JPS5842444B2 - Focal plane detection device for optical system - Google Patents

Focal plane detection device for optical system

Info

Publication number
JPS5842444B2
JPS5842444B2 JP11507277A JP11507277A JPS5842444B2 JP S5842444 B2 JPS5842444 B2 JP S5842444B2 JP 11507277 A JP11507277 A JP 11507277A JP 11507277 A JP11507277 A JP 11507277A JP S5842444 B2 JPS5842444 B2 JP S5842444B2
Authority
JP
Japan
Prior art keywords
focal plane
photoelectric element
optical system
output
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11507277A
Other languages
Japanese (ja)
Other versions
JPS5449134A (en
Inventor
常躬 権田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP11507277A priority Critical patent/JPS5842444B2/en
Publication of JPS5449134A publication Critical patent/JPS5449134A/en
Publication of JPS5842444B2 publication Critical patent/JPS5842444B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 本発明は、光学系の焦点面検出装置特に光学系の焦点面
と光電素子の受光面とを光軸方向に相対的に振動させて
、焦点面を検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a focal plane detection device for an optical system, and particularly to a device for detecting a focal plane by relatively vibrating the focal plane of an optical system and the light receiving surface of a photoelectric element in the optical axis direction. .

光電素子を光学系の光軸方向に振動させ、そのときの光
電素子の出力に基づき光学系の焦点面位置を検出するこ
とは既に提案されている。
It has already been proposed to vibrate a photoelectric element in the optical axis direction of an optical system and detect the focal plane position of the optical system based on the output of the photoelectric element at that time.

第1図に示す如く、光電素子の上述の振動によりその素
子が位置Cで焦点面位置と一致した時、その素子出力は
最大となり、素子が焦点面位置から前方又は後方にずれ
るに従って、その出力は漸次減少する。
As shown in FIG. 1, when the photoelectric element matches the focal plane position at position C due to the above-mentioned vibration of the photoelectric element, the element output becomes maximum, and as the element shifts forward or backward from the focal plane position, the output gradually decreases.

上述の方法は第1図の如く光電素子の振動中心の前後に
おける光電素子出力A ) Bを較べ、その値が等しい
時、その振動中心が、焦点面位置Cに一致していること
から、焦点面を検出するものである。
The method described above compares the photoelectric element outputs A and B before and after the vibration center of the photoelectric element as shown in Fig. 1, and when the values are equal, the vibration center coincides with the focal plane position C, so the focal plane is It detects surfaces.

しかしこの方法は、素子出力の曲線が第1図実線で示し
た如く、焦点面位置Cに関して対称であると仮定してい
るが、実際には点線で示す如く、多くの光学系において
は、焦点面位置付近でのみ対称であって、そこから離れ
ると非対称になってしまう。
However, this method assumes that the element output curve is symmetrical with respect to the focal plane position C, as shown by the solid line in Figure 1, but in reality, in many optical systems, the focal plane position C is symmetrical, as shown by the dotted line. It is symmetrical only near the surface position, and becomes asymmetrical when moving away from there.

従って正確に焦点位置を検出するには、対称性が保たれ
る様光電素子の振動振巾を小さくすることが必要である
Therefore, in order to accurately detect the focal position, it is necessary to reduce the vibration amplitude of the photoelectric element so that the symmetry is maintained.

しかしながらこの様にすると、焦点面からのずれを表わ
す素子出力が小さくなってしまいまた、焦点面から光電
素子が大きく離れている場合には、小さな振動振幅では
、出力を得ることができなくなってしまう。
However, if this is done, the element output representing the deviation from the focal plane becomes small, and if the photoelectric element is far away from the focal plane, it becomes impossible to obtain an output with a small vibration amplitude. .

本発明の目的は、焦点面検出の範囲が広いとともに、充
分な検出精度を有する光学系の焦点面検出装置を提供す
ることである。
An object of the present invention is to provide an optical focal plane detection device having a wide range of focal plane detection and sufficient detection accuracy.

本発明は、光電素子の受光面が光学系の焦点面から大き
くずれている時には、受光面又は焦点面を大きく光軸方
向に振動させ、受光面と焦点面とのずれが小さくなった
時には、振動振幅を小さくするものである。
The present invention vibrates the light-receiving surface or the focal plane largely in the optical axis direction when the light-receiving surface of the photoelectric element is largely deviated from the focal plane of the optical system, and when the misalignment between the light-receiving surface and the focal plane becomes small, This reduces the vibration amplitude.

