軸に対して斜めに巻付けるのが好ましい。 本発明はロール圧延により得た薄膜を単に芯材
に巻付けてゆくのではなく、巻付け時に該薄膜を
加熱することにより該薄膜自体に収縮力を起さし
めて、その結果として薄膜を緊張張力下にて芯材
に巻付けてゆくのであり、各積層面間は該加熱に
よる収縮力により圧着され一体成形品となるので
ある。該薄膜の加熱条件は該薄膜の圧延時の温度
以上でしかも該薄膜の融点より下かもしくは軟化
点以下の温度に加熱することが重要である。何故
なら圧延時の温度下では熱収縮が小さく、その結
果として緊張張力下にて芯材への巻付けができな
いからであり、又一方融点又は軟化点以上では薄
膜は溶融してしまい実用に供しえない。かような
条件下で芯材に巻付けた後必要に応じて適宜な加
熱装置に加熱することにより、より強力な収縮力
を得、結果として各積層面間はより良い密着性を
得ることができる。 以上圧延された薄膜単体(一枚)の巻付けにつ
いて説明してきたが、本発明は単体のみに限ら
ず、圧延により得た2枚以上の薄膜を用いて芯材
に巻付けても良いし、またその場合異種の樹脂膜
を併用する場合も本発明の範囲に含まれる。さら
に2枚以上の薄膜をもつて芯材に巻付ける場合に
は、各積層面間の密着性に問題がなければ、使用
する薄膜は必ずしも全部が圧延された薄膜である
必要性はなく、少なくとも1枚だけ圧延された薄
膜を使用し、他の薄膜は単なる薄膜で良い。 かようにして芯材に積層巻付けた後、芯材を取
り除けば熱可塑性樹脂よりなる剛性の大きく且つ
透明性の良い管状体または中空容器等の成形品が
得られる。 なお本発明における芯材とは円柱状のもの、角
柱状のもの、あるいはその他種々のもので良く、
また長さにおいても特に限定はない。また材質に
おいても特に限定はないが金属あるいは硬質プラ
スチツクのものが好ましい。かような芯材に圧延
薄膜を巻付け積層した後該芯材を取り除くのであ
るが、その操作がやりやすいように、芯材上にあ
らかじめパラフインワツクス等の離型材を塗布す
るとか、低融点の物質を芯材上に塗布しておき巻
付け積層後若干加熱して溶解させるとか、芯材を
水溶性のポリビニルアルコールで作り積層後水中
に浸漬して溶出させるとか、あるいは衝撃にもろ
い材質の芯材を使用し積層後破壊するなど、ある
いは芯材自体が必要に応じて分解あるいは変形で
き、簡単に積層体と分離できるような構造のもの
を使用しても良い。 また芯材を取り除かれた成形品は各積層面間は
熱処理による収縮で密着していて強固であるが、
フイルムの各末端は必要なら熱融着あるいは接着
剤を使用する等の操作を行い固定させても良い。
該熱融着の方法は通常行なわれている方法を使え
ば良い。 以下本発明を添付図をもつて説明するが、該図
は本発明の一実施態様を示すものであり、本発明
を限定するもではない。第1図において1は圧延
前の熱可塑性樹脂のシートであり、該シートは一
対の等周速圧延ロール4,4′により圧延され厚
みが減少し剛性の大きい且つ透明性の良い圧延薄
膜2が得られる。次いで該薄膜は適当な加熱装置
5により加熱されて熱収縮による緊張力が発生
し、該緊張力下にて芯材3に巻付け積層する。 第2図は本発明の他の実施態様を示すもので、
同図は圧延ロール4,4′が非等周速であり4は
高周速ロール、4′は低周速ロールであり、圧延
薄膜は高周速であるロール4へ一定距離(ロール
全周の1/8以上)沿つた後押えロール6を通過
し、加熱装置5で加熱された後、芯材3に巻付け
積層される。このようにして巻付け積層されたも
のより芯材を前記したような手段で除去すること
により管状体の成形品が得られるが、中空容器等
の底のある成形品を得るには、第1図のように芯
材の円形部にあらかじめ熱可塑性樹脂よりなる円
形シート7を芯材のいずれか一方の端面に両面接
着テープなどで取り付けておき、その後圧延薄膜
を巻付け積層させた後、円形シート7と巻付け積
層物との接合部をプラスチツク溶接機等で熱融着
させた後、あるいは該接合部をポリオレフイン系
接着剤で接着させた後前記したような手段により
芯材を取り除けば中空容器が得られる。 以下実施例、比較例をもつて本発明をさらに具
体的に説明する。 実施例 1 密度0.957およびM.I.4、5の高密度ポリエチレ
ンを溶融成形し、巾480mmかつ厚さ200μの薄膜を
得、これを第2図の如く以下に述べる条件にて非
等周速ロール圧延にて厚さ40μの5倍圧延薄膜と
した後、第1図に示されたような100mmφの分解
可能な芯材、及びその先端にポリプロピレン製の
厚さ0.5mm、直径―100mmφの円盤7を装着して、
これに130℃の温度に保持された薄膜を25回巻き
付け、ポリエチレンの巻付け積層物と円形シート
7との接合部を熱融着させた後、芯材を分解して
抜きとり、平均器壁厚が0.5mmの円筒状容器を得
た。この容器の諸特質を第1表に示した。 圧延条件 ロール形状 巾500mm、径200mmφ ロール周速度 60m/min(高速側) ロール周速度 20m/min(低速側) ロール表面温度(ロール圧延温度)110℃±1
℃ 比較例 1 実施例1で使用した高密度ポリエチレンを使用
し、射出成形装置により、実施例1と同じ形状の
円筒状容器を作り、各性質を第1表に示した。 比較例 2 実施例1においては非等周速圧延法により得た
薄膜を使用したのであるが、これに代わつて5倍
の引張延伸法により得た40μの薄膜を使用した以
外はすべて実施例1と同じ操作を行い、得られた
製品の各性質を第1表に示した。
The present invention relates to a method for manufacturing a molded article made of a uniaxially oriented thin film. More specifically, the present invention relates to a method of laminating uniaxially oriented thermoplastic resin thin films by roll rolling to form a tubular body, a special pipe, a hollow container, or the like. Conventionally, it is well known that thin films made by stretching and orienting thermoplastic resin sheets have excellent mechanical properties such as strength and rigidity, and are widely used as binding materials, packaging materials, etc. . However, the use of these thin films is mostly limited to the film field, and in order to use them for so-called molded objects such as general hollow containers and pipes, they must be combined with other special molding methods. For example, as a method of molding the above-mentioned mold with a stretched thin film with excellent mechanical properties, the stretched thin film is stretched many times under pressure.
A method of obtaining molded products such as pipes by winding and laminating under heating and then applying heat shrinkage to bring the layers into close contact is in operation. However, in the case of laminated winding using stretched thin films, industrial implementation is not easy. In other words, the thin film produced by tensile stretching becomes thicker at both ends, and the thickness unevenness must be removed, resulting in a large amount of loss. Also, due to the minute irregularities on the surface, it is difficult to completely ensure the adhesion between the layers after lamination shrinkage. It is difficult to do this uniformly, and if the stretching ratio is too high when obtaining a stretched thin film to increase the rigidity of the laminate, tearing along the stretching direction is likely to occur. Since it tends to tear easily, the molding operation must be performed carefully, resulting in low productivity. The inventors of the present invention have carried out intensive research to solve these problems in the laminated winding method, and have found that when a thin film obtained by roll rolling is used instead of the previously proposed tensile stretched thin film, the above-mentioned problem occurs. It has been found that all of the problems have been solved, and in addition, a laminate can be obtained that has a high level of transparency that could not be obtained when using a tensile stretched thin film, leading to the present invention. i.e. 1.5 in the longitudinal direction by roll rolling.
