JPS6359374B2 - - Google Patents

Info

Publication number
JPS6359374B2
JPS6359374B2 JP18768782A JP18768782A JPS6359374B2 JP S6359374 B2 JPS6359374 B2 JP S6359374B2 JP 18768782 A JP18768782 A JP 18768782A JP 18768782 A JP18768782 A JP 18768782A JP S6359374 B2 JPS6359374 B2 JP S6359374B2
Authority
JP
Japan
Prior art keywords
wound
tape
rotating shaft
heat
adhesive tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18768782A
Other languages
Japanese (ja)
Other versions
JPS5976212A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18768782A priority Critical patent/JPS5976212A/en
Publication of JPS5976212A publication Critical patent/JPS5976212A/en
Publication of JPS6359374B2 publication Critical patent/JPS6359374B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/8008Component parts, details or accessories; Auxiliary operations specially adapted for winding and joining
    • B29C53/8083Improving bonding of wound materials or layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/566Winding and joining, e.g. winding spirally for making tubular articles followed by compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/581Winding and joining, e.g. winding spirally helically using sheets or strips consisting principally of plastics material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱可塑性樹脂やゴム組成物等の偏平な
基材テープおよびホツトメルト型接着剤等の偏平
な接着剤テープから熱収縮チユーブを製造する方
法に関するものであつて、更に詳しくは被覆体へ
の被着性に優れ、且つ使用目的に応じ収縮率や厚
みや長さ等を自由に選択し得る熱収縮チユーブを
連続的に製造することを可能になした熱収縮チユ
ーブの製造方法に関するものである。 従来、この種の熱収縮チユーブの製造方法とし
ては、押出機の環状ダイスから押出された原料チ
ユーブをその軟化点以上融点以下の温度でガスや
液体や固形物を該チユーブ内に圧入してその径を
膨張拡大させて冷却固化する方法や厚肉の熱収縮
チユーブの製造方法として使用されるところの原
料チユーブを熱変形温度以上に加熱して円筒成型
品の一端を密封したのち、ガスや液体等を該チユ
ーブ内に圧入しサイジングパイプの内壁に密着す
るまで膨張させて冷却固化する方法が一般に採ら
れてきた。 しかしながら、上記方法はいずれも環状ダイス
より成型されるために得られる熱収縮チユーブの
口径および肉厚は自ずからダイスの形状に限定さ
れ、これより目的とする熱収縮率、口径、肉厚等
成型せんとする製品の品種に応じたダイスをその
都度準備しなければならないために製品に対する
製造コストを高めるばかりでなく製造工程上にお
いても煩雑であり、特に後者の方法にあつては連
続成型ができないために製造が頗る複雑になり、
また得られる製品の用途も制限され、更には成型
上発生するピンホールにより防水、防食効果が阻
害されるという欠点を有していた。 本発明は上記に鑑み発明されたものであつて、
使用目的に応じ収縮率や厚みや長さ等を自由に選
択し得る熱収縮チユーブを連続的に成型し得るよ
うになした熱収縮チユーブの製造方法を提供する
ことにあり、また従来の熱収縮チユーブが環状の
ダイスより吐出された円管状の原料チユーブによ
つて製造する方法が採られていたが、本発明はフ
ラツトなダイスより吐出された偏平状の接着剤テ
ープおよび基材テープを回転軸体に供給し、前後
に捲回される上記テープの接合若しくは重り接合
によつて熱収縮チユーブを製造する方法を提供す
ることにある。 以下、本発明を図面に示す実施例について説明
し、その特徴とするところを詳述すれば、第1図
は本発明の製造過程を示す説明図で、図中1は回
転軸体、2はこの回転軸体1の周面に捲回して接
着剤層からなる内管Aを成型するためのホツトメ
ルト型接着剤等の偏平な接着剤テープBを成型す
るためのダイスであり、2′はこの回転軸体1の
周面に捲回して外管Cを成型するための熱可塑性
樹脂やゴム組成物等偏平な基材テープDを成型す
るためのダイスを示す。 こゝに示す回転軸体1は複数本のロール1aの
集合からなつており、各ロールは一つの仮想円周
に沿つて相隣接するロール間に一定の間隔を保つ
ように並列して配置してあり、その各一端は基板
3に、他端は基板3に対設する軸受板4に各々回
転自由に軸承させ、これら全体の組合せによつて
実質的に一つの回転軸体1を構成するようにして
ある。 またこの実施例では上記各ロール1aを中空体
にし、更にその一端の軸5も中空軸にして連通さ
せるとともに、この軸5の各端部に冷却水の送水
管6を接続し、他方各ロール1aの他端と中心軸
7とを管材(図示せず)にて接続して内部を連通
させ、これによつて送水管6を通して圧送する冷
却水を各ロール1aに給水し、その冷却を行うと
ともに送られた冷却水を管材を通して中心軸7の
中空部に集め、該中心軸7の端部から排水するよ
うにして回転軸体1を内部冷却できるようにして
ある。 また、この各ロール1aは前記基板3に対し軸
受板4を一方向に所要の角度回転させ、基板3に
軸承される各ロール1aの一端に対し軸受板4に
軸承され、他端の軸承点をずらすことによつて、
つまり各ロール1aを回転軸体1の中心線を中心
に捩つて傾斜させることによつて回転軸体1上に
捲回されるテープBは螺旋状に捲回される。 尚、各ロール1aの基板3側の軸端にはそれぞ
れスプロケツト(図示せず)を備え、これにかけ
るチエーン(図示せず)の運行で各ロール1aを
同一方向に等速で回転するように実質的に回転軸
体1の周面が回転するようにしてある。 このように構成してなる回転軸体1に対し、押
出機のダイス2より吐出されたホツトメルト型接
着剤等からなる偏平な接着剤テープBはその周面
に螺旋方向に沿つて供給される。 次いで、接着剤テープBは連続的に捲回される
と同時に、先に捲回された接着剤テープBの後縁
側に後から捲回する接着剤テープBの前縁側を接
合して接合された部分を押圧ロール11にて圧着
させることにより、回転軸体1の周面上に接着剤
層からなる内管Aを連続的に成型する。 次いで、押出機のダイス2′より吐出された熱
可塑性樹脂やゴム組成物等からなる偏平な基材テ
ープDは一旦シーテイングされたのち延伸され、
内管Aの周面上に螺旋方向に沿つて供給される。 即ち、この偏平な基材テープDは押出機のダイ
ス2′から吐出され回転軸体1上の内管A上に捲
回される間にシーテイングロール8にて成型さ
れ、次いで延伸を行うに必要な温度に保たれたの
ち延伸ロール9のロール間速度比によつて流れ方
向に対し2〜8倍延伸され、基材テープDが成型
される。 基材テープDの延伸倍率を2〜8倍とする所以
は2倍以下の場合にあつては所期目的とする収縮
率を有する熱収縮チユーブが得られず、一方8倍
以上の場合にあつては延伸が困難である等成型性
に劣る。 次いで、基材テープDは余熱ロール10等にて
融着最適温度に加熱、且つ引き取られながら回転
軸体1の周面に捲回された内管A上に供給され、
連続的に捲回されると同時に、先に捲回された基
材テープDの少なくとも後縁側の上面に後から捲
回する基材テープDの前縁側を重ね合わせて、こ
の重ね合わせ部分を押圧ロール11′にて圧着し
て外管Cを形成させることにより、回転軸体1の
周面上にて内周面に接着剤層を有する管体を連続
的に成型し、冷却されながら引き取られる。 基材テープDの分子配向であるが、第2図に示
すように、上記延伸処理に代えて所定のドラフト
率を掛けて引き落とすことによつて行なつてもよ
い。この場合にはダイス2′から吐出されて回転
軸体1上の内管A上に捲回される間に200〜1000
%のドラフト率が掛けられ、長手方向に配向され
る。ここにおいてドラフト率を200〜1000%とす
る所以は200%以下にあつては所期目的とする収
縮率を有する熱収縮チユーブが得られず、一方
1000%以上にあつてはドラフト時に基材テープD
が切断する等成型性に劣る。 以上、本発明を実施例について説明したが、以
上より明らかなように、本発明は押出機のダイス
から吐出された加熱溶融せるホツトメルト型接着
剤等の偏平な接着剤テープを回転軸体上に螺旋方
向に沿つて供給し、連続的に捲回させると同時に
先に捲回された上記接着剤テープの後縁側に後か
ら捲回する該接着剤テープの前縁側を接合して接
合された部分を押圧ロールにて圧着させることに
より回転軸体の周面上に接着剤層からなる内管を
連続的に成型するとともに他の押出機のダイスか