第2図において、対物レンズ1の焦点面の近傍に光電素
子2が振動機3に光軸方向及び光軸に垂直方向に振動可
能に支持されている。
In FIG. 2, a photoelectric element 2 is supported by a vibrator 3 near the focal plane of an objective lens 1 so that it can vibrate in the optical axis direction and in a direction perpendicular to the optical axis.

発振器5は、第4図gに示す如き周波数f1 の正弦波
駆動信号gを発生する。
The oscillator 5 generates a sinusoidal drive signal g having a frequency f1 as shown in FIG. 4g.

この駆動信号gを後述の自動振幅制御器(Automa
tic amplitude control ) 6
を介して駆動機7に送りこれにより振動機3を作動させ
、光電素子2を光軸方向に周波数f1で振動させる。
This drive signal g is applied to an automatic amplitude controller (Automa), which will be described later.
tic amplitude control) 6
The signal is sent to the driver 7 via the oscillator 7, which activates the vibrator 3 to vibrate the photoelectric element 2 in the optical axis direction at a frequency f1.

また第2の発振器8は、周波数f1 より大きい周波
数f2の第2の正弦波駆動信号を発生し、それに基づき
第2駆動機9は振動機3を作動させ、光電素子2を光軸
に垂直方向に、周波数f2 で回転振動させる。
Further, the second oscillator 8 generates a second sine wave drive signal with a frequency f2 larger than the frequency f1, and based on this, the second driver 9 operates the vibrator 3 to move the photoelectric element 2 in a direction perpendicular to the optical axis. Then, rotate and vibrate at a frequency f2.

この様な構成であるので、第3図■の如く光電素子2が
対物レンズ1の焦点面位置10の後方において、光軸方
向に振幅lで振動している場合、前述の駆動機9による
光軸に垂直な面での回転振動に起因する光電素子2の交
流出力は、焦点面10に最も近すいたとき即ち位置2a
のとき、最大となる。
With such a configuration, when the photoelectric element 2 is vibrating with an amplitude l in the optical axis direction behind the focal plane position 10 of the objective lens 1 as shown in FIG. The alternating current output of the photoelectric element 2 due to rotational vibration in a plane perpendicular to the axis occurs when it is closest to the focal plane 10, that is, at position 2a.
It is maximum when .

これを第3図に示すことにする。駆動信号gの正弦波形
の(−1−)側のピーク時点で、光電素子2が最近位置
2aに達しく→側のピーク時点は光電素子2が焦点面1
0から最も離れた最遠位置2bに達するので、第4図I
のaに示す如く、この+側ピーク時点で光電素子2の交
流出力は最大振幅となる。
This is shown in FIG. At the peak point on the (-1-) side of the sine waveform of the drive signal g, the photoelectric element 2 reaches the nearest position 2a.At the peak point on the → side, the photoelectric element 2 reaches the focal plane 1.
Since it reaches the farthest position 2b farthest from 0, Fig. 4 I
As shown in (a), the AC output of the photoelectric element 2 reaches its maximum amplitude at the time of this positive peak.

尚、第4図Iのaでは、光電素子2が位置2aから十分
右方に達するとレンズ1による光像は光電素子2上で十
分ぼけてしまい、交流出力は生じないとした。
In FIG. 4I, a, it is assumed that when the photoelectric element 2 reaches the far right side from the position 2a, the optical image formed by the lens 1 becomes sufficiently blurred on the photoelectric element 2, and no AC output is generated.

また第3図■の如く、光電素子2が焦点面10の左方で
振動している場合は、第3図Iと逆に第4図■のaに示
す如く、駆動信号gの(→側のピーク時点で光電素子2
は最大振幅を有する交流出力を発生する。
In addition, when the photoelectric element 2 is vibrating to the left of the focal plane 10 as shown in FIG. At the peak of the photoelectric element 2
produces an AC output with maximum amplitude.

そして、第3図■の如く、光電素子2の振動中心が焦点
面10と一致している場合、正弦波駆動信号gの零のと
き、即ち、光電素子2が振動中心を通過するとき光電素
子2は第4図■のaの如く、最大振幅の交流出力を発生
する。
When the vibration center of the photoelectric element 2 coincides with the focal plane 10 as shown in FIG. 2 generates an AC output with maximum amplitude, as shown in (a) of FIG. 4.