A thermoplastic resin sheet that has been stretched ~10 times and has molecules oriented in this direction is held at a temperature lower than its melting point or below its softening point and above the temperature during roll rolling, and then rolled into a predetermined core. After wrapping and laminating the materials and compressing the inside of each laminated surface using shrinkage force, the core material is removed to make tubular molded products with high rigidity and good transparency, as well as special pipes, hollow containers, etc. That is, in the rolled thin film whose thickness was reduced by such roll rolling, no thickening phenomenon was observed at both ends, the surface of the thin film was extremely smooth, and the tearability along the stretching direction was low. This is significantly lower than that of the tensile-stretched oriented material. Further, the high transparency of the rolled film laminate is maintained due to the complete adhesion between the layers resulting from the smoothness of the thin film surface and the high transparency of the rolled film itself. Further, the rigidity of the laminate obtained due to the uniform adhesion between the layers and the high rigidity of the rolled thin film itself combine to significantly increase the rigidity of the laminate. As mentioned above, the requirements of the present invention are that the thermoplastic resin sheet is roll-rolled in a solid state, and that the thermoplastic resin sheet is rolled at a temperature lower than the melting point or below the softening point of the obtained thermoplastic resin thin film, and at a temperature at the time of roll-rolling. By keeping the thin film above the temperature, tension is applied to the thin film, and the core material is used to wind and laminate the thin film, and the adhesiveness between the layers is obtained by the shrinkage force of the thin film itself. Further, if necessary, by heating with an appropriate heating device after lamination, a stronger shrinkage force can be obtained, and as a result, better adhesion can be obtained. The thermoplastic resin used in the present invention includes polyethylene, polypropylene, polyamide, polyester, polystyrene, polyvinyl chloride, polycarbonate, etc., and there are no particular limitations on the thermoplastic resin. Also included are copolymers and mixtures of these. Also, commonly used additives may be added. The roll rolling method used in the present invention may be any conventionally known method. In other words, the commonly used roll rolling method is so-called constant circumferential speed rolling, in which the rolls are rotated in opposite directions at a constant circumferential speed and passed between a pair of rolls adjusted to have a gap smaller than the thickness of the sheet to be rolled. However, in this case, it is difficult to obtain a large rolling ratio with a viscoelastic body such as a thermoplastic resin thin film because of elastic recovery after rolling. In order to further increase the rolling ratio, there is a liquid rolling method such as that proposed in Japanese Patent Publication No. 14199/1982, but it is necessary to completely wash away the liquid film adhering to the surface of the rolled thin film during lamination. On the other hand, the so-called non-uniform circumferential speed rolling method, in which the peripheral speeds of a pair of rolls are made different from each other, gives the most favorable results. That is, in the above-mentioned constant circumferential speed rolling, the constant circumferential speed settings of each roll are changed to non-uniform circumferential speeds. In this case, either the thin film discharged from the rolling roll is directly brought along the surface of the high-speed rolling roll in close contact with 1/8 or more of the entire circumference of the roll, or the thin film discharged from the rolling roll is taken off. If the material is forcibly removed at the same speed as the peripheral surface speed of a high peripheral speed roll, the rolling ratio can be easily increased (Japanese Patent Application Laid-Open No. 16360-1971). The thermoplastic sheet is rolled by the roll rolling method described above, and the rolling ratio (thickness of the sheet before rolling/thickness of the thin film formed after rolling) varies depending on the intended molded product, but usually The rolling ratio is 1.5 to 10 times, and the rolling effect (orientation effect) of the sheet is particularly remarkable at 3 to 7 times, and the larger the rolling ratio is, the