ら吐出された加熱溶融せる熱可塑性樹脂やゴム組
成物等の偏平な基材テープを所定のドラフト率を
掛けて引き落とすか若しくは一旦シーテイングし
たのちロール間の速度比によつて流れ方向に対し
所定倍率の延伸処理を施して先に回転軸体上に捲
回された接着剤テープ上に供給し連続的に捲回さ
せると同時に先に捲回された基材テープの少なく
とも後縁側の上面に後から捲回する該基材テープ
の前縁側を重ね合わせてこの重ね合わせ部分を押
圧ロールにて圧着して外管を形成させることによ
り回転軸体の周面上にて内周面を接着剤層を有す
る管体を連続的に成型することによつて熱収縮チ
ユーブを製造することから、使用目的に応じ管の
厚みや長さが自由に選択し得、従つて従来のよう
に管の長さが限定されず、また口径や肉厚に応じ
てダイスを選択する必要もなく、また偏平なテー
プに掛けられる延伸倍率若しくはドラフト率によ
り収縮率が選択されることから成型性が頗る向上
せしめられ、従来のような製品の用途限定やコス
ト高等不都合な面が完全に解消され、更には管体
の内周面に接着剤層を成層してあることから被覆
体との接合性が向上せしめられるばかりでなく成
型に伴うピンホールが閉塞されるため防水、防食
効果をも合わせ向上せしめられるものである。 以下本発明を実施例について説明するが、本発
明は必ずしもこの実施例に制約されるものではな
い。 実施例 1 幅45mmにして厚さ0.6mmの口径からなる押出機
のダイスから吐出された加熱溶融せるホツトメル
ト型接着剤等の偏平な接着剤テープを回転軸体上
に螺旋方向に沿つて供給し、連続的に捲回させる
と同時に先に捲回された上記接着剤テープの後縁
側に後から捲回する該接着剤テープの前縁側を接
合して、接合された部分を押圧ロールにて圧着さ
せることにより回転軸体の周面上に接着剤層から
なる内管を連続的に成型するとともに幅120mmに
して厚さ1.15mmの口径からなる押出機のダイスか
ら吐出され、シーテイングされた偏平なポリ塩化
ビニル基材テープに温度110℃からなる延伸ロー
ルにて2.0〜6.0倍延伸したのち回転軸体上に捲回
された上記接着剤テープ上に螺旋方向に沿つて供
給し、連続的に捲回させると同時に先に捲回され
たテープの少なくとも後縁側の上面に後ろから捲
回するテープの前縁側を重ね合わせてこの重ね合
わせ部分を押圧ロールにて圧着しながら冷却し、
第1表に示す如き内周面に接着剤層を有する熱収
縮チユーブを得た。
The present invention relates to a method for manufacturing a heat-shrinkable tube from a flat base tape made of a thermoplastic resin or a rubber composition, and a flat adhesive tape such as a hot-melt adhesive. This invention relates to a method for manufacturing heat-shrinkable tubes that has excellent adhesion properties and that enables the continuous production of heat-shrinkable tubes whose shrinkage rate, thickness, length, etc. can be freely selected depending on the purpose of use. . Conventionally, this type of heat-shrinkable tube was manufactured by pressing a raw material tube extruded from an annular die of an extruder into the tube at a temperature above the softening point and below the melting point. This method is used to expand the diameter and solidify by cooling, or to manufacture thick-walled heat-shrinkable tubes. After heating the raw material tube above the heat distortion temperature and sealing one end of the cylindrical product, gas or liquid Generally, a method has been adopted in which the material is press-fitted into the tube, expanded until it comes into close contact with the inner wall of the sizing pipe, and then cooled and solidified. However, since all of the above methods are molded using an annular die, the diameter and wall thickness of the resulting heat-shrinkable tube are naturally limited to the shape of the die, and from this, the desired heat shrinkage rate, diameter, wall thickness, etc. Since dies must be prepared each time according to the type of product to be manufactured, this not only increases the manufacturing cost of the product but also complicates the manufacturing process, especially in the latter method, since continuous molding cannot be performed. Manufacturing has become extremely complex,
Furthermore, the uses of the resulting product are limited, and furthermore, pinholes that occur during molding impair waterproof and anticorrosive effects. The present invention was invented in view of the above, and
The purpose of the present invention is to provide a method for manufacturing a heat-shrinkable tube that allows continuous molding of heat-shrinkable tubes whose shrinkage rate, thickness, length, etc. can be freely selected according to the purpose of use, and which also Previously, a method was adopted in which the tube was manufactured using a cylindrical raw material tube discharged from an annular die, but in the present invention, the flat adhesive tape and base material tape discharged from a flat die are attached to a rotating shaft. It is an object of the present invention to provide a method for manufacturing a heat-shrinkable tube by joining or weight joining the above-mentioned tapes, which are supplied to a body and wound back and forth. Embodiments of the present invention shown in the drawings will be described below, and its features will be explained in detail. FIG. 2' is a die for forming a flat adhesive tape B such as a hot melt adhesive, which is wound around the circumferential surface of the rotating shaft body 1 to form an inner tube A made of an adhesive layer. A die is shown for molding a flat base tape D made of thermoplastic resin or rubber composition, which is wound around the circumferential surface of the rotating shaft body 1 to mold the outer tube C. The rotating shaft 