この様な光電素子2の交流出力は、第2図に示す如く、
前置増幅器11と、AC増幅器12で増幅され、検波器
13で検波し、そして同期検波器14によって5からの
周波数f1の参照信号で同期検波され、そして、ローパ
スフィルタ15で平滑化される。
The AC output of such a photoelectric element 2 is as shown in FIG.
The signal is amplified by a preamplifier 11 and an AC amplifier 12, detected by a detector 13, synchronously detected by a synchronous detector 14 using a reference signal of frequency f1 from 5, and smoothed by a low-pass filter 15.

このときの各回路の出力波形を前述の第3図I、II、
Hの場合に分けて、第4図によって説明する。
The output waveforms of each circuit at this time are shown in FIGS.
The case of H will be explained separately with reference to FIG.

第3図■の如く、光電素子2の振動中心の前方に焦点面
10がある場合、即ち、前ピンの場合第4図Iのaに示
した光電素子2の交流出力は、増1幅器11と12によ
って増幅され波形すとなりそして検波されCとなり同期
検波されdとなりそして、平滑化され15の出力eとな
る。
When the focal plane 10 is in front of the center of vibration of the photoelectric element 2, as shown in Fig. 3 (■), that is, in the case of front focus, the AC output of the photoelectric element 2 shown in a of Fig. 4 I is transmitted to the amplifier. The waveform is amplified by 11 and 12, becomes C, is detected, becomes d, is synchronously detected, and is smoothed to become output e of 15.

第3図■の後ピン及び第3図■の合焦の場合も同様に2
の出力aは、夫々第く図■と■のす、c、d及びeの波
形となる。
Similarly, in the case of rear focus in Figure 3 ■ and focusing in Figure 3 ■
The output a has the waveforms shown in Figures 1 and 2, c, d, and e, respectively.

以上から明らかな如く、前ピン、後ピン及び合焦のとき
ローパスフィルター15の出力は夫々正、負及び零とな
り、焦点面に対する光電素子2のずれ量にほぼ比較した
値となる。
As is clear from the above, the outputs of the low-pass filter 15 are positive, negative, and zero during front focus, rear focus, and in-focus, respectively, and have values that are approximately compared to the amount of deviation of the photoelectric element 2 with respect to the focal plane.

従って、ローパスフィルタ15の出力を表示器16に送
ることにより焦点面位置を、即ち前ピン、後ピン、及び
合焦を表示できる。
Therefore, by sending the output of the low-pass filter 15 to the display 16, the focal plane position, that is, front focus, rear focus, and focus can be displayed.

次に、ローパスフィルタ15の出力の絶対値を絶対値回
路17により、とる。
Next, the absolute value of the output of the low-pass filter 15 is taken by the absolute value circuit 17.

これを第4図fに示す。This is shown in Figure 4f.

従って、この絶対値出力fは、前ピン、後ピンに無関係
に焦点面と、光電素子と間の距離にほぼ比例した値とな
る。
Therefore, this absolute value output f has a value that is approximately proportional to the distance between the focal plane and the photoelectric element, regardless of front focus or rear focus.

絶対値回路1Tの出力fは後述の加算器18を介して自
動振幅制御器6に入力される。
The output f of the absolute value circuit 1T is input to the automatic amplitude controller 6 via an adder 18, which will be described later.

自動振幅制御器6は発振器5の出力gの振幅を加算器1
8の出力にほぼ比例した振幅に変換するので、その自動
振幅制御器6の出力は、第4図りに示す如く前ピン及び
後ピンのときは大きく、合焦のときは小さくなる。
The automatic amplitude controller 6 adjusts the amplitude of the output g of the oscillator 5 to the adder 1.
Since the output of the automatic amplitude controller 6 is converted into an amplitude approximately proportional to the output of the automatic amplitude controller 6, the output of the automatic amplitude controller 6 is large when the front and back are in focus, and becomes small when in focus, as shown in the fourth diagram.

従って、光電素子2は焦点面からずれ量の絶対値にほぼ
比例した振幅で振動される。
Therefore, the photoelectric element 2 is vibrated with an amplitude approximately proportional to the absolute value of the amount of deviation from the focal plane.

こうして、光電素子2は、焦点面から大きくずれている
場合は大きな振幅で、また焦点面に近ずくにつれて小さ
な振幅で振動されることになる。
In this way, the photoelectric element 2 is vibrated with a large amplitude when it is largely deviated from the focal plane, and with a smaller amplitude as it approaches the focal plane.