The stiffness and clarity of rolled thin films tend to increase. Additionally, as a rolling condition, the gap between the pair of rolls must naturally be smaller than the thickness of the sheet before rolling, but the gap is set depending on the thickness of the sheet before rolling and the desired rolling ratio. be done. Furthermore, the temperature of the sheet during rolling is below the melting point or below the softening point of the sheet, and the sheet is rolled in a solid state. If it is introduced into rolls at a temperature above the melting point or softening point, almost no orientation effect is imparted and rolling is no longer possible.
The obtained product is a thin film with low rigidity and poor transparency, which is not preferable because the desired molded product cannot be obtained. On the other hand, the lower limit of the rolling temperature must be at most 80°C below the melting point or softening point, preferably at most 60°C below, and at a temperature at which the sheet remains in a solid state. The rolled thin film produced under the above-mentioned rolling equipment and rolling conditions is wound around the core material. For this laminated winding, the rolled thin film may be unrolled once rolled, or it may be unrolled from the rolling machine. It may also be directly applied to lamination and winding. Further, when winding around the core material, the winding shaft (core material) and the thin film length direction may be perpendicular to each other, or may be wound diagonally. This should be determined by the desired molded product; for example, in the manufacture of hollow containers, it is preferable to have a relationship at right angles to the winding axis (core material), while in the manufacture of tubular bodies, etc., the molded product When the length of is large, it is preferable to wind it diagonally to the winding shaft. In the present invention, the thin film obtained by roll rolling is not simply wound around a core material, but the thin film is heated during winding to generate a contraction force in the thin film itself, and as a result, the thin film is put under tension. It is wound around the core material at the bottom, and the respective laminated surfaces are compressed by the shrinkage force caused by the heating to form an integrally molded product. It is important to heat the thin film to a temperature higher than the rolling temperature of the thin film and lower than the melting point or softening point of the thin film. This is because the thermal contraction is small at the temperature during rolling, and as a result, it is impossible to wrap it around the core material under tension, and on the other hand, at temperatures above the melting point or softening point, the thin film melts and cannot be put to practical use. No. By wrapping it around the core material under these conditions and heating it with an appropriate heating device as necessary, a stronger shrinkage force can be obtained, resulting in better adhesion between the laminated surfaces. can. Although the winding of a single rolled thin film has been described above, the present invention is not limited to just a single thin film, but two or more thin films obtained by rolling may be used to wrap around a core material. Further, in that case, the case where different types of resin films are used together is also included in the scope of the present invention. Furthermore, when wrapping two or more thin films around a core material, as long as there is no problem with the adhesion between the laminated surfaces, the thin films used do not necessarily all need to be rolled thin films; Only one rolled thin film may be used, and the other thin films may be mere thin films. After the core material is laminated and wound in this way, by removing the core material, a molded article such as a tubular body or a hollow container made of thermoplastic resin with high rigidity and good transparency can be obtained. Note that the core material in the present invention may be cylindrical, prismatic, or various other materials.