1 shown here consists of a set of multiple rolls 1a, each of which is arranged in parallel along one virtual circumference so as to maintain a constant distance between adjacent rolls. One end of each is rotatably supported by a base plate 3 and the other end is rotatably supported by a bearing plate 4 provided opposite to the base plate 3, and the entire combination substantially constitutes one rotating shaft body 1. It's like this. Further, in this embodiment, each of the rolls 1a is made into a hollow body, and the shaft 5 at one end thereof is also made into a hollow shaft to communicate with each other, and a water supply pipe 6 for cooling water is connected to each end of this shaft 5, and each roll 1a is made into a hollow body. The other end of 1a and the central shaft 7 are connected with a pipe material (not shown) to communicate the inside, thereby supplying cooling water, which is force-fed through the water pipe 6, to each roll 1a to cool it. The cooling water sent therewith is collected in the hollow part of the central shaft 7 through the pipe material and drained from the end of the central shaft 7, so that the rotary shaft body 1 can be cooled internally. Further, each roll 1a rotates a bearing plate 4 in one direction by a required angle with respect to the substrate 3, and one end of each roll 1a that is supported on the substrate 3 is supported on the bearing plate 4, and the bearing plate 4 on the other end is By shifting the
That is, by twisting and tilting each roll 1a about the center line of the rotating shaft 1, the tape B wound on the rotating shaft 1 is wound spirally. A sprocket (not shown) is provided at the shaft end of each roll 1a on the substrate 3 side, and a chain (not shown) connected thereto rotates each roll 1a in the same direction at a constant speed. Substantially the circumferential surface of the rotating shaft body 1 is configured to rotate. A flat adhesive tape B made of a hot-melt adhesive or the like discharged from the die 2 of an extruder is supplied to the rotating shaft body 1 constructed in this manner along the circumferential surface of the rotary shaft body 1 in a spiral direction. Next, the adhesive tape B was continuously wound, and at the same time, the leading edge side of the adhesive tape B that was wound later was joined to the trailing edge side of the adhesive tape B that was wound earlier. By pressing the parts together with a pressure roll 11, an inner tube A made of an adhesive layer is continuously formed on the circumferential surface of the rotary shaft body 1. Next, the flat base tape D made of thermoplastic resin, rubber composition, etc. discharged from the die 2' of the extruder is once sheeted and then stretched.
It is supplied onto the circumferential surface of the inner tube A along the spiral direction. That is, this flat base material tape D is discharged from the die 2' of the extruder and is formed by the sheeting roll 8 while being wound onto the inner tube A on the rotating shaft 1, and then stretched. After being maintained at a required temperature, the tape is stretched 2 to 8 times in the machine direction depending on the speed ratio between the rolls of the stretching rolls 9, thereby forming the base tape D. The reason why the stretching ratio of the base tape D is set to 2 to 8 times is that if the stretching ratio is less than 2 times, a heat-shrinkable tube having the desired shrinkage ratio cannot be obtained, whereas if it is more than 8 times, However, it is difficult to stretch and has poor formability. Next, the base tape D is heated to the optimum temperature for fusion using a preheating roll 10 or the like, and is supplied onto the inner tube A wound around the circumferential surface of the rotating shaft body 1 while being taken off.
At the same time as being continuously wound, the front edge side of the base tape D to be wound later is overlapped with at least the upper surface of the rear edge side of the base tape D that was wound earlier, and this overlapping part is pressed. By press-bonding with rolls 11' to form the outer tube C, a tube body having an adhesive layer on the inner circumferential surface is continuously formed on the circumferential surface of the rotating shaft body 1, and is taken off while being cooled. . As for the molecular orientation of the base tape D, as shown in FIG. 2, instead of the above-mentioned stretching process, it may be carried out by applying a predetermined draft rate and drawing it down. In this case, while being discharged from the die 2' and wound onto the inner tube A on the rotating shaft 1, the
