JPS6127151B2 - - Google Patents

Info

Publication number
JPS6127151B2
JPS6127151B2 JP57072809A JP7280982A JPS6127151B2 JP S6127151 B2 JPS6127151 B2 JP S6127151B2 JP 57072809 A JP57072809 A JP 57072809A JP 7280982 A JP7280982 A JP 7280982A JP S6127151 B2 JPS6127151 B2 JP S6127151B2
Authority
JP
Japan
Prior art keywords
workpiece
signal
torch
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57072809A
Other languages
Japanese (ja)
Other versions
JPS58188598A (en
Inventor
Osamu Anzai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP57072809A priority Critical patent/JPS58188598A/en
Publication of JPS58188598A publication Critical patent/JPS58188598A/en
Publication of JPS6127151B2 publication Critical patent/JPS6127151B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/10Auxiliary devices, e.g. for guiding or supporting the torch
    • B23K7/102Auxiliary devices, e.g. for guiding or supporting the torch for controlling the spacial relationship between the workpieces and the gas torch

Description

【発明の詳細な説明】 本発明はプラズマ加工機若しくはレーザ加工機
又は電子ビーム加工機の様な加工装置、特にトー
チ又は焦点調整手段と被加工物間の距離を一定に
制御し得る機能を備えた加工装置の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a processing device such as a plasma processing machine, a laser processing machine, or an electron beam processing machine, especially a processing device having a function of controlling the distance between a torch or focus adjustment means and a workpiece to a constant value. This invention relates to improvements in processing equipment.

一般にガス切断機で被加工物を加工する場合に
は、トーチと被加工物間の距離を常に一定に保持
しなければならないが、被加工物の表面は必ずし
も平坦ではなく、起伏、歪などが大きいものもあ
り、これがアーク長の変化の大きな要因となつて
加工品質の低下を招来する。従つて従来の場合に
はトーチと被加工物間のアーク電圧を検出し、ト
ーチと被加工物間の距離を自動的に調整してい
た。この点について第1図を用いて説明すると、
切断機1の電源によりトーチ2と被加工物3との
間に発生するアーク電圧は比較増幅器4によりそ
の設定電圧源5の設定電圧と比較され、その差電
圧に基づいて制御回路6がモータの様な駆動装置
7を駆動する。この駆動装置7は上下動ホルダ9
を駆動することにより支持体8を介してトーチ2
を上昇又は下降させる。つまり制御装置6は比較
増幅器4の出力である誤差信号が零になる様にト
ーチ2を上下移動させて、トーチ2と被加工物3
との間の距離を常に一定に保持する。
Generally, when processing a workpiece with a gas cutting machine, the distance between the torch and the workpiece must always be kept constant, but the surface of the workpiece is not necessarily flat and may have undulations, distortion, etc. Some of them are large, and this becomes a major factor in changes in arc length, leading to deterioration in processing quality. Therefore, in the conventional case, the arc voltage between the torch and the workpiece was detected and the distance between the torch and the workpiece was automatically adjusted. To explain this point using Figure 1,
The arc voltage generated between the torch 2 and the workpiece 3 by the power supply of the cutting machine 1 is compared with the set voltage of the set voltage source 5 by the comparator amplifier 4, and the control circuit 6 controls the motor based on the difference voltage. A drive device 7 of various types is driven. This drive device 7 is a vertical movement holder 9
Torch 2 via support 8 by driving
to raise or lower. In other words, the control device 6 moves the torch 2 up and down so that the error signal that is the output of the comparator amplifier 4 becomes zero, and the torch 2 and the workpiece 3
Always maintain a constant distance between

しかし斯かる従来の装置の様にアーク電圧を検
出してトーチと被加工物間の距離を一定に制御す
るものにあつては、アーク電圧がトーチと被加工
物間の距離の変動により変化するばかりでなく、
加工機の電源電圧の変動及びガスの種類と流量の
変化、また被加速度と被加工板厚などによつても
変化するので、前記距離を正確に一定に制御でき
ないという欠点があつた。特にプラズマ加工機に
あつてはこの傾向が強く、また非常に正確な制御
が要求されるレーザ加工機には従来の制御機構を
適用できないという問題点があつた。
However, in the case of such conventional devices that detect the arc voltage and control the distance between the torch and the workpiece to be constant, the arc voltage changes due to fluctuations in the distance between the torch and the workpiece. Not only
There is a drawback that the distance cannot be precisely controlled to a constant value because it varies depending on fluctuations in the power supply voltage of the processing machine, changes in the type and flow rate of gas, and also depending on the acceleration to be processed and the thickness of the workpiece. This tendency is particularly strong in plasma processing machines, and there is a problem in that conventional control mechanisms cannot be applied to laser processing machines that require extremely accurate control.

