JPS6351092B2 - - Google Patents

Info

Publication number
JPS6351092B2
JPS6351092B2 JP55165343A JP16534380A JPS6351092B2 JP S6351092 B2 JPS6351092 B2 JP S6351092B2 JP 55165343 A JP55165343 A JP 55165343A JP 16534380 A JP16534380 A JP 16534380A JP S6351092 B2 JPS6351092 B2 JP S6351092B2
Authority
JP
Japan
Prior art keywords
rolling
multilayer film
resin
roll
gas barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55165343A
Other languages
Japanese (ja)
Other versions
JPS5789926A (en
Inventor
Katsuya Yazaki
Hachiro Saito
Hoko Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP16534380A priority Critical patent/JPS5789926A/en
Publication of JPS5789926A publication Critical patent/JPS5789926A/en
Publication of JPS6351092B2 publication Critical patent/JPS6351092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガスバリヤー性、水蒸気バリヤー性、
および透明性にすぐれた多層フイルムの製造方法
に関するものである。 (技術的背景) 従来、オレフイン系樹脂と酢酸ビニル共重合体
けん化物樹脂等のガスバリヤー性樹脂から構成さ
れた多層フイルムまたはシート(以下、単に多層
フイルムと略記する)は、オレフイン系樹脂の有
するすぐれた耐水蒸気透過性と、酢酸ビニル共重
合体けん化物、特にエチレン含量の少ない酢酸ビ
ニル共重合体けん化物の有する高度の気体遮断性
を併せて保持するすぐれた特性をもつたフイルム
として、特に食品包装用等に広く使用されてい
る。 このような組み合せの多層フイルムは共押出
し、またはドライラミネート等の方法で得られる
が、これらの無配向の多層フイルムは透明性に欠
け、また気体等の遮断性に関しても高い性能を望
むことはできない。 このため、上記の多層フイルムをさらに配向さ
せ、透明性やガス遮断性の一層の向上を目指す試
みがなされており、具体的には、上記多層フイル
ムを二軸延伸、近接一軸延伸、あるいは等速ロー
ル圧延する等の方法が提案され、また研究されて
いる。 しかしながら、延伸、すなわち引張りによる配
向方法では経済的な問題等から薄肉構成を指向す
るガスバリヤー層が引張りによる配向に追随でき
ず、ピンホールの発生、あるいは破断等のトラブ
ルを発生させる。さらに透明性の改善は一軸延伸
の場合にはそれ程認められず、特にオレフイン系
樹脂として低密度ポリエチレンを使用した場合な
どは逆に無配向に比して透明性を低下させる場合
すらある。 また、近年行なわれている冷間等速ロール圧延
法(特開昭51―52475号公報)は圧縮力によつて
一軸配向を付与するものであり上述のような引張
り延伸法のもつ不利は一応解消されるもののこれ
また別の不利益を有するものである。 すなわち、この方法は第1に透明性の向上、あ
るいは気体等に対する遮断性をさらに向上させる
に足りる倍率まで配向させるには巨大な圧下力
(圧縮力)を作用させねばならず、工業化できる
経済速度では設備規模として膨大なものにならざ
るをえない。 また、第2に、この方法は50℃以下の低温領域
を好適な圧延条件としているが、このような温度
下では透明性の大幅な改善が難かしいことが判明
した。 (発明の目的) 本発明者らは、無延伸多層フイルムの透明性、
または気体、水蒸気等の遮断性を向上させるため
上記の冷間等速ロール圧延法の不備を解消し、実
用化が可能な効果的なロール圧延法を開発すべく
鋭意研究した結果本発明に到達したものである。 (本発明の方法) 本発明の方法は、オレフイン系樹脂の少くとも
一層と、ガスバリヤー性樹脂から構成される多層
フイルムを、該多層フイルムを構成する樹脂群中
の最も低い溶融点または軟化点(以下、単に溶融
点と略記する)を示す樹脂の溶融点を超えず、か
つ該溶融点より30℃以上低くない温度範囲に加熱
した状態で少くとも一対の非等速ロールを用いて
圧延して、該多層フイルムに配向を付与する方法
である。 本発明において使用する非等速圧延ロールは非
等速ロール間の周速比が1.1以上から圧延倍率
(圧延前のフイルムの厚さに対する圧延後のフイ
ルムの厚さ)の数値を下廻る範囲で使用されるこ
とが肝要であり、これにより圧延に要するロール
の圧下力を飛躍的に減少させることができると同
時に圧延効率を高めることができる。なお、周速
比を圧延倍率以上にすると多層フイルムを切断し
たり、ロールが異常振動を起して運転が阻害され
るなどのおそれがある。 また、本発明においては、多層フイルムの圧延
倍率は1.5倍〜8倍、好ましくは2〜6倍とする
のがよく、これにより、多層フイルムの各特性を
大幅に改善することができる。この圧延倍率は従
来の等速回転のロール圧延法では得られにくく、
たとえ得られたとしてもロール有効幅に対し著し
く狭幅のフイルムとなり、また、このさいは圧延
ロールも低速運転しかできない。 なお、多層フイルムを前記の温度範囲で圧延す
るには慣用の方法でロールを加熱した状態で使用
し、必要に応じ適当な方法で多層フイルムの予熱
を行つてもよい。このさい、圧延温度が前記多層
フイルムを構成する樹脂群中の最も低い溶融点を
示す樹脂の溶融点より30℃以上低くなると、圧延
効率、透明性等が低下し、ロールの圧下力が必要
以上に高くなるばかりでなく経済速度も低下す
る。また、非等速ロールの高速側の周速度は圧延
ロールから送り出される配向フイルムの速度に等
しくなる。 (多層フイルム) 本発明の対照となる多層フイルムは、便宜的に
オレフイン系樹脂層をA層、ガスバリヤー性樹脂
層をB層として表示した場合には、その構成はA
―B、あるいはA―B―Aのいずれの構成をとつ
てもよい。 また、このような構成を主として他種の樹脂層
をさらに一層以上加えることも可能である。厚み
についても特に制限はないが上記B層をより薄く
する場合には、本発明の方法は一層効果的なもの
となる。 本発明に使用される多層フイルムには共押出成
形による共押出し多層フイルム、あるいはドライ
ラミネート等により予め多層体としたものが使用
され、また、前記ポリオレフイン系フイルムとガ
スバリヤー性樹脂フイルムのおのおのを圧延時に
同時に導入して多層化して使用してもよい。 本発明において、上記A層を構成する樹脂とし
ては代表的には高密度ポリエチレン、低・中密度
ポリエチレン、およびポリプロプレン、ポリブテ
ン―1、ポリ4メチルペンテン―1等が挙げられ
る。さらに上記各樹脂を主成分とした共重合体ま
たは混合体であつても差し支えない。 なお、これらのオレフイン系樹脂は、選択する
樹脂の種類によつてえられる多層フイルムの水蒸
気透過性等が相対的に変化する。従つてその選択
は使用目的に応じて適宜になされなければならな
い。特に低密度あるいは中密度ポリエチレンを選
択した場合には比較的低圧延倍率で高度な透明性
を有し、かつ一軸配向体の特性である縦裂け性が
起りにくいすぐれたフイルムが得られ、本発明に
よる効果をもつとも発揮できる。 ちなみに、この構成の多層フイルムを引張り力
による延伸法によつて配向を付与した場合には、
表面の荒れにより透明性はむしろ配向前より低下
する傾向にある。 本発明に使用する前記B層のガスバリヤー性樹
脂としては、エチレン―酢酸ビニル共重合体のけ
ん化物、ポリビニルアルコール系樹脂、アクリロ
ニトリル系樹脂、ポリアミド系樹脂、ポリ塩化ビ
ニリデン系樹脂等のガスバリヤー性を有する樹脂
が挙げられ、特にエチレン含有量が20〜50モル%
の範囲でけん化度を90%以上と高くしたエチレン
―酢酸ビニル共重合体のけん化物は気体遮断性に
すぐれ、同時に耐水蒸気透過性、透明性にもすぐ
れた多層フイルムをうるには好適な材料である。 また、これらのA層、B層間に必要に応じて接
着層として、アイオノマー、エチレン―不飽和カ
ルボン酸(またはその誘導体)共重合体、マレイ
ン酸等による変性ポリオレフイン、エチレン―酢
酸ビニル共重合体などの極性基を有するポリオレ
フイン系重合体、その他A、B両層に対し接着性
を有する樹脂を挿入することができる。 (本発明の効果) 以上に詳述したとおり、本発明の方法によれば
ロール有効幅にほぼ一致した幅をもつた高い圧延
倍率の多層フイルムが経済速度で得られるばかり
でなく、圧延ロールの圧下力を飛躍的に減少さ
せ、従来の等速圧延法、延伸法に比して圧延後の
層間剥離強度が大きく、ガスバリヤー層の薄い、
透明性の向上した多層フイルムを安価に製造する
ことができる。 なお、該圧延ロールの表面を硬質クロムメツキ
を施す等の加工を行ない、表面粗度(JIS
B0601)をIS以下、好ましくは0.85S以下に保持
することにより、透明性をさらに向上させること