There is also no particular limitation on the length. The material is also not particularly limited, but metal or hard plastic is preferred. After wrapping and laminating a rolled thin film around such a core material, the core material is removed, but to make the operation easier, a release material such as paraffin wax or the like is coated on the core material in advance, or a material with a low melting point is applied to the core material. It is possible to apply a substance on the core material and heat it slightly to dissolve it after wrapping and laminating it, or to make the core material from water-soluble polyvinyl alcohol and immerse it in water after lamination to dissolve it. It is also possible to use a core material that can be broken after lamination, or a structure in which the core material itself can be disassembled or deformed as necessary and can be easily separated from the laminate. In addition, the molded product from which the core material has been removed is strong because the laminated surfaces are tightly bonded due to shrinkage due to heat treatment.
Each end of the film may be fixed by heat-sealing or using an adhesive, if necessary.
The heat fusion bonding may be carried out by any commonly used method. The present invention will be explained below with reference to the accompanying drawings, but the drawings show one embodiment of the present invention and do not limit the present invention. In FIG. 1, 1 is a sheet of thermoplastic resin before rolling, and this sheet is rolled by a pair of constant circumferential speed rolling rolls 4, 4' to reduce the thickness and form a rolled thin film 2 with high rigidity and good transparency. can get. Next, the thin film is heated by a suitable heating device 5 to generate tension due to thermal contraction, and is wound around the core material 3 and laminated under this tension. FIG. 2 shows another embodiment of the invention,
In the figure, rolling rolls 4 and 4' have non-uniform circumferential speeds, 4 is a high circumferential speed roll, and 4' is a low circumferential speed roll. After passing through a rear presser roll 6 that follows the length of 1/8 or more of A tubular molded product can be obtained by removing the core material from the wound and laminated product by the above-mentioned means, but in order to obtain a molded product with a bottom such as a hollow container, it is necessary to As shown in the figure, a circular sheet 7 made of thermoplastic resin is attached to the circular part of the core material in advance with double-sided adhesive tape or the like on one end face of the core material, and then a rolled thin film is wrapped and laminated, and then the circular sheet 7 made of thermoplastic resin is After heat-sealing the joint between the sheet 7 and the wrapped laminate using a plastic welder or the like, or after adhering the joint with a polyolefin adhesive, the core material is removed by the above-mentioned method to form a hollow. A container is obtained. The present invention will be explained in more detail below using Examples and Comparative Examples. Example 1 High-density polyethylene with a density of 0.957 and MI4, 5 was melt-molded to obtain a thin film with a width of 480 mm and a thickness of 200 μm, and this was rolled with non-uniform circumferential speed rolls as shown in Fig. 2 under the conditions described below. After forming a 5x rolled thin film with a thickness of 40μ, a decomposable core material of 100 mmφ as shown in Fig. 1 and a polypropylene disk 7 with a thickness of 0.5 mm and a diameter of -100 mmφ were attached to the tip of the core material. hand,
A thin film maintained at a temperature of 130°C is wrapped 25 times around this, and the joint between the polyethylene wrapped laminate and the circular sheet 7 is heat-sealed, and the core material is disassembled and pulled out. A cylindrical container with a thickness of 0.5 mm was obtained. The characteristics of this container are shown in Table 1. Rolling conditions Roll shape Width 500mm, diameter 200mmφ Roll circumferential speed 60m/min (high speed side) Roll circumferential speed 20m/min (low speed side) Roll surface temperature (roll rolling temperature) 110℃±1
C. Comparative Example 1 Using the high density polyethylene used in Example 1, a cylindrical container having the same shape as Example 1 was made using an injection molding device, and the properties are shown in Table 1. Comparative Example 2 In Example 1, a thin film obtained by a non-uniform circumferential speed rolling method was used, but in place of this, a 40μ thin film obtained by a 5 times tension stretching method was used. The same operations as above were carried out, and the properties of the obtained products are shown in Table 1.