% draft rate and oriented in the longitudinal direction. The reason why the draft rate is set to 200 to 1000% is that if it is less than 200%, a heat shrinkable tube with the desired shrinkage rate cannot be obtained.
If it is 1000% or more, use base tape D when drafting.
Poor moldability, such as cutting. The present invention has been described above with reference to embodiments, but as is clear from the above, the present invention applies a flat adhesive tape such as a heat-meltable hot-melt adhesive discharged from a die of an extruder onto a rotating shaft. The adhesive tape is supplied along the helical direction and wound continuously, and at the same time the front edge side of the adhesive tape that is wound later is joined to the trailing edge side of the adhesive tape that is wound first. An inner tube made of an adhesive layer is continuously molded on the circumferential surface of the rotating shaft by pressing it with a pressure roll, and the thermoplastic resin or rubber composition that is heated and melted is discharged from the die of another extruder. A flat base tape for objects, etc. is drawn down at a predetermined draft rate, or once sheeted, it is stretched at a predetermined magnification in the flow direction depending on the speed ratio between the rolls, and then the rotating shaft is first drawn. At the same time, the adhesive tape is supplied onto the adhesive tape wound above and continuously wound. At the same time, the leading edge side of the base tape to be wound later is applied to at least the upper surface of the trailing edge side of the previously wound base tape. By overlapping and pressing the overlapping parts with a pressure roll to form an outer tube, a tube body having an adhesive layer on the inner circumferential surface on the circumferential surface of the rotating shaft body can be continuously molded. Since heat-shrinkable tubes are manufactured, the thickness and length of the tube can be freely selected depending on the purpose of use.Therefore, the length of the tube is not limited as in the past, and can be adjusted according to the diameter and wall thickness. There is no need to select a die, and the shrinkage rate is selected depending on the stretching ratio or draft rate applied to the flat tape, which greatly improves moldability, eliminating the problems of limited use and high cost of conventional products. Furthermore, since the adhesive layer is layered on the inner peripheral surface of the tube, it not only improves the bonding with the covering but also closes the pinholes caused by molding. Waterproofing and anticorrosion effects can also be improved. The present invention will be described below with reference to Examples, but the present invention is not necessarily limited to these Examples. Example 1 A flat adhesive tape such as hot-melt adhesive that can be heated and melted is discharged from an extruder die having a diameter of 45 mm in width and 0.6 mm in thickness, and is supplied onto a rotating shaft along a spiral direction. At the same time as the adhesive tape is wound continuously, the leading edge side of the adhesive tape wound later is joined to the trailing edge side of the adhesive tape wound earlier, and the joined part is crimped with a pressure roll. By doing so, an inner tube made of an adhesive layer is continuously formed on the circumferential surface of the rotating shaft, and a sheeted flat tube is extruded from an extruder die with a diameter of 120 mm and a thickness of 1.15 mm. A polyvinyl chloride base tape is stretched 2.0 to 6.0 times with a stretching roll at a temperature of 110°C, and then supplied along the spiral direction onto the above adhesive tape wound on a rotating shaft, and continuously wound. At the same time, the front edge side of the tape wound from behind is overlapped with at least the upper surface of the trailing edge side of the previously wound tape, and this overlapping part is cooled while being pressed with a pressure roll,
A heat-shrinkable tube having an adhesive layer on the inner peripheral surface as shown in Table 1 was obtained.