も可能である。 以下に、本発明の実施例を記載して、本発明を
さらに具体的に説明する。 実施例 多層フイルムの製造に関し、同一フイルム原料
を使用して、本発明の方法である温間非等速ロー
ル圧延法によつて製造した場合と、従来の冷間等
速ロール圧延法、あるいは近接ロール圧伸法によ
つて製造した場合の、製品多層フイルムの品質の
比較試験を行なつた結果を第1表および第2表に
示す。 比較試験についての諸条件は次の通りである。 使用原料:低密度ポリエチレン M.I 2.0g/10分 密度 0.924g/cm3 軟化点 98℃ エチレン―酢酸ビニル共重合体けん化物 エチレン含量 32モル% けん化度 99% 極限粘度 0.14/g (溶媒;水―フエノール系) 製膜:インフレーシヨン共押出し多層フイルム、
切開いた後400mm幅にスリツトしたものを
原反フイルムとする。 ダイ径 150mmφ 3種3層円環ダイ 最内層;低密度ポリエチレン 中間接着層;サーリン(アイオノマー) M.I 1.5g/10分 最外層;エチレン―酢酸ビニル共重合体け
ん化物 ロール圧延:圧延加熱ロール(対);面長500mm、
長さ/直径(L/D)1.9 表面粗度0.2S 予熱装置:フイルム接触長 約2m 圧延ロール(下側)軸受部にロードセ
ル装着、圧下力検出 添付第1図に示すようにフイルムを通し
て圧延する。 近接ロール延伸:延伸加熱ロール(対)面長500
mm、径250mmφ ロールギヤツプ1mm 予熱装置 フイルム接触長 約2m 1対の延伸加熱ロールの周速度差によ
り、第2図のようにして延伸する。
The present invention has gas barrier properties, water vapor barrier properties,
The present invention also relates to a method for producing a multilayer film with excellent transparency. (Technical Background) Conventionally, multilayer films or sheets (hereinafter simply referred to as multilayer films) composed of an olefin resin and a gas barrier resin such as a saponified vinyl acetate copolymer resin have Especially as a film that has excellent water vapor permeability and high gas barrier properties possessed by saponified vinyl acetate copolymers, especially saponified vinyl acetate copolymers with low ethylene content. Widely used for food packaging, etc. Multilayer films with such combinations can be obtained by methods such as coextrusion or dry lamination, but these non-oriented multilayer films lack transparency and cannot be expected to have high performance in terms of gas barrier properties. . For this reason, attempts have been made to further improve transparency and gas barrier properties by further orienting the above multilayer film. Methods such as rolling have been proposed and are being researched. However, in the orientation method by stretching, that is, by pulling, the gas barrier layer, which is intended to have a thin wall structure, cannot follow the orientation by stretching due to economical problems, etc., and problems such as pinholes and breakage occur. Further, the improvement in transparency is not so noticeable in the case of uniaxial stretching, and in particular when low density polyethylene is used as the olefin resin, the transparency may even be reduced compared to non-oriented. In addition, the cold constant velocity roll rolling method (Japanese Patent Application Laid-Open No. 51-52475), which has been practiced in recent years, imparts uniaxial orientation by compressive force, and the disadvantages of the tensile stretching method described above are temporarily eliminated. Although it can be resolved, it has other disadvantages. In other words, in this method, firstly, a huge reduction force (compression force) must be applied to improve transparency or to achieve orientation to a magnification sufficient to further improve barrier properties against gases, etc., and it is difficult to achieve economical speed for industrialization. Therefore, the scale of the equipment would have to be enormous. Secondly, although this method uses a low temperature range of 50° C. or lower as a suitable rolling condition, it has been found that it is difficult to significantly improve transparency at such temperatures. (Object of the invention) The present inventors have discovered that the transparency of an unstretched multilayer film,
The present invention was achieved as a result of intensive research aimed at solving the deficiencies of the above-mentioned cold constant velocity roll rolling method and developing an effective roll rolling method that can be put to practical use in order to improve the barrier properties against gases, water vapor, etc. This is what I did. (Method of the Present Invention) The method of the present invention is characterized in that a multilayer film composed of at least one layer of olefinic resin and a gas barrier resin is heated to the lowest melting point or softening point of the resin group constituting the multilayer film. (Hereinafter simply referred to as melting point) The resin is heated to a temperature