尚、ワンジットマルチバイブレータ20は、焦点面検出
を開始させる為のスイッチ21を閉成すると一定の短時
間大きなバイアス信号をその後は極く小さなバイアス信
号を、加算器18に供給する。
Note that when the switch 21 for starting focal plane detection is closed, the one-jit multivibrator 20 supplies a large bias signal for a certain short time and then a very small bias signal to the adder 18.

このバイアス信号は加算器18によって絶対値回路17
の出力と加算されるので光電素子2は、焦点面検出開始
時に大きな振幅で振動される。
This bias signal is passed to the absolute value circuit 17 by the adder 18.
The photoelectric element 2 is vibrated with a large amplitude at the start of focal plane detection.

従つて、焦点面の検出可能範囲が広がり、たとえ、検出
開始時点で焦点面に対し、光電素子2が大きく離れて位
置している場合であっても検出が可能となる。
Therefore, the detectable range of the focal plane is expanded, and even if the photoelectric element 2 is located far away from the focal plane at the time of starting detection, detection is possible.

そして、前記一定短時間経過後は、小さなバイアス信号
が供給されるが、この小バイアス信号は、合焦時に17
の出力が零になっても2をわずかな振幅によって振動さ
せる働きをなす。
Then, after the predetermined period of time has elapsed, a small bias signal is supplied, but this small bias signal is
Even if the output of 2 becomes zero, it works to vibrate 2 with a small amplitude.

もちろん、15の出力をサーボ駆動系22に入力し、そ
れにより、1を光軸方向に移動させる様にすれば自動合
焦を行うことができる。
Of course, automatic focusing can be achieved by inputting the output of 15 to the servo drive system 22 and thereby moving 1 in the optical axis direction.

次に、第1実施例の発振器5と自動振幅制御器6とを電
圧制御型発振器に置換した第2実施例を第5図により説
明する。
Next, a second embodiment will be described with reference to FIG. 5, in which the oscillator 5 and automatic amplitude controller 6 of the first embodiment are replaced with voltage-controlled oscillators.

電圧制御型発振器(voltage controll
ed oscillator ) 24は、焦点面から
の光電素子2のずれ量に関連した加算器18の出力によ
り制御され、ずれ量が大きい為に加算器18の出力が大
きくなると電圧制御型発振器24は低い周波数の駆動信
号を発生し、逆にその出力が小さくなると高い周波数の
駆動信号を発生する。
voltage controlled oscillator
ed oscillator) 24 is controlled by the output of the adder 18 related to the amount of deviation of the photoelectric element 2 from the focal plane, and when the amount of deviation is large and the output of the adder 18 increases, the voltage controlled oscillator 24 lowers the frequency. When the output becomes smaller, a higher frequency drive signal is generated.

機械系である振動機3は同一振幅の駆動信号で駆動され
てもその振幅はその周波数の逆数の2乗に比例する振幅
に減少してしまう。
Even if the vibrator 3, which is a mechanical system, is driven with a drive signal of the same amplitude, the amplitude decreases to an amplitude proportional to the square of the reciprocal of the frequency.

従って、ずれ量が小さくなると、大きいときに較べ、光
電素子2は高い周波数で駆動されるので、その振幅は小
さくなる。
Therefore, when the amount of deviation is small, the photoelectric element 2 is driven at a higher frequency than when it is large, and its amplitude becomes smaller.

この第2実施例は、光電素子の振動中心が焦点面に近づ
くにつれて、その振動周波数が大きくなる様に構成され
ているので、第1実施例に較べてより短時間に焦点面位
置の検出が実行できる。
In the second embodiment, the vibration frequency of the photoelectric element increases as the vibration center approaches the focal plane, so the focal plane position can be detected in a shorter time than in the first embodiment. Can be executed.

本実施例では、光電素子2を光軸方向に振動させたが、
本発明は、光電素子2と対物レンズ1との焦点面とを相
対的に振動させ、その振動振幅を可変にすることを特徴
とするものであるから、この相対的振動を達成するには
第6図に示す構成にしてもよい。
In this example, the photoelectric element 2 was vibrated in the optical axis direction, but
Since the present invention is characterized by relatively vibrating the focal plane of the photoelectric element 2 and the objective lens 1 and making the vibration amplitude variable, the first step is to achieve this relative vibration. The configuration shown in FIG. 6 may also be used.

