JPS61270637A - Measuring method for back scattering loss of optical fiber - Google Patents

Measuring method for back scattering loss of optical fiber

Info

Publication number
JPS61270637A
JPS61270637A JP11148785A JP11148785A JPS61270637A JP S61270637 A JPS61270637 A JP S61270637A JP 11148785 A JP11148785 A JP 11148785A JP 11148785 A JP11148785 A JP 11148785A JP S61270637 A JPS61270637 A JP S61270637A
Authority
JP
Japan
Prior art keywords
optical fiber
light
optical
measured
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11148785A
Other languages
Japanese (ja)
Inventor
Takashi Ide
井出 貴史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11148785A priority Critical patent/JPS61270637A/en
Publication of JPS61270637A publication Critical patent/JPS61270637A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/332Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using discrete input signals

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To improve the accuracy of the backward scattering loss measurement of an optical fiber to be measured by connecting one terminal of the optical fiber to be measured to the light projection end of a measuring instrument side in an optimum state and optimizing a lightreception level and excitation condition. CONSTITUTION:The axial interval between the light projection end 9 of an optical cord 4 and one end 10 of the optical fiber is made constant so as to position both ends in an optimum state. The axial interval between the ends 9 and 10 is set to a fine distance of about tens of mum so as to reduce the loss of their connection. Then, a controller 15 refers to an electric signal proportional to the lightreception intensity of light pulses lightreceived 13 through a light pulse generator 1, an optical directional coupler 3, etc., and then moves a holder 11 vertically so that the lightreception intensity is maximum. The connection between the ends 9 and 10 is so adjusted that the intensity of transmitted light from the other end 14 of the optical fiber 8 is maximum, thereby minimizing the loss of the connection between the ends 9 and 10. Further, the excitation of the cord 4 is transmitted to the fiber 8 without any variation. Further, the lightreception level of the controller 15 becomes high and its referring operation is performed easily and automatically.

Description

【発明の詳細な説明】 (イ)利用分野 この発明は光ファイバの後方散乱損失測定方法の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Application This invention relates to an improvement in a method for measuring backscattering loss of an optical fiber.

(ロ)従来技術 従来、光ファイバの光損失を測定する方法のひとつとし
て後方散乱損失測定方法が知られている。
(b) Prior Art Conventionally, a backscattering loss measurement method has been known as one of the methods for measuring optical loss of an optical fiber.

第1図は従来の後方散乱損失測定の概略構成図を示して
いる。第1図において、符号1は光/ξルス発生器で、
例えば半導体レーザとその駆動回路よりなる。光パルス
発生器1によって発生された光パルスは光コート゛2を
通り光方向性結合器3に与えられる。光方向性結合器3
は光コート゛2を介した光パルスを光コ−ド4を介して
光接続部5へ与えると共に、光コート94側から入射す
る光を光コード6を介して受光器7へ送る。光接続部5
は光コード4の光出射端9と光ファイバ8の一端10と
が光学的に接続される部分であり、光コード4かう光パ
ルスが光ファイバ8の一端10へと入射される。
FIG. 1 shows a schematic diagram of a conventional backscattering loss measurement. In FIG. 1, numeral 1 is a light/ξ lux generator;
For example, it consists of a semiconductor laser and its driving circuit. The optical pulses generated by the optical pulse generator 1 pass through the optical coat 2 and are applied to the optical directional coupler 3. Optical directional coupler 3
provides the optical pulses via the optical coat 2 to the optical connector 5 via the optical cord 4, and sends the light incident from the optical coat 94 side to the light receiver 7 via the optical cord 6. Optical connection part 5
is a portion where the light output end 9 of the optical cord 4 and one end 10 of the optical fiber 8 are optically connected, and the light pulses from the optical cord 4 are input to the one end 10 of the optical fiber 8.

そしヤ、四端10から検出されるレイリー後方散乱光及
びフレネル反射光は光コード4、光方向性結合:(K3
を順次経て受光器7により受光され、この111115
:rlにまり光ファイバの損失特性が知られる。
Then, the Rayleigh backscattered light and Fresnel reflected light detected from the four ends 10 are optical code 4, optical directional coupling: (K3
This 111115 light is received by the light receiver 7 through
: The loss characteristics of the optical fiber are known based on rl.