【表】 実施例 2 幅45mmにして厚さ0.6mmの口径からなる押出機
のダイスから吐出された加熱溶融せるホツトメル
ト型接着剤等の偏平な接着剤テープを回転軸体上
に螺旋方向に沿つて供給し、連続的に捲回させる
と同時に先に捲回された上記接着剤テープの後縁
側に後から捲回する該接着剤テープの前縁側を接
合して、接合された部分を押圧ロールにて圧着さ
せることにより回転軸体の周面上に接着剤層から
なる内管を連続的に成型するとともに幅64mmにし
て厚さ1.15mmの口径からなる押出機のダイスから
吐出された樹脂温度160℃のポリ塩化ビニル基材
テープに182〜1094%のドラフト率を掛けながら
配向し、得られた基材テープを回転軸体上に捲回
された上記接着剤テープ上に螺旋方向に沿つて供
給し、連続的に捲回させると同時に先に捲回され
たテープの少なくとも後縁側の上面に後ろから捲
回するテープの前縁側を重ね合わせてこの重ね合
わせ部分を押圧ロールにて圧着しながら冷却し、
第2表に示す如き内周面に接着剤層を有する熱収
縮チユーブを得た。
[Table] Example 2 A flat adhesive tape such as hot-melt adhesive that can be heated and melted is discharged from an extruder die having a diameter of 45 mm in width and 0.6 mm in thickness, and is placed on a rotating shaft along a spiral direction. At the same time, the front edge side of the adhesive tape that is wound later is joined to the trailing edge side of the adhesive tape that was wound earlier, and the joined part is pressed into a roll. The temperature of the resin discharged from the die of the extruder, which has a diameter of 64 mm and a thickness of 1.15 mm, is continuously molded on the circumferential surface of the rotating shaft by crimping the inner tube with an adhesive layer. A polyvinyl chloride base tape at 160°C is oriented while applying a draft rate of 182 to 1094%, and the obtained base tape is spirally wound onto the above adhesive tape wound on a rotating shaft. At the same time, the front edge side of the tape to be wound from behind is overlapped with at least the upper surface of the trailing edge side of the previously wound tape, and this overlapping part is pressed with a pressure roll. cool,
A heat-shrinkable tube having an adhesive layer on the inner peripheral surface as shown in Table 2 was obtained.