第6図において、Fはフィルム面で、26はハーフミラ
−128はレンズである。
In FIG. 6, F is a film surface, 26 is a half mirror, and 128 is a lens.

30はレンズ28の保持体で、振動機により光軸方向に
振動される。
30 is a holder for the lens 28, which is vibrated in the optical axis direction by a vibrator.

2は光電素子で別の振動機により光軸に垂直方向に振動
される。
2 is a photoelectric element which is vibrated in a direction perpendicular to the optical axis by another vibrator.

このような構成により保持体30が振動することによっ
て対物レンズ1の焦点面が光電素子2に対して光軸方向
に振動する。
With this configuration, when the holder 30 vibrates, the focal plane of the objective lens 1 vibrates in the optical axis direction with respect to the photoelectric element 2.

以上の説明では、光電素子2の振動振幅は、焦点面に対
する光電素子のずれ量にほぼ比例するとしたが必ずしも
比例に限る必要はなく、ずれ量が大きくなるにつれて、
振動振幅が大きくなる様にすればよい。
In the above explanation, it is assumed that the vibration amplitude of the photoelectric element 2 is approximately proportional to the amount of deviation of the photoelectric element with respect to the focal plane, but it does not necessarily have to be proportional, and as the amount of deviation increases,
The vibration amplitude may be increased.

また、本実施例では、ずれ量の変化に対して振動振幅を
連続的に変化させているが、ずれ量を複数の範囲に区分
して、或範囲内のずれ量に対しては、或振動振幅を、そ
して、他の範囲内のずれ量に対しては他の振動振幅を、
夫々対応させるようにしてもよい。
In addition, in this embodiment, the vibration amplitude is continuously changed in response to changes in the amount of deviation, but the amount of deviation is divided into a plurality of ranges, and a certain amount of vibration is changed for the amount of deviation within a certain range. amplitude, and other vibration amplitudes for deviations within other ranges.
They may be made to correspond to each other.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光電素子位置に対する光電素子出力を示す特性
曲線図、第2図は本発明に従う光学系の焦点検出装置の
第1実施例を説明するためのブロック図、第3図は光電
素子と対物レンズとの位置関係を示す図、第4図は光電
素子が置かれた位置によって異なる光電出力を発生する
ことを示す波形図、第5図は本発明の第2の実施例を説
明するためのブロック図、第6図は振動振幅手段の具体
的構成を示す図である。
FIG. 1 is a characteristic curve diagram showing the photoelectric element output with respect to the photoelectric element position, FIG. 2 is a block diagram for explaining the first embodiment of the optical system focus detection device according to the present invention, and FIG. A diagram showing the positional relationship with the objective lens, FIG. 4 is a waveform diagram showing that the photoelectric element generates different photoelectric outputs depending on the position where it is placed, and FIG. 5 is for explaining the second embodiment of the present invention. FIG. 6 is a block diagram showing a specific configuration of the vibration amplitude means.

Claims (1)