上記後方散乱[1失測定方法は、容易に光)゛アイバの
破断点を検出できるだけでなく、損失晶性を透過法と大
差なく測定できる自効な方法である。
The above-mentioned backscattering [1-loss measurement method] is an effective method that not only can easily detect the breaking point of the optical fiber, but also can measure loss crystallinity with no significant difference from the transmission method.

へらに、同市法は、光ファイバJ」さ方向の損失依存性
が測定できる、光ファイバを破損することなく測定でき
る、透過法では測定器の波長依存・1」−を補償するた
めに参照伏目をとる必要があったがその必要はない、な
との特徴を有している。
In addition, the city law requires that the loss dependence in the optical fiber direction can be measured, that it can be measured without damaging the optical fiber, and that in the transmission method, reference foreshadowing is used to compensate for the wavelength dependence of the measuring instrument. However, it is not necessary.

(ハ) この発明が解決しようとする問題点第2図に示
すような従来の構成の後方散乱損失測定方法r]1、測
定きれるレイリー散乱光、ルーネル反q寸光等の後方散
乱光が非常に微弱であるため、高精度の測定が困難な問
題がある。そこで、従来、光源と1〜て高出勾の繰り返
しパルス光源を用い、受光器7によって光電変換された
電気信号ば゛IL均化処理をすることに」:すSN比を
改善する等の4′h度を向−Lする試みが行なわれてい
る。精度を向上する/こめには光接続部5が重要な要素
となる。即ち、光接続部5における尤損失が受光レー〈
ルに影響を与えるたけでなく、被測定ノーrイバの励振
条件にも影響を与える。受光レベルを改善するには精密
な■溝を使用して光接続部の接続状17〕1を最適にす
ること、捷た、被測定ファイバの励振条件への影響を除
去するには光コ−1’4に適当な励振罰を挿入して適当
な励振条件を得ることが行なわわているものの、接続状
態及び励振条件の確認は微弱71i:後方散乱光O′こ
」:ってのみ知ることができるので正確に把握すること
ができず、骨だ平均化処理等のために把握に時間がかか
った。
(c) Problems to be Solved by this Invention The backscattered loss measuring method with the conventional configuration as shown in Figure 2] 1. Backscattered light such as Rayleigh scattered light and Lunel reflection q dimension light that cannot be measured is very large. The problem is that it is difficult to measure with high precision because the Therefore, conventionally, we used a repeating pulse light source with a high slope as a light source, and performed IL equalization processing on the electrical signal photoelectrically converted by the photoreceiver 7. Attempts have been made to change the direction by -L. In order to improve accuracy, the optical connection section 5 becomes an important element. That is, the likely loss in the optical connection part 5 is
This not only affects the signal, but also the excitation conditions of the normal driver to be measured. In order to improve the light reception level, it is necessary to use a precise groove to optimize the connection shape of the optical connection section 17], and to eliminate the influence of the spliced fiber on the excitation conditions of the fiber under test. Although it is done to obtain appropriate excitation conditions by inserting an appropriate excitation penalty in 1'4, the only thing to know about it is that the connection state and excitation conditions are confirmed by weak 71i: Backscattered light O'. Because of this, it was not possible to accurately understand the data, and it took a long time to understand it due to extensive averaging processing, etc.

この発明は、被測定光ファイバの一端と測定器側光出射
端との接続を最適に行なって受光レベル及び励振条件を
最適状態にし、以って光ファイバの後方散乱損失測定の
精度を向上をせることかできる光ファイバの後方散乱損
失測定力法を提供することである。
This invention optimizes the connection between one end of the optical fiber to be measured and the light emitting end of the measuring instrument to optimize the received light level and excitation conditions, thereby improving the accuracy of backscattering loss measurement of the optical fiber. It is an object of the present invention to provide a force method for measuring backscattering loss of an optical fiber, which can be used to measure the backscattering loss of an optical fiber.