range that does not exceed the melting point of the resin and is not lower than 30°C than the melting point, and is rolled using at least a pair of non-uniform speed rolls. This is a method of imparting orientation to the multilayer film. The non-uniform rolling rolls used in the present invention have a circumferential speed ratio between the non-uniform rolling rolls ranging from 1.1 or more to less than the rolling ratio (the thickness of the film after rolling relative to the thickness of the film before rolling). It is essential that the rolling agent be used, and thereby the rolling force of the rolls required for rolling can be dramatically reduced, and at the same time, the rolling efficiency can be increased. It should be noted that if the circumferential speed ratio is made higher than the rolling magnification, there is a risk that the multilayer film may be cut or the rolls may cause abnormal vibrations, which may impede the operation. Further, in the present invention, the rolling magnification of the multilayer film is preferably 1.5 to 8 times, preferably 2 to 6 times, so that each characteristic of the multilayer film can be significantly improved. This rolling magnification is difficult to achieve with the conventional constant speed roll rolling method.
Even if it were obtained, the film would be extremely narrow compared to the effective width of the roll, and in this case, the rolling roll could only be operated at a low speed. In order to roll the multilayer film in the above temperature range, the rolls may be heated in a conventional manner, and the multilayer film may be preheated by an appropriate method if necessary. At this time, if the rolling temperature is 30°C or more lower than the melting point of the resin that has the lowest melting point among the resin groups constituting the multilayer film, rolling efficiency, transparency, etc. will decrease, and the rolling force of the rolls will be higher than necessary. Not only will it become more expensive, but the economic speed will also slow down. Further, the peripheral speed on the high speed side of the non-uniform speed roll is equal to the speed of the oriented film sent out from the rolling roll. (Multilayer film) When the multilayer film to be compared with the present invention is conveniently expressed as layer A for the olefin resin layer and layer B for the gas barrier resin layer, its structure is A.
-B or ABA configuration. Moreover, it is also possible to mainly add one or more resin layers of other types to such a structure. Although there is no particular restriction on the thickness, the method of the present invention becomes even more effective when the layer B is made thinner. The multilayer film used in the present invention is a coextruded multilayer film formed by coextrusion molding, or a multilayer film formed in advance by dry lamination, etc., and the polyolefin film and gas barrier resin film are each rolled. Sometimes, they may be introduced simultaneously and used in a multilayered manner. In the present invention, typical resins constituting the layer A include high-density polyethylene, low/medium density polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, and the like. Furthermore, a copolymer or a mixture containing each of the above resins as a main component may also be used. Note that, among these olefin resins, the water vapor permeability and the like of the resulting multilayer film vary depending on the type of resin selected. Therefore, the selection must be made appropriately depending on the purpose of use. In particular, when low-density or medium-density polyethylene is selected, an excellent film can be obtained that has a high degree of transparency at a relatively low rolling ratio and is less prone to longitudinal tearing, which is a characteristic of uniaxially oriented materials. It can also be demonstrated with the effect of By the way, when a multilayer film with this structure is oriented by a stretching method using tensile force,