本発明は斯かる従来装置の欠点を除去するもの
であつて、トーチ又は焦点調整手段と被加工物と
の間の距離の変化を検出導体と被加工物間の高周
波電圧の変化に変換し、この高周波電圧の変化に
依存して変化する駆動信号でもつてトーチ或いは
焦点調整手段を上下動させて常にトーチ或いは焦
点調整手段間の距離を一定に保持することを特徴
としている。
The present invention obviates the drawbacks of such prior art devices by converting changes in the distance between the torch or focusing means and the workpiece into changes in the high frequency voltage between the sensing conductor and the workpiece, The present invention is characterized in that the distance between the torches or focus adjustment means is always maintained constant by moving the torch or focus adjustment means up and down using a drive signal that changes depending on changes in the high frequency voltage.

第2図により本発明の一実施例を説明する。図
中、10はその中央部にトーチ2が存在する様に
配設された円形状の金属製検出リング、11は検
出リング10の支持棒、12は或る範囲内で検出
リング10を上下させ得る様に支持棒11をトー
チ2に固定する支持体、13は例えば40KHzの正
弦波状の高周波電圧を出力する第1の高周波信号
源、14は第1の高周波信号源13の高周波電圧
に対し位相が180度ずれた高周波電圧を生ずる第
2の高周波信号源、15は被加工物3と検出導体
10との間に形成されるキヤパシタンス、16は
検出導体10と接地間に接続されたコンデンサ、
17は第1の高周波信号源13と直列接続された
コンデンサ、18はカツプリング用のコンデン
サ、19,20は保護用の抵抗、21は高さ調整
用の可変コンデンサ、22は所望の周波数帯域の
電圧信号を通過させる帯域フイルタ22a、誤差
増幅器22b、ダイオードを逆並列接続してなる
保護用素子22c、及び位相制御用コンデンサ2
2dなどからなる合成回路、23は信号レベル調
整用の可変抵抗、24は増幅器、25は増幅器2
4からの電圧信号の位相を反転させるインバー
タ、26と27は夫々第1、第2の高周波信号源
13,14の出力に同期した互いに逆相のサンプ
リングパルスを交互に生ずるサンプリングパルス
発生回路、回路、28,29は夫々サンプリング
回路、30はサンプリング回路28,29からの
電圧信号を積分し、保持すると共に、サンプリン
グパルス発生回路26からのクリア用のパルスに
より積分値がクリアされる積分回路、31,32
は積分回路30からの積分保持信号の大きさによ
り、上昇信号、下降信号を生ずる上昇信号発生回
路、下降信号発生回路、33,34は夫々上昇信
号発生回路31、下降信号発生回路32からの信
号により上昇駆動信号、下降駆動信号を生ずる上
昇駆動回路、下降駆動回路、35,36は速度調
整器である。
An embodiment of the present invention will be explained with reference to FIG. In the figure, 10 is a circular metal detection ring arranged so that the torch 2 is located in the center, 11 is a support rod for the detection ring 10, and 12 is a rod that moves the detection ring 10 up and down within a certain range. 13 is a first high frequency signal source that outputs a sinusoidal high frequency voltage of, for example, 40KHz; 14 is a support that fixes the support rod 11 to the torch 2 so as to obtain 15 is a capacitance formed between the workpiece 3 and the detection conductor 10; 16 is a capacitor connected between the detection conductor 10 and ground;
17 is a capacitor connected in series with the first high frequency signal source 13, 18 is a coupling capacitor, 19 and 20 are protection resistors, 21 is a variable capacitor for height adjustment, and 22 is a voltage in a desired frequency band. A bandpass filter 22a for passing a signal, an error amplifier 22b, a protection element 22c formed by connecting diodes in antiparallel, and a phase control capacitor 2.
2d, etc., 23 is a variable resistor for signal level adjustment, 24 is an amplifier, 25 is amplifier 2
An inverter 26 and 27 invert the phase of the voltage signal from 4, and a sampling pulse generation circuit 26 and 27 that alternately generate sampling pulses of mutually opposite phase in synchronization with the outputs of the first and second high frequency signal sources 13 and 14, respectively. , 28 and 29 are sampling circuits, respectively; 30 is an integration circuit that integrates and holds the voltage signals from the sampling circuits 28 and 29, and whose integrated value is cleared by a clearing pulse from the sampling pulse generation circuit 26; 31; ,32
33 and 34 are signals from the rising signal generating circuit 31 and falling signal generating circuit 32, respectively, which generate a rising signal and a falling signal depending on the magnitude of the integral holding signal from the integrating circuit 30. 35 and 36 are speed regulators.