に)問題点を解決するだめの手段 被測定光ファイバー端と測定器側光出射端との位置決め
は、当該一端と光出射端との軸方向間隔を一定にIM置
決めする段階と、前記被測定光フ“アイバを透過した光
パルスを当該被測定光ファイバの他端から受光l−てこ
の受光強度を監視する段階と、前記受光強度が最大とな
るようにAjl記軸方向と垂面な方向に11■記被測定
光フアイバ一端を1」1工記測宇器側光出射端に対して
相対的に移動させて位置決めを行う段階と、を含んでい
る。
(b) Means for solving the problem The positioning of the end of the optical fiber to be measured and the light emitting end on the measuring instrument side includes the step of IM positioning the end of the optical fiber to be measured and the light emitting end at a constant axial distance; a step of receiving the light pulse transmitted through the optical fiber from the other end of the optical fiber to be measured; and monitoring the received light intensity of the optical fiber in a direction perpendicular to the axial direction so that the received light intensity is maximized. (11) positioning one end of the optical fiber to be measured by moving it relative to the light emitting end on the measuring instrument side;

(ホ)作用 被測定光ファイバー端と測定器側光出射端との位置決め
は、当該光出射端から被測定光ファイバを透過する光パ
ルスを受光j7てこの受光レベルが最大となるように監
視しながら行なわれるので、両端の接続損失を鹸小にし
、かつ被測定光ファイバへの励振条flを最適化できる
(e) Positioning of the end of the optical fiber to be measured and the light emitting end on the measuring instrument side is done by monitoring the light pulses transmitted from the light emitting end to the optical fiber to be measured using the light receiving j7 so that the light receiving level is maximized. Therefore, the connection loss at both ends can be minimized, and the excitation line fl to the optical fiber to be measured can be optimized.

(へ)実施例 第1図はこの発明の後方散乱損失測定方法を実施する檀
略システム構成図を示している。第1図において第2図
と同一部分には同−符月を付して示し、その説明は省略
する。第1図の光接続部5を構成する、光コード4の光
出射端9にはホルダ11が、光フ′アイバ8の一端10
にはホルダ12が夫々取付けられている。光フ”アイバ
8の他端14には受光器13が数句けられ、光ファイバ
8を透過1〜だ光パルスは受光器13によって受光され
、ここで受光強度に比例する電気信号に変換され、ライ
ンlを介してコントローラ15に与えられる。コントロ
ーラ15は受光しにルを参照し、ホルダ11を端9,1
0の軸に対して垂直方向に移動し、受光レベルを最大に
すべく端9,10を相対的に位置決めする。□前記光コ
ート″4の光出射端9と光ファイバ8の一端10を最適
に位置決めを行うには、先ず、端9゜100軸方向の間
隔を一定にする。光出射端9け光コード4の芯となる光
ファイバの端に相当するため、端9.IOの接続は光フ
アイバ同志の接続となる。端9,100軸方向の間隔は
接続損失を小さくするため、数10μ7n程度の微小な
距離に設定される。この端9,100軸方向の位置合せ
については、例えばホルダ11 、1.2としての■溝
の上で両ファイバを軸方向に滑らせ、それらの端9,1
0がファイバストツメに接触するときに固定させる、融
着機し二用いられるようなファイバストツ・ξによる接
触式に、1.る15法、その曲、光学的な非接触による
方メツこりが知られている。
(F) Embodiment FIG. 1 shows a schematic system configuration diagram for implementing the backscattering loss measuring method of the present invention. In FIG. 1, the same parts as those in FIG. 2 are indicated with the same symbol, and their explanation will be omitted. A holder 11 is attached to the light output end 9 of the optical cord 4 constituting the optical connection section 5 in FIG.
A holder 12 is attached to each. Several light receivers 13 are arranged at the other end 14 of the optical fiber 8, and the light pulses transmitted through the optical fiber 8 are received by the light receivers 13, where they are converted into electrical signals proportional to the received light intensity. , to the controller 15 via the line l.
0 axis to position the ends 9 and 10 relative to each other to maximize the level of light received. □In order to optimally position the light output end 9 of the optical coat "4" and one end 10 of the optical fiber 8, first, the distance between the ends 9 and 100 in the axial direction is made constant. Since this corresponds to the end of the optical fiber that is the core of For axial alignment of the ends 9, 100, for example, slide both fibers axially over the grooves as holders 11, 1.2, and align their ends 9, 1.
1. In a contact type using a fiber stopper ξ such as that used in a fusion splicer, the fiber stopper ξ is fixed when it comes into contact with the fiber stopper. The 15th method, its song, and the method of optical non-contact are known.