Due to surface roughness, transparency tends to be lower than before orientation. The gas barrier resin of layer B used in the present invention includes gas barrier resins such as saponified ethylene-vinyl acetate copolymer, polyvinyl alcohol resin, acrylonitrile resin, polyamide resin, and polyvinylidene chloride resin. Examples include resins with an ethylene content of 20 to 50 mol%.
The saponified product of ethylene-vinyl acetate copolymer with a high degree of saponification of 90% or more in the range of is a material suitable for obtaining multilayer films with excellent gas barrier properties, as well as excellent water vapor permeability and transparency. It is. In addition, as an adhesive layer between these A layer and B layer, if necessary, an ionomer, an ethylene-unsaturated carboxylic acid (or derivative thereof) copolymer, a modified polyolefin with maleic acid, etc., an ethylene-vinyl acetate copolymer, etc. It is possible to insert a polyolefin polymer having a polar group, or a resin having adhesive properties to both layers A and B. (Effects of the present invention) As detailed above, according to the method of the present invention, not only can a multilayer film with a width almost matching the roll effective width and a high rolling ratio be obtained at an economical speed, but also The rolling force is dramatically reduced, the delamination strength after rolling is greater than that of the conventional constant speed rolling method and stretching method, and the gas barrier layer is thinner.
A multilayer film with improved transparency can be produced at low cost. In addition, the surface of the rolling roll is processed such as hard chrome plating, and the surface roughness (JIS
It is also possible to further improve transparency by keeping the B0601) below the IS, preferably below 0.85S. EXAMPLES Below, the present invention will be explained in more detail by describing examples of the present invention. Example Regarding the production of a multilayer film, the same film raw material is used to produce it by the warm non-uniform roll rolling method of the present invention, and by the conventional cold constant velocity roll rolling method or the near-field rolling method. Tables 1 and 2 show the results of comparative tests on the quality of product multilayer films produced by the roll drawing method. The conditions for the comparative test are as follows. Raw materials used: Low density polyethylene MI 2.0g/10 minutes Density 0.924g/cm 3 Softening point 98℃ Saponified ethylene-vinyl acetate copolymer Ethylene content 32 mol% Saponification degree 99% Intrinsic viscosity 0.14/g (Solvent: Water) (phenol-based) Film production: Inflation coextrusion multilayer film,
After cutting, the film is slit to a width of 400 mm and is used as the original film. Die diameter 150mmφ 3 types 3 layer circular die Innermost layer: Low density polyethylene Intermediate adhesive layer: Surlyn (ionomer) MI 1.5g/10min Outermost layer: Saponified ethylene-vinyl acetate copolymer roll Rolling: Rolling heating roll (vs. );Surface length 500mm,
Length/diameter (L/D) 1.9 Surface roughness 0.2S Preheating device: Film contact length approx. 2m A load cell is attached to the rolling roll (lower) bearing to detect rolling force.Roll the film through it as shown in Figure 1. . Proximity roll stretching: Stretching heating roll (pair) surface length 500
mm, diameter 250mmφ Roll gap 1mm Preheating device Film contact length approximately 2m Stretching is performed as shown in Figure 2 by the difference in circumferential speed of a pair of stretching and heating rolls.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の温間非等速ロール圧延または
従来の冷間等速ロール圧延法におけるロール圧延
の概略説明図であり、第2図は従来の近接ロール
延伸法の概略説明図である。 符号、1……原反フイルム、2……予熱装置、
3……下側ロール、3′……上側ロール、4,
4′……近接ロール、α……ロールギヤツプ。
FIG. 1 is a schematic explanatory diagram of roll rolling in the warm non-uniform roll rolling method of the present invention or the conventional cold constant velocity roll rolling method, and FIG. 2 is a schematic explanatory diagram of the conventional close roll stretching method. . Code, 1... original film, 2... preheating device,
3...lower roll, 3'...upper roll, 4,
4'... Proximity roll, α... Roll gap.