【表】 実施例1と比較例1〜2とを比較してみると、
射出成形又は引張延伸法により作つた容器より、
本発明による圧延成形より得た薄膜を使用した容
器の方が、透明性が著しく良く、且つ容器の側壁
の剛性も大きく、さらに容器の座屈強度も大きい
ことが明白である。 実施例 2 密度0.951、M.I.0.3の高密度ポリエチレンにカ
ーボンブラツク0.2%を練り込む事及び圧延ロー
ル温度115℃とした以外は実施例1と同様に圧延
し、これを25mmφの芯材に120℃の薄膜温度で95
回巻付けた後、125℃の熱風炉中で3分間加熱、
完全に層間密着を行ない、芯材を抜き管状体(パ
イプ)とした。 諸管状体の各性質を第2表に示す。 比較例 3 実施例2で使用した高密度ポリエチレン及びカ
ーボンブラツク0.2%添加したものを原料とし
て、押出成形にて、実施例2と同じ形状のパイプ
を作り、各性質を第2表に示す。 比較例 4 実施例2においては非等周速圧延法により得た
薄膜を使用したのであるが、これに代つて7倍の
引張延伸法により得た40μの薄膜を使用した以外
はすべて実施例2と同じ操作を行い、各性質を第
2表に示した。
[Table] Comparing Example 1 and Comparative Examples 1 and 2,
From containers made by injection molding or tensile stretching,
It is clear that the container using the thin film obtained by rolling according to the present invention has significantly better transparency, the rigidity of the side wall of the container is greater, and the buckling strength of the container is also greater. Example 2 Rolling was carried out in the same manner as in Example 1 except that 0.2% of carbon black was kneaded into high-density polyethylene with a density of 0.951 and MI of 0.3 and the rolling roll temperature was 115°C, and this was rolled into a 25 mmφ core material at 120°C. At a film temperature of 95
After wrapping, heat in a hot air oven at 125℃ for 3 minutes.
After complete interlayer adhesion, the core material was removed and a tubular body (pipe) was created. Table 2 shows the properties of the various tubular bodies. Comparative Example 3 Using the high-density polyethylene used in Example 2 and 0.2% carbon black added as raw materials, a pipe having the same shape as Example 2 was made by extrusion molding, and the properties are shown in Table 2. Comparative Example 4 In Example 2, a thin film obtained by a non-uniform circumferential speed rolling method was used, but in place of this, a 40μ thin film obtained by a 7-fold tensile stretching method was used. The same operations as above were performed, and the properties are shown in Table 2.