次に斯かる構成の装置の動作について説明す
る。例えば、第1、第2の高周波信号源13,1
4の出力電圧は夫々第3図A,Bに示す様な180
゜位相のずれた正弦波形であり、高周波信号源1
3の交流出力電圧のピーク−ピーク値は
13.2Vp-p、高周波信号源14の交流出力電圧の
ピーク−ピーク値は6Vp-pに選定されている。検
出リング10はトーチ2の下面とほぼ同一レベル
或いは若干低い程度の位置に設定される。
Next, the operation of the apparatus having such a configuration will be explained. For example, the first and second high frequency signal sources 13, 1
The output voltage of 4 is 180 as shown in Figure 3A and B, respectively.
゜It is a sine waveform with a phase shift, and the high frequency signal source 1
The peak-to-peak value of the AC output voltage of 3 is
13.2V pp , and the peak-to-peak value of the AC output voltage of the high frequency signal source 14 is selected to be 6V pp . The detection ring 10 is set at approximately the same level as the lower surface of the torch 2, or at a position slightly lower than the lower surface of the torch 2.

トーチ2が被加工物3の上方の位置にある状態
で、第1、第2の高周波信号源13,14を作動
させると、コンデンサ16〜18の接続点aに
は、検出リング10と被加工物3間のキヤパシタ
ンス15の値に振幅が依存する40KHzの交流電圧
aが現出する。ここでキヤパシタンス15は、
検出リング10と被加工物3とを電極とし且つそ
の間の空気を誘電体とするコンデンサによるもの
であり、検出リング10と被加工物3間の距離が
増減するに伴い、キヤパシタンス15は減、増す
る。従つて点aの交流電圧Eaのピーク値はキヤ
パシタンス15、つまり検出リング10と被加工
物3間の距離に依存し、この交流電圧Eaはカツ
プリング用コンデンサ18及び保護用抵孔20を
介して合成回路22における演算増幅器22bの
反転端子及び帯域通過フイルタ22aに印加され
る。一方、第2の高周波信号源14は、第1の高
周波信号源13の出力と周波数が同一(40KHz)
で逆相、つまり180゜位相のずれた第3図Bに示
す様な高周波電圧Ebを高さ調整用の可変コンデ
ンサ21を介して合成回路22における演算増幅
器22bの反転端子及び帯域フイルタ22aの入
力端子に与える。合成回路22は前記2つの交流
電圧Ea、Ebの差に対応する合成信号Ecを出力
し、この合成信号Ecの位相は第3図Cに示す様
にキヤパシタンス15の変化によつて進んだり又
は遅れたりする。この合成信号Ecは可変抵抗2
3によりその大きさが調整されてEc′となり、こ
の合成信号Ec′は、一方では増幅器24により増
幅されて直接サンプリング回路28に印加される
と共に、他方ではインバータ25により位相が反
転されてサンプリング回路29に印加される。サ
ンプリングパルス発生回路26,27は夫々第
1、第2の高周波信号源13,14の出力信号の
半サイクルに等しい第3図D,Eに示す様なサン
プリングパルスを交互にサンプリング回路28,
29に夫々印加する。従つてサンプリング回路2
8,29は夫々サンプリングパルスによつて第3
図F,Gに示す様な増幅器24の出力信号及びそ
の反転出力信号をサンプリングして積分回路30
に与え、結局、積分回路30には同図Hに示す様
な信号を積分する。
When the first and second high-frequency signal sources 13 and 14 are activated with the torch 2 located above the workpiece 3, the connection point a of the capacitors 16 to 18 is connected to the detection ring 10 and the workpiece. An alternating voltage E a of 40 KHz appears whose amplitude depends on the value of the capacitance 15 between the objects 3 . Here, the capacitance 15 is
It is based on a capacitor that uses the detection ring 10 and the workpiece 3 as electrodes and the air between them as a dielectric, and as the distance between the detection ring 10 and the workpiece 3 increases or decreases, the capacitance 15 decreases or increases. do. Therefore, the peak value of the AC voltage E a at point a depends on the capacitance 15, that is, the distance between the detection ring 10 and the workpiece 3, and this AC voltage E a is applied via the coupling capacitor 18 and the protective resistor 20. The signal is applied to the inverting terminal of the operational amplifier 22b and the bandpass filter 22a in the combining circuit 22. On the other hand, the second high frequency signal source 14 has the same frequency as the output of the first high frequency signal source 13 (40KHz).