Claims (1)

【特許請求の範囲】 1 オレフイン系樹脂の少くとも一層とガスバリ
ヤー性樹脂層とからなる多層フイルムまたはシー
トを、該多層フイルムまたはシートを構成する樹
脂群中の最も低い溶融点(または軟化点)を示す
樹脂の溶融点(または軟化点)を超えない温度で
かつ該溶融点(または軟化点)より30℃以上低く
ない温度範囲で加熱した状態で温間非等速ロール
圧延して該多層フイルムに配向を付与するにさい
し、一対の圧延ロールの周速比が少くとも1.1以
上、圧延倍率未満の異なる速度で圧延することを
特徴とする多層フイルムの製造方法。 2 前記ロール圧延において圧延倍率(圧延前の
膜厚に対する圧延後の膜厚)が1.5倍以上8倍以
下である特許請求の範囲第1項記載の多層フイル
ムの製造方法。 3 ガスバリヤー性樹脂がエチレン―酢酸ビニル
共重合体のけん化物である特許請求の範囲第1項
または第2項に記載の多層フイルムの製造法。 4 オレフイン系樹脂が密度0.91〜0.94の低密度
または中密度ポリエチレンである特許請求の範囲
第1項ないし第3項のいずれかに記載の多層フイ
ルムの製造方法。
[Claims] 1 A multilayer film or sheet consisting of at least one layer of olefin resin and a gas barrier resin layer has the lowest melting point (or softening point) of the resin group constituting the multilayer film or sheet. The multilayer film is formed by warm non-uniform roll rolling at a temperature that does not exceed the melting point (or softening point) of the resin and is not lower than 30°C or more than the melting point (or softening point). 1. A method for producing a multilayer film, which comprises rolling a pair of rolling rolls at different speeds with a circumferential speed ratio of at least 1.1 and less than a rolling magnification. 2. The method for producing a multilayer film according to claim 1, wherein the rolling ratio (the film thickness after rolling relative to the film thickness before rolling) in the roll rolling is 1.5 times or more and 8 times or less. 3. The method for producing a multilayer film according to claim 1 or 2, wherein the gas barrier resin is a saponified ethylene-vinyl acetate copolymer. 4. The method for producing a multilayer film according to any one of claims 1 to 3, wherein the olefin resin is low-density or medium-density polyethylene with a density of 0.91 to 0.94.
JP16534380A 1980-11-26 1980-11-26 Manufacture of multiplayer film Granted JPS5789926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16534380A JPS5789926A (en) 1980-11-26 1980-11-26 Manufacture of multiplayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16534380A JPS5789926A (en) 1980-11-26 1980-11-26 Manufacture of multiplayer film