【表】【table】

【表】 実施例2と比較例3〜4とを比較すると、押出
成形又は引張延伸法により作つたパイプより、本
発明による圧延成形より得た薄膜を使用したパイ
プの方が、強度も大きいことが明白である。
[Table] Comparing Example 2 and Comparative Examples 3 and 4, the strength of the pipe using the thin film obtained by rolling according to the present invention is greater than that of the pipe made by extrusion molding or tensile stretching. is obvious.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を示し、第2図は
本発明による非等周速圧延法を用いたものであ
る。 1…熱可塑性樹脂シート、2…圧延薄膜、3…
芯材、4,4′…圧延ロール、5…加熱装置、6
…押えロール、7…容器底部材料。
FIG. 1 shows one embodiment of the present invention, and FIG. 2 shows one using the non-uniform circumferential speed rolling method according to the present invention. 1... Thermoplastic resin sheet, 2... Rolled thin film, 3...
Core material, 4, 4'... Roll, 5... Heating device, 6
...Press roll, 7...Container bottom material.

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂シートをその融点より下かまた
は軟化点以下の温度で固体状態のまま長手方向に
一対のロール間で圧延し、得られた圧延シート
を、その融点より下かまたは軟化点以下でかつ前
記ロール圧延時よりも高い温度に加熱して所定の
芯材に巻付け積層し各積層面間を前記加熱シート
の収縮力により圧着し、次いで前記芯材を除去す
ることを特徴とする、熱可塑性樹脂成形品の製造
方法。 2 前記シートがロール圧延により長手方向に
1.5〜10倍に伸長される、前記特許請求の範囲第
1項記載の製造方法。 3 前記一対のロールが等周速で回転する、前記
特許請求の範囲第1項記載の製造方法。 4 前記圧延を非等周速圧延法で施し、非等周速
ロール間隙を通過せしめた前記シートをそのまま
高周速圧延ロール表面へ該ロール全周の1/8以上
に密着して沿わせた後引き取る、前記特許請求の
範囲第1項記載の製造方法。 5 前記芯材のいずれか一方の端面に容器底部形
成材を配置した、前記特許請求の範囲第1項記載
の製造方法。
[Scope of Claims] 1 A thermoplastic resin sheet is longitudinally rolled between a pair of rolls at a temperature below its melting point or below its softening point in a solid state, and the resulting rolled sheet is rolled at a temperature below its melting point or below its softening point. or heated to a temperature below the softening point and higher than that during roll rolling, wrapped around a predetermined core material and laminated, the laminated surfaces are crimped by the shrinkage force of the heating sheet, and then the core material is removed. A method for producing a thermoplastic resin molded product, characterized by: 2 The sheet is rolled in the longitudinal direction
The manufacturing method according to claim 1, wherein the film is stretched 1.5 to 10 times. 3. The manufacturing method according to claim 1, wherein the pair of rolls rotates at a constant circumferential speed. 4 The rolling was carried out by a non-uniform circumferential speed rolling method, and the sheet passed through the non-uniform circumferential speed roll gap was directly attached to the surface of a high-peripheral speed rolling roll over 1/8 or more of the entire circumference of the roll. The manufacturing method according to claim 1, wherein the manufacturing method is carried out after being collected. 5. The manufacturing method according to claim 1, wherein a container bottom forming material is arranged on one end surface of the core material.
JP4532776A 1976-04-23 1976-04-23 Process for making thermoplastic moldings Granted JPS52128974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4532776A JPS52128974A (en) 1976-04-23 1976-04-23 Process for making thermoplastic moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4532776A JPS52128974A (en) 1976-04-23 1976-04-23 Process for making thermoplastic moldings