A high frequency voltage E b as shown in FIG. 3B having an opposite phase, that is, a phase shift of 180 degrees, is sent to the inverting terminal of the operational amplifier 22b in the synthesis circuit 22 and the bandpass filter 22a via the variable capacitor 21 for height adjustment. Give it to the input terminal. The combining circuit 22 outputs a combined signal E c corresponding to the difference between the two AC voltages E a and E b , and the phase of this combined signal E c changes depending on the change in the capacitance 15 as shown in FIG. 3C. advance or lag behind. This composite signal E c is the variable resistance 2
3, its magnitude is adjusted to become E c ′, and this composite signal E c ′ is amplified by an amplifier 24 and directly applied to the sampling circuit 28 on the one hand, and its phase is inverted by an inverter 25 on the other hand. The signal is applied to the sampling circuit 29. The sampling pulse generation circuits 26 and 27 alternately generate sampling pulses as shown in FIGS.
29 respectively. Therefore, sampling circuit 2
8 and 29 are the third
An integration circuit 30 samples the output signal of the amplifier 24 and its inverted output signal as shown in FIGS.
As a result, the integrating circuit 30 integrates a signal as shown in FIG.

さてここで第3図Hに示す信号は前述した様
に、検出リング10と被加工物3との間のキヤパ
シタンス15の変化、つまりそれらの間の距離の
変化によつて、同図I及びJで示す様に位相が変
化する。例えば、検出リング10と被加工物3間
の距離Dが設定距離(例えば6mm)のとき、第3
図Hに示す信号における正、負の電圧波形の電
圧・時間積が等しくなるので、積分回路30の出
力は零レベルになる。
Now, as mentioned above, the signal shown in FIG. The phase changes as shown. For example, when the distance D between the detection ring 10 and the workpiece 3 is a set distance (for example, 6 mm), the third
Since the voltage-time products of the positive and negative voltage waveforms in the signal shown in FIG. H are equal, the output of the integrating circuit 30 becomes zero level.

次に検出リング10と被加工物3間の距離Dが
6mmより大きくなると、キヤパシタンス15が小
さくなり、この結果として第3図Hの電圧波形は
キヤパシタンス15の減少量に対応する位相量だ
け矢印xの方向に偏移して同図Iの様になる。ま
た検出リング10と被加工物3間の距離Dが6mm
より小さくなると、キヤパシタンス15が増大
し、この結果として第3図Hの電圧波形はキヤパ
シタンス15の増大量に対応する位相量だけ矢印
yの方向に偏移して同図Jの様になる。
Next, when the distance D between the detection ring 10 and the workpiece 3 becomes larger than 6 mm, the capacitance 15 becomes smaller, and as a result, the voltage waveform in FIG. It shifts in the direction of , and becomes as shown in Figure I. Also, the distance D between the detection ring 10 and the workpiece 3 is 6 mm.
When the capacitance 15 becomes smaller, the capacitance 15 increases, and as a result, the voltage waveform shown in FIG.