【特許請求の範囲】 1 光学系の焦点面近傍に配置された光電素子の受光面
と前記光学系の焦点面とを前記光学系の光軸方向に相対
的に振動させ、前記焦点面と受光面間の距離に関連した
前記光電素子出力に再づき光学系の焦点面を検出する装
置において、 前記受光面と焦点面とを相対的に振動させる振動手段と
; 前記振動手段の振動振幅が前記両面間の距離が大きいと
きは太き(、該距離が小さいときは小さくなるように前
記振動手段を前記光電素子の出力に基づいて制御する制
御手段とを含むことを特徴とする光学系の焦点面検出装
置。 2、特許請求の範囲第1項記載の光学系の焦点面検出装
置において、 前記振動手段はさらに光電素子を光軸に対して垂直方向
にも振動させることを特徴とするもの。 3 特許請求の範囲第2項記載の光学系の焦点面検出装
置において、 前記検出装置はさらに光電素子出力を検波する検波器と
、同期検波器とを含み、該同期検波器は前記振動手段の
光軸方向への振動周期に等しい周期の信号を参照信号と
して前記検波器出力を同期検波することを特徴とするも
の。 4 特許請求の範囲第1項乃至第3項いずれかの光学系
の焦点面検出装置において、 前記制御手段は焦点面検出開始時に一時的に前記振動手
段の光軸方向への振動振幅を強制的に大きくさせる強制
手段を含むことを特徴とするもの。
[Scope of Claims] 1. A light-receiving surface of a photoelectric element disposed near a focal plane of an optical system and a focal plane of the optical system are relatively vibrated in the optical axis direction of the optical system, so that the focal plane and the light-receiving surface are A device for detecting a focal plane of an optical system based on the photoelectric element output related to a distance between surfaces, comprising: a vibration means for relatively vibrating the light receiving surface and the focal plane; a vibration amplitude of the vibration means is A focal point of an optical system characterized by comprising a control means for controlling the vibrating means based on the output of the photoelectric element so that the vibrating means is wide when the distance between the two surfaces is large (and is small when the distance is small) Surface detection device. 2. The focal plane detection device for an optical system according to claim 1, wherein the vibrating means further vibrates the photoelectric element in a direction perpendicular to the optical axis. 3. In the focal plane detection device for an optical system according to claim 2, the detection device further includes a detector for detecting the output of the photoelectric element and a synchronous detector, and the synchronous detector detects the output of the vibrating means. It is characterized in that the output of the detector is synchronously detected using a signal with a period equal to the vibration period in the optical axis direction as a reference signal. 4. The focal point of the optical system according to any one of claims 1 to 3. The surface detection device is characterized in that the control means includes a forcing means for forcibly increasing the vibration amplitude of the vibration means in the optical axis direction temporarily at the start of focal plane detection.
JP11507277A 1977-09-27 1977-09-27 Focal plane detection device for optical system Expired JPS5842444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11507277A JPS5842444B2 (en) 1977-09-27 1977-09-27 Focal plane detection device for optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11507277A JPS5842444B2 (en) 1977-09-27 1977-09-27 Focal plane detection device for optical system

Publications (2)

Publication Number Publication Date
JPS5449134A JPS5449134A (en) 1979-04-18
JPS5842444B2 true JPS5842444B2 (en) 1983-09-20

Family

ID=14653472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11507277A Expired JPS5842444B2 (en) 1977-09-27 1977-09-27 Focal plane detection device for optical system

Country Status (1)

Country Link
JP (1) JPS5842444B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119644U (en) * 1985-01-14 1986-07-28
JPS639750A (en) * 1986-06-30 1988-01-16 Honda Motor Co Ltd Power transmission belt

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782807A (en) * 1980-11-11 1982-05-24 Sanyo Electric Co Ltd Focusing control mechanism
JPS5793307A (en) * 1980-12-02 1982-06-10 Olympus Optical Co Ltd Automatic focusing system
US4575764A (en) * 1983-11-07 1986-03-11 Honeywell Inc. Video camera auto focus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119644U (en) * 1985-01-14 1986-07-28
JPS639750A (en) * 1986-06-30 1988-01-16 Honda Motor Co Ltd Power transmission belt

Also Published As

Publication number Publication date
JPS5449134A (en) 1979-04-18

Similar Documents

Publication Publication Date Title
US4484806A (en) Automatic focussing apparatus
CN101495834A (en) Dynamic image acquisition with imaging sensors
JPS6214806B2 (en)
JPS5842444B2 (en) Focal plane detection device for optical system
KR910009562B1 (en) Automatic focusing apparatus for use in video camera and the like
JPS5888726A (en) Automatic focusing camera with interchangeable lens
JPH039677B2 (en)
JPS6236632A (en) Lens device for automatic focusing
US4104517A (en) Method and optical system for automatic parallax determination
JPS5830263Y2 (en) Automatic focusing device for optical disc player
JPS61214869A (en) Automatic focus mechanism for video camera
JP2511865B2 (en) Automatic focus adjustment device
JPS62296110A (en) Device for correcting image of zoom lens
JPH08327891A (en) Patterned light projecting device
JPS6127151B2 (en)
JPH07123292B2 (en) Automatic focusing device
JP2766019B2 (en) Video camera autofocus device
JPS58188965A (en) Automatic focus matching device
JPS6042723A (en) Automatic focus adjusting device
JPS60244911A (en) Autofocus adjusting device
JPS62264774A (en) Automatic focusing device
JP2816308B2 (en) Video camera autofocus device
JP2564452B2 (en) Adaptive optics controller
JPH1152226A (en) Autofocusing device
JPH0815314B2 (en) Automatic focus adjustment device