Publications (2)

Publication Number Publication Date
JPS52128974A JPS52128974A (en) 1977-10-28
JPS6127177B2 true JPS6127177B2 (en) 1986-06-24

Family

ID=12716206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4532776A Granted JPS52128974A (en) 1976-04-23 1976-04-23 Process for making thermoplastic moldings

Country Status (1)

Country Link
JP (1) JPS52128974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164475U (en) * 1988-05-07 1989-11-16
JPH0622820Y2 (en) * 1988-09-28 1994-06-15 ウシオ電機株式会社 Backlight device for liquid crystal display

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE409562B (en) * 1977-12-23 1979-08-27 Tetra Pak Int METHODS AND DEVICES IN THE MANUFACTURE OF THERMOPLASTIC HEAT SHRINKABLE MATERIALS
JPS56136329A (en) * 1980-03-28 1981-10-24 Nitto Electric Ind Co Ltd Production of heat-shrinkable tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164475U (en) * 1988-05-07 1989-11-16
JPH0622820Y2 (en) * 1988-09-28 1994-06-15 ウシオ電機株式会社 Backlight device for liquid crystal display

Also Published As

Publication number Publication date
JPS52128974A (en) 1977-10-28

Similar Documents

Publication Publication Date Title
US4239064A (en) Insulation tubes and process of making same
US3957940A (en) Wrinkle free extrusion coating of heat fusible foam sheet
JP4721615B2 (en) Film orthogonal laminate and method for producing the same
JPH09507799A (en) Highly moisture-proof film capable of being heat-sealed and its manufacturing method
JPS6127177B2 (en)
US4304268A (en) Insulation tubes and process of making same
US4535526A (en) Method for covering a length of pipe
JPS58168524A (en) Nylon multilayer packing
KR940005376A (en) Molding method of liquid crystal resin composite and apparatus therefor
JPS6134973B2 (en)
JPH02117815A (en) Joining method of polymeric materials drawing-processed
JPS6038963B2 (en) Separation device
JP4079610B2 (en) Easy tear laminate film and easy tear bag
JPH02178016A (en) Liquid crystalline polymer film and manufacture thereof
JPS5850167B2 (en) How to coat metal pipes with thermoplastic resin
JP2530732B2 (en) Laminated film for thermocompression lamination
JPS6359374B2 (en)
JPS584608B2 (en) Method for manufacturing heat-shrinkable covering sheet
JPS5850168B2 (en) How to cover the core
JPS6317022A (en) Laminate and manufacture thereof
JPS6018289B2 (en) Lamination welding method for thermoplastic resin foam sheets
JP5932176B2 (en) Winding liner for rubber band member
JP2555383B2 (en) Manufacturing method of spiral sleeve for display
JPS6132139B2 (en)
JPS6143197B2 (en)