従つて積分回路30は、検出リング10と被加
工物3間の距離Dが設定長に等しいか、或いは大
きいか、小さいかによつて零レベル、又は正若し
くは負のレベルDC電圧信号を生ずる。この積分
回路30の各サイクルの積分値は次の1サイクル
だけ保持された後、サンプリング発生回路26か
らのクリア用のパルスの立上り部で、第1の高周
波信号源13の高周波出力の1サイクル毎にクリ
アされる。従つて積分回路30の前記出力は直ぐ
前のサイクルの最大の積分値に等しい。
Therefore, the integrating circuit 30 produces a zero level, positive or negative level DC voltage signal depending on whether the distance D between the detection ring 10 and the workpiece 3 is equal to, greater than, or less than the set length. The integrated value of each cycle of this integrating circuit 30 is held for the next one cycle, and then, at the rising edge of the clearing pulse from the sampling generator 26, the integrated value of each cycle of the first high frequency signal source 13 is cleared. The output of the integrator circuit 30 is therefore equal to the maximum integral value of the immediately previous cycle.

上昇信号発生回路31、下降信号発生回路32
は積分回路30の出力レベルが正が或いは負かに
よつて上昇信号又は下降信号を出力する。この上
昇信号又は下降信号を受けて、上昇駆動回路33
或いは下降駆動回路34は上昇駆動信号又は下降
駆動信号を夫々の速度調整器35,36を介して
モータの様な駆動装置7に与える。駆動装置7は
前記上昇駆動信号又は下降駆動信号に従つて上下
動ホルダ9を上、下に駆動して、常に検出リング
10と被加工物3との間の距離Dが設定長にある
様にトーチ2の高さを調整する。ここで速度調整
器35,36による速度調整は手動で行われる。
Rising signal generation circuit 31, falling signal generation circuit 32
outputs a rising signal or a falling signal depending on whether the output level of the integrating circuit 30 is positive or negative. Upon receiving this rising signal or falling signal, the rising drive circuit 33
Alternatively, the down drive circuit 34 provides a rise drive signal or a fall drive signal to a drive device 7, such as a motor, via respective speed regulators 35,36. The drive device 7 drives the vertically movable holder 9 upward and downward according to the upward drive signal or downward drive signal so that the distance D between the detection ring 10 and the workpiece 3 is always at the set length. Adjust the height of torch 2. Here, the speed adjustment by the speed regulators 35 and 36 is performed manually.

以上述べた本発明に係る加工装置の一実施例に
よれば下記の様な効果が得られる。
According to one embodiment of the processing apparatus according to the present invention described above, the following effects can be obtained.

(1) 検出リングと被加工物間の距離に依存するキ
ヤパシタンスの変化を高周波の信号電圧に変換
し、この信号電圧でもつてトーチと被加工物間
の距離が設定長になる様に自動調整しているの
で、小さな検出リングでもつてトーチと被加工
物間の距離を極めて精確に設定長に自動調整で
きる。
(1) Changes in capacitance that depend on the distance between the detection ring and the workpiece are converted into a high-frequency signal voltage, and this signal voltage automatically adjusts the distance between the torch and the workpiece to the set length. As a result, even with a small detection ring, the distance between the torch and the workpiece can be automatically adjusted to the set length with great precision.

(2) 加工時にはプラズマアーク若しくはレーザ又
はビームによつて非常に高い周波数までの広い
周波数領域のノイズが検出リングに現出する
が、このノイズをキヤパシタンス15及びコン
デンサ16によりかなり除去出来るので、ノイ
ズ対策が比較的容易である。
(2) During processing, noise in a wide frequency range up to very high frequencies appears on the detection ring due to the plasma arc, laser, or beam, but this noise can be significantly removed by the capacitance 15 and capacitor 16, so noise countermeasures can be taken. is relatively easy.