【表】【table】

【表】 テープが切断、測定できず。
[Table] The tape was cut and measurement was not possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示したもので、第1図
および第2図はテープの供給状態を示す説明斜視
図、第3図および第4図は製造された収縮チユー
ブを軸心方向に沿つて切断した一部拡大断面図で
ある。
The drawings show an embodiment of the present invention, and FIGS. 1 and 2 are explanatory perspective views showing the tape supply state, and FIGS. 3 and 4 show the manufactured shrink tube along the axial direction. FIG.

Claims (1)

【特許請求の範囲】 1 押出機のダイスから吐出された加熱溶融せる
ホツトメルト型接着剤等の偏平な接着剤テープを
回転軸体上に螺旋方向に沿つて供給し、連続的に
捲回させると同時に先に捲回された上記接着剤テ
ープの後縁側に後から捲回する該接着剤テープの
前縁側を接合して接合された部分を押圧ロールに
て圧着させることにより回転軸体の周面上に接着
剤層からなる内管を連続的に成型するとともに他
の押出機のダイスから吐出された加熱溶融せる熱
可塑性樹脂やゴム組成物等の偏平な基材テープを
所定のドラフト率を掛けて引き落とすか若しくは
一旦シーテイングしたのちロール間の速度比によ
つて流れ方向に対し所定倍率の延伸処理を施して
先に回転軸体上に捲回された接着剤テープ上に供
給し連続的に捲回させると同時に先に捲回された
基材テープの少なくとも後縁側の上面に後から捲
回する該基材テープの前縁側を重ね合わせてこの
重ね合わせ部分を押圧ロールにて圧着して外管を
形成させることにより回転軸体の周面上にて内周
面に接着剤層を有する管体を連続的に成型するこ
とを特徴とする熱収縮チユーブの製造方法。 2 基材テープのドラフト率が200〜1000%であ
ることを特徴とする特許請求の範囲第1項記載の
熱収縮チユーブの製造方法。 3 基材テープの延伸倍率が2〜8倍であること
を特徴とする特許請求の範囲第1項記載の熱収縮
チユーブの製造方法。
[Scope of Claims] 1. When a flat adhesive tape such as a hot-melt adhesive that can be heated and melted is discharged from a die of an extruder and is supplied along a spiral direction onto a rotating shaft body and continuously wound. At the same time, the front edge side of the adhesive tape wound later is joined to the rear edge side of the adhesive tape wound earlier, and the joined part is crimped with a pressure roll, so that the peripheral surface of the rotating shaft body is bonded. An inner tube consisting of an adhesive layer is continuously molded on top, and a flat base tape made of heat-meltable thermoplastic resin or rubber composition discharged from the die of another extruder is applied at a predetermined draft rate. The adhesive tape is then drawn down or once sheeted and then stretched at a predetermined magnification in the flow direction depending on the speed ratio between the rolls, and then continuously supplied onto the adhesive tape previously wound on the rotating shaft. At the same time, the leading edge side of the base tape to be wound later is overlapped with at least the upper surface of the trailing edge side of the base tape previously wound, and this overlapping part is pressed with a pressure roll. 1. A method of manufacturing a heat-shrinkable tube, comprising the steps of: forming an outer tube, and then continuously molding a tube having an adhesive layer on its inner circumferential surface on the circumferential surface of a rotating shaft body. 2. The method for manufacturing a heat-shrinkable tube according to claim 1, wherein the base tape has a draft ratio of 200 to 1000%. 3. The method for manufacturing a heat-shrinkable tube according to claim 1, wherein the stretching ratio of the base tape is 2 to 8 times.
JP18768782A 1982-10-26 1982-10-26 Manufacture of thermally contractile tube Granted JPS5976212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18768782A JPS5976212A (en) 1982-10-26 1982-10-26 Manufacture of thermally contractile tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18768782A JPS5976212A (en) 1982-10-26 1982-10-26 Manufacture of thermally contractile tube