Publications (2)

Publication Number Publication Date
JPS5789926A JPS5789926A (en) 1982-06-04
JPS6351092B2 true JPS6351092B2 (en) 1988-10-12

Family

ID=15810534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16534380A Granted JPS5789926A (en) 1980-11-26 1980-11-26 Manufacture of multiplayer film

Country Status (1)

Country Link
JP (1) JPS5789926A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579696A (en) * 1982-09-27 1986-04-01 E. I. Dupont De Nemours And Company Process for making coextruded elastomeric films
US5558930A (en) * 1994-06-23 1996-09-24 Tredegar Industries, Inc. Heat sealable, high moisture barrier film and method of making same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173061A (en) * 1974-12-21 1976-06-24 Asahi Chemical Ind AKURIRUKEIJUGOTAIICHIJIKUHAIKOSHIITONO SEIZOHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173061A (en) * 1974-12-21 1976-06-24 Asahi Chemical Ind AKURIRUKEIJUGOTAIICHIJIKUHAIKOSHIITONO SEIZOHOHO

Also Published As

Publication number Publication date
JPS5789926A (en) 1982-06-04

Similar Documents

Publication Publication Date Title
US6689857B1 (en) High density polyethylene film with high biaxial orientation
US4198256A (en) Method of making a heat-sealable oriented polypropylene film
AU612699B2 (en) Biaxially oriented multiplayer barrier films and methods of making
JP2894743B2 (en) High-strength, high-modulus polyolefin composite with improved drawability in the solid state
US5024799A (en) Method for producing an embossed oriented film
WO1997048553A1 (en) Highly oriented fluoropolymer films
KR20010024421A (en) Multilaminar high density polyethylene film with high biaxial orientation
EP0410792B1 (en) Double bubble process for making strong, thin films
US20020160217A1 (en) Method for producing biaxially stretched film made of ethylene-vinyl alcohol copolymer
JPS6097847A (en) Heat-shrinkable laminated film
GB1567189A (en) Laminated film
JP3998340B2 (en) Process for producing saponified ethylene-vinyl acetate copolymer composition
JPS5913345B2 (en) fukugou film
JPS6351092B2 (en)
KR100815605B1 (en) Apparatus and method for preparing co-extruded multilayer film
JP2530732B2 (en) Laminated film for thermocompression lamination
JP4683251B2 (en) Method for producing multilayer resin film having oxygen gas barrier property
JP4262802B2 (en) Process for producing saponified pellets of ethylene-vinyl acetate copolymer
JP2957660B2 (en) Heat shrinkable laminated film
JP4726353B2 (en) Method for producing polyamide-based simultaneous biaxially stretched laminated film
KR100500681B1 (en) Highly oriented fluoropolymer films
JPH04357017A (en) Manufacture of polyethylene-based biaxially oriented film
JP2005001240A (en) Biaxially oriented film of ethylene-vinyl alcohol copolymer and vacuum insulation body
JPS6246341B2 (en)
JPH0493225A (en) Sealant film