(3) 検出リングと被加工物間のキヤパシタンスの
大きさに依存する第1の高周波電圧とこの高周
波電圧と同一周波数でほぼ逆相の第2の高周波
電圧とを合成回路にて合成して、検出リングと
被加工物間のキヤパシタンスに対応して位相変
調された信号を得、この信号に関連する駆動信
号で検出リングと被加工物間の高さを自動調整
しているので、ノイズによつて影響されること
が無く、このことが更に一層検出リングの高さ
調整を精確なものにしている。
(3) A synthesis circuit synthesizes a first high-frequency voltage that depends on the capacitance between the detection ring and the workpiece and a second high-frequency voltage that has the same frequency as this high-frequency voltage and has a substantially opposite phase. A phase-modulated signal corresponding to the capacitance between the detection ring and the workpiece is obtained, and the height between the detection ring and the workpiece is automatically adjusted using a drive signal related to this signal, so noise can be avoided. This makes the height adjustment of the detection ring even more precise.

なお、以上の記載では検出導体を検出リングと
して説明していたが、検出導体はこれに限らず、
リングを半分にしたもの、或いは棒状のものなど
でも良く、複数でも良い。また実施例としてはト
ーチを利用する加工機を掲げたが、レーザ加工装
置及び電子ビーム加工装置などでも勿論良く、こ
の場合には光学的レンズ又は静電レンズの様な焦
点調整手段と検出導体とが連動する様にし、前述
の様に検出導体と被加工物間の距離を常に一定に
保持すべく自動調整することにより、焦点調整手
段と被加工物間の距離を常に一定に保持し、これ
によつて被加工物に凹凸があつても被加工物面に
与えられる加工用エネルギの密度を常に一定に保
持できる。
In addition, although the detection conductor was explained as a detection ring in the above description, the detection conductor is not limited to this.
It may be a half ring or a rod-shaped ring, or a plurality of rings may be used. In addition, as an example, a processing machine that uses a torch is shown, but of course a laser processing device, an electron beam processing device, etc. may also be used, and in this case, a focus adjustment means such as an optical lens or an electrostatic lens and a detection conductor are used. As described above, by automatically adjusting the distance between the detection conductor and the workpiece to keep it constant, the distance between the focus adjustment means and the workpiece can be kept constant. As a result, even if the workpiece has irregularities, the density of machining energy applied to the workpiece surface can always be kept constant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はトーチを利用した従来の加工装置を説
明するための図、第2図は本発明に係る加工装置
の一実施例を示す図、第3図は第2図における各
部の波形を示す図である。 2……トーチ、3……被加工物、7……駆動装
置、10……検出導体、15……検出導体と被加
工物間のキヤパシタンス、13,14……第1、
第2の高周波信号源、20……合成回路、21…
…帯域通過フイルタ、24……増幅器、25……
インバータ、26,27……サンプリングパルス
発生回路、28,29……サンプリング回路、3
0……積分回路、31,32……上昇、下降信号
発生回路、33,34……上昇、下降駆動回路、
35,36……速度調整器。
Fig. 1 is a diagram for explaining a conventional processing device using a torch, Fig. 2 is a diagram showing an embodiment of the processing device according to the present invention, and Fig. 3 shows waveforms of various parts in Fig. 2. It is a diagram. 2... Torch, 3... Workpiece, 7... Drive device, 10... Detection conductor, 15... Capacitance between the detection conductor and workpiece, 13, 14... First,
Second high frequency signal source, 20...Synthesizing circuit, 21...
...Bandpass filter, 24...Amplifier, 25...
Inverter, 26, 27...Sampling pulse generation circuit, 28, 29...Sampling circuit, 3
0...Integrator circuit, 31, 32...Rise and fall signal generation circuit, 33, 34...Rise and fall drive circuit,
35, 36...speed regulator.