Publications (2)

Publication Number Publication Date
JPS5976212A JPS5976212A (en) 1984-05-01
JPS6359374B2 true JPS6359374B2 (en) 1988-11-18

Family

ID=16210384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18768782A Granted JPS5976212A (en) 1982-10-26 1982-10-26 Manufacture of thermally contractile tube

Country Status (1)

Country Link
JP (1) JPS5976212A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383901U (en) * 1989-12-19 1991-08-26

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874232B2 (en) * 2003-05-21 2005-04-05 Stowe Woodward, Llc Method for forming cover for industrial roll
US10287731B2 (en) 2005-11-08 2019-05-14 Stowe Woodward Licensco Llc Abrasion-resistant rubber roll cover with polyurethane coating
AU2007215670B2 (en) * 2006-02-15 2011-01-20 Green Polytech Co., Ltd. Apparatus and method for manufacturing pipe with multi-layer wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383901U (en) * 1989-12-19 1991-08-26

Also Published As

Publication number Publication date
JPS5976212A (en) 1984-05-01

Similar Documents

Publication Publication Date Title
JPS61227027A (en) Production of flexible tube
US3650868A (en) Methods and apparatus for manufacturing pipe-shaped articles from foamed thermoplastic resin
US5862591A (en) Method for manufacturing paint rollers
US3486196A (en) Apparatus for the production of multilayer tubes from thermoplastics
JPS596786B2 (en) Synthetic resin binding cord and its manufacturing method
US4226337A (en) Laminated tube for collapsible containers and method of making same
JPS6359374B2 (en)
US4512832A (en) Method for manufacturing a tube package
JPS62236724A (en) Manufacture of flexible pipe
US3368930A (en) Method and apparatus for forming tubes of thermoplastic film
JPS5973913A (en) Manufacture of thermoshrinkable tube
JPS5970511A (en) Preparation of heat shrinkable tube
JPS5970512A (en) Preparation of heat shrinkable tube
JPS59143611A (en) Manufacture of thermal contraction tube
JPS5852485B2 (en) Method for continuous production of thermoplastic coatings
JPH0134139B2 (en)
JPS5959416A (en) Preparation of thermally shrinkable tube
JP2640257B2 (en) Manufacturing method of synthetic resin reinforced pipe
JPH03121828A (en) Manufacture of synthetic resin tube and its manufacturing device
JPH0768622A (en) Production of lining pipe and production device therefor
JPH01182031A (en) Manufacture of synthetic resin corrugated pipe
Nadeau Manufacture of Plastic Jacketed Steel Pipe
US3652358A (en) Process for the bonding of multilayer, overlapping foil ribbons
JPS6025263B2 (en) Manufacturing method of laminated film
JPH0611520B2 (en) Corrosion-resistant coated steel pipe and method for manufacturing the same