次に、光・ぐルス発生器1、尾方向性結合器3、光コ 
l・4、毘ファイバ8を順次介して受光器13によって
受光された光・?ルスの受光強度に比例する市気信けを
参照し、コノトローラ15は当該受光強度が最大となる
ようにホルダ11を垂直ノ月a]に移動する3、そして
、コントローラ15は最大出力の光強度が得らIq−た
ときにホルダ11の移動を1亨11−する。
Next, the light/glucose generator 1, the tail directional coupler 3, the light
The light received by the light receiver 13 through the fiber 8 sequentially is ? The controller 15 moves the holder 11 to the vertical nozuki a] so that the received light intensity is the maximum, and the controller 15 moves the light intensity to the maximum output. When Iq- is obtained, the holder 11 is moved by 1.11-.

しかI〜で、端9 、10の接続は光ファイバ8の他端
14からの透過光の光強度が最大になるように調整きれ
るので、端9 、10の接続損失は最小になると共に、
光コ−1−゛4の励振は最も変動することなく光ファイ
バ8へと伝えられる。なお、ホルダ11の移動は数μy
n程度の精度で行なわれ、コントローラ15が参照する
受光レベルは透過光であるから、後方散乱光に比17て
高レベルとなり、参照が容易に、安定にかつ自動的に行
うことができる。」二記ホルダ11の垂直方向移動の機
構は光ファイバめ融着機において従来知られており、例
えば2方向直線微動、応力ひずみ、電歪素子などの各方
式が利用さil−る。
However, in I~, the connection between the ends 9 and 10 can be adjusted so that the light intensity of the transmitted light from the other end 14 of the optical fiber 8 is maximized, so that the connection loss at the ends 9 and 10 is minimized, and
The excitation of the optical fibers 1-4 is transmitted to the optical fiber 8 with the least fluctuation. Note that the movement of the holder 11 is several μy.
This is done with an accuracy of about n, and since the received light level referenced by the controller 15 is transmitted light, it is at a higher level than the backscattered light, and the reference can be easily, stably, and automatically performed. 2. Mechanisms for vertical movement of the holder 11 are conventionally known in optical fiber fusion splicing machines, and various methods such as two-direction linear fine movement, stress strain, and electrostrictive elements are utilized.

々お、前記実施例においてはコントローラ15ニよりホ
ルダ11を移動させたが、ホルダ1−2を動かしても端
9.10の位置全相対的に定めることができる。
In the above embodiment, the holder 11 was moved by the controller 15, but the positions of the ends 9 and 10 can also be determined relative to each other by moving the holder 1-2.

(ト)効果 この発明は、破1IllI定)しファイバー端と測定器
側光出射端との接続損失を最小にし、かつ励振条件を最
適状態で両端の(+’r置決めができるから、後方散乱
損失測定における受光レベルが改善された精度の良い損
失測定を行うことができる。きらに、従来のように後方
散乱光によってのみiII記両端の接続状態を把握する
困難さに比較し7、本測定方法は光ファイバに透過する
高い受光レベルを参照するから、位置決めが容易で省力
化を図ることができる。
(g) Effects This invention minimizes the connection loss between the optical fiber end and the measuring instrument side light emitting end, and also allows both ends to be positioned (+'r) under optimal excitation conditions. It is possible to perform highly accurate loss measurements with an improved light reception level in scattering loss measurements.In comparison to the conventional method, where it is difficult to determine the connection status at both ends of III only by using backscattered light, this method Since the measurement method refers to the high level of light received transmitted through the optical fiber, positioning is easy and labor-saving can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す概略測定シスデム構
成図、第2図は従来の後方散乱損失測定ツノ法の概略測
定ノステノ・構成図である。 I・・光ハルス発生器、 2.4.6・・光コー 1・
゛、3・・光方向性結合8K、 5 光接続部、 7,
13・・・受光器、  8・・・光)“アイバ、  9
・・・光コ−1・゛の光出射端、 10・光ファイバの
一端、 1.、l 、 12・・・ホルダ、 14・・
光ノアイバの他端、 15・・・コントローラ。 特訂出願人 住友屯気工業株式会社 (外5名) 尾1図 尾2凹
FIG. 1 is a schematic configuration diagram of a measurement system showing an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of a conventional backscattering loss measurement method. I... Optical Hals generator, 2.4.6... Optical code 1.
゛, 3... Optical directional coupling 8K, 5 Optical connection section, 7,
13...Receiver, 8...Light) "Aiba, 9
. . . Light output end of optical fiber 1.゛, 10. One end of optical fiber, 1. , l, 12... holder, 14...
The other end of the optical fiber, 15...controller. Special applicant Sumitomo Tunki Industries, Ltd. (5 others) Tail 1 figure Tail 2 concave