Claims (1)

【特許請求の範囲】[Claims] 1 トーチ或いは焦点調整手段と被加工物間の距
離を自動的に調整し得る機構を備えた加工装置に
おいて、前記トーチ或いは焦点調整手段の上下動
と一緒に上下動する様に配設された検出導体、該
検出導体と前記被加工物との間に形成される可変
のキヤパシタンスに対し並列に接続されたコンデ
ンサと第1の高周波信号源との第1の直列接続
体、該第1の直列接続体に対し並列に接続された
高さ調整用のコンデンサと前記第1の高周波信号
源の出力周波数と同一で且つ逆相の周波数出力を
生ずる第2の高周波信号源との第2の直列接続
体、前記検出導体と被加工物間の距離に依存する
電圧と第2の高周波信号源による電圧とを合成す
る合成回路、該合成回路からの出力信号を積分す
る積分回路、及び該積分回路からの出力信号によ
つて調整手段を上下動させる駆動装置を備えたこ
とを特徴とする加工装置。
1. In a processing device equipped with a mechanism capable of automatically adjusting the distance between a torch or focus adjustment means and a workpiece, a detection device arranged to move up and down together with the up and down movement of the torch or focus adjustment means. a first series connection of a first high-frequency signal source and a capacitor connected in parallel to a variable capacitance formed between the detection conductor and the workpiece; the first series connection; a second series connection body of a height adjustment capacitor connected in parallel to the body and a second high frequency signal source that produces a frequency output that is the same as the output frequency of the first high frequency signal source and is in opposite phase; , a synthesizing circuit that synthesizes a voltage depending on the distance between the detection conductor and the workpiece and a voltage generated by the second high-frequency signal source, an integrating circuit that integrates an output signal from the synthesizing circuit, and an integrating circuit that integrates an output signal from the integrating circuit. A processing device comprising a drive device that moves an adjusting means up and down in response to an output signal.
JP57072809A 1982-04-30 1982-04-30 Working device Granted JPS58188598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57072809A JPS58188598A (en) 1982-04-30 1982-04-30 Working device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57072809A JPS58188598A (en) 1982-04-30 1982-04-30 Working device

Publications (2)

Publication Number Publication Date
JPS58188598A JPS58188598A (en) 1983-11-04
JPS6127151B2 true JPS6127151B2 (en) 1986-06-24

Family

ID=13500096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57072809A Granted JPS58188598A (en) 1982-04-30 1982-04-30 Working device

Country Status (1)

Country Link
JP (1) JPS58188598A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105345320A (en) * 2015-11-20 2016-02-24 李晓勤 Door-window corner joint cleaning mechanism system
CN107931778A (en) * 2017-12-01 2018-04-20 上海振华重工(集团)股份有限公司 A kind of cutter device for the preceding both sides groove of outfield general assembly steel plate splicing
CN113787247B (en) * 2021-09-24 2022-11-11 潍坊新松机器人自动化有限公司 Welding tracking device and tracking method thereof

Also Published As

Publication number Publication date
JPS58188598A (en) 1983-11-04

Similar Documents

Publication Publication Date Title
US2489305A (en) Photoelectric curve following device
US4056761A (en) Sonic transducer and drive circuit
EP0195405A2 (en) Method and system for determining surface profile information
US3204081A (en) Seam follower with arc scanning
JPS6127151B2 (en)
NL8105347A (en) Apparatus for the optical scanning of a disc-shaped record carrier.
KR102615048B1 (en) Laser processing apparatus and power supply apparatus thereof
US3775582A (en) Proximity control using microwave techniques
JP7113077B2 (en) Laser material processing distance measurement
JPH05146879A (en) Nozzle device for plasma working machine
JP3248275B2 (en) Laser processing equipment
JP2019155346A (en) Ultrasonic oscillation circuit
JPH07134048A (en) Device for generating origin signal of optical encoder
JPS5842444B2 (en) Focal plane detection device for optical system
US3366857A (en) Co-ordinate drive line tracer
US4041894A (en) Electronic arrangement for generating two alternating voltages whose phases are shiftable
JPS5989117A (en) Ultrasonic machining machine with oscillation frequency detector
JPH0321828Y2 (en)
JPH0615963B2 (en) Eddy current type distance detector
JPH077512B2 (en) Focus servo device
JP2897080B2 (en) Displacement meter adjusting method and device
JPH079192Y2 (en) Vertical deflection current amplitude limiting circuit
RU2147270C1 (en) Apparatus for automatic control of welding head position
RU2205730C1 (en) Apparatus for automatic control of position of welding head
JPH09331089A (en) Nozzle height sensor for laser processing system