Claims (1)

【特許請求の範囲】 被測定光ファイバの一端に測定器側光出射端より光パル
スを入射すると共に当該一端から前記光パルスによるレ
イリー後方散乱光及びフレネル反射光を検出して前記被
測定光ファイバの後方散乱損失を測定する方法において
、 前記被測定光ファイバー端と前記測定器側光出射端との
位置決めは、当該一端と光出射端との軸方向の間隔を一
定に位置決めする段階と、前記被測定光ファイバを透過
した前記光パルスを前記被測定光ファイバの他端から受
光してこの受光強度を監視する段階と、前記受光強度が
最大になるように前記軸方向と垂直な方向に前記被測定
光ファイバー端を前記測定器側光出射端に対して相対的
に移動させて位置決めを行う段階と、を含むことを特徴
とする光ファイバの後方散乱損失測定方法。
[Scope of Claims] A light pulse is inputted into one end of the optical fiber to be measured from a light emitting end on the measuring device side, and Rayleigh backscattered light and Fresnel reflected light due to the light pulse are detected from the one end, and the optical fiber to be measured is In the method for measuring backscattering loss, the positioning of the end of the optical fiber to be measured and the light emitting end on the measuring device side includes the step of positioning the end and the light emitting end at a constant distance in the axial direction; a step of receiving the light pulse transmitted through the measurement optical fiber from the other end of the optical fiber to be measured and monitoring the received light intensity; A method for measuring backscattering loss of an optical fiber, comprising the step of positioning the end of the measuring optical fiber by moving it relative to the light emitting end on the measuring instrument side.
JP11148785A 1985-05-24 1985-05-24 Measuring method for back scattering loss of optical fiber Pending JPS61270637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11148785A JPS61270637A (en) 1985-05-24 1985-05-24 Measuring method for back scattering loss of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11148785A JPS61270637A (en) 1985-05-24 1985-05-24 Measuring method for back scattering loss of optical fiber

Publications (1)

Publication Number Publication Date
JPS61270637A true JPS61270637A (en) 1986-11-29

Family

ID=14562513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11148785A Pending JPS61270637A (en) 1985-05-24 1985-05-24 Measuring method for back scattering loss of optical fiber

Country Status (1)

Country Link
JP (1) JPS61270637A (en)

Similar Documents

Publication Publication Date Title
CN109959403B (en) Multi-parameter large-capacity sensing system
Calvani et al. Polarization measurements on single-mode fibers
EP0926479A1 (en) Optical loss measurement
JPS61107130A (en) Method and device for measuring fiber connecting absolute loss
Gisin et al. Optical fiber characterization by simultaneous measurement of the transmitted and refracted near field
EP1265062B1 (en) Chromatic-dispersion measuring apparatus and method for optical fibres
CN108957209B (en) Automatic broken line detection device for communication optical fiber cable production
JPH03150442A (en) Optical fault point locating device
US4768880A (en) System and method for accurate loop length determination in fiber-optic sensors and signal processors
JPS61270637A (en) Measuring method for back scattering loss of optical fiber
EP1065489B1 (en) Apparatus for optical time domain reflectometry on multi-mode optical fibers, a light source section thereof, and a process for producing the light source section
JP3343756B2 (en) Manufacturing method of collimator for optical circuit
KR101923391B1 (en) Optical module for otdr with half mirror and reflection suppression structure
CA1312195C (en) Endface assessment
US5226102A (en) Light-reflection method for transmission-loss measurements in optical fiber lightguides
US20040046964A1 (en) Instrument measuring chromatic dispersion in optical fibers
EP0150434A1 (en) Method for measuring optical fiber characteristics
JP2540166Y2 (en) Optical signal receiver
JP2521429B2 (en) Optical output measuring device for multi-fiber optical fiber
JPH05272920A (en) Optical-fiber displacement gage
RU2156989C1 (en) Method for measuring mode spot diameter for single-mode optical fiber
JPS5831083Y2 (en) Optical fiber cutoff wavelength measuring device
JPS586431A (en) Temperature measuring method using optical fiber
JPS61155935A (en) Method and apparatus for measuring characteristic of optical fiber
RU2548383C2 (en) Method of selecting multimode optical fibres of fibre-optic transmission line for operation with single-mode optical radiation source