JPS6127038B2 - - Google Patents

Info

Publication number
JPS6127038B2
JPS6127038B2 JP52144884A JP14488477A JPS6127038B2 JP S6127038 B2 JPS6127038 B2 JP S6127038B2 JP 52144884 A JP52144884 A JP 52144884A JP 14488477 A JP14488477 A JP 14488477A JP S6127038 B2 JPS6127038 B2 JP S6127038B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen peroxide
medium
carbon
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52144884A
Other languages
Japanese (ja)
Other versions
JPS5388386A (en
Inventor
Gaberurieri Rodorufuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay Chimie SA
Original Assignee
Interox SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interox SA filed Critical Interox SA
Publication of JPS5388386A publication Critical patent/JPS5388386A/en
Publication of JPS6127038B2 publication Critical patent/JPS6127038B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/32Processes using, or culture media containing, lower alkanols, i.e. C1 to C6
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/26Processes using, or culture media containing, hydrocarbons
    • C12N1/28Processes using, or culture media containing, hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/26Processes using, or culture media containing, hydrocarbons
    • C12N1/28Processes using, or culture media containing, hydrocarbons aliphatic
    • C12N1/30Processes using, or culture media containing, hydrocarbons aliphatic having five or less carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/804Single cell protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/818Aeration or oxygen transfer technique

Description

【発明の詳細な説明】 本発明は好気性微生物の培養法に関する。[Detailed description of the invention] The present invention relates to a method for culturing aerobic microorganisms.

微生物の工業的培養は増々積極的興味がもたれ
ている。事実、微生物の培養は微生物自体を得る
こと、たとえば、酵素、色素または毒素のような
微生物によつて分泌される化合物を製造するこ
と、抗生物質、ビタミン、またはアミノ酸のよう
な代謝産物を製造すること、または、たとえばク
エン酸の工業的製造中の場合のようにある種の限
定した化合物を生化学的に変換することを可能に
する。
The industrial cultivation of microorganisms is of increasing interest. In fact, the cultivation of microorganisms can be used to obtain the microorganism itself, for example to produce compounds secreted by the microorganism such as enzymes, pigments or toxins, to produce metabolic products such as antibiotics, vitamins or amino acids. or make it possible to biochemically transform certain limited compounds, as is the case, for example, during the industrial production of citric acid.

さらに、動物または人間の食料の蛋白質源とし
てある種の微生物を使うことは世界の食料資源の
危機に対し可能な解答を示す。
Furthermore, the use of certain microorganisms as protein sources for animal or human food represents a possible answer to the world's food resource crisis.

微生物は特に高い成長速度をもつ点で、食料に
ふつう使われる植物および動物よりも利点があ
る。はるかに高いこの生産性は役立つ食料の量を
かなり増加できるはずである。
Microorganisms have an advantage over plants and animals commonly used for food, especially in that they have high growth rates. This much higher productivity could considerably increase the amount of food available.

微生物を広い種類の基質と共に供給して養な
い、こうして得られるビオマスから食料として使
用できる蛋白質濃縮物を抽出する種々の方法がす
でに完成されている。
Various methods have already been perfected for feeding and nourishing microorganisms with a wide variety of substrates and for extracting protein concentrates that can be used as food from the biomass thus obtained.

この目的に使われる大部分の微生物は好気性微
生物である。そこで、この微生物の成長を確実に
するためには培養装置に空気または酸素を供給す
る必要がある。しかし、酸素の水への溶解度は著
しく低いので、微生物の成長速度は酸素の水への
溶解速度によつてしばしば制限される。
Most microorganisms used for this purpose are aerobic microorganisms. Therefore, in order to ensure the growth of these microorganisms, it is necessary to supply air or oxygen to the culture device. However, the solubility of oxygen in water is extremely low, so the growth rate of microorganisms is often limited by the rate of oxygen dissolution in water.

この欠点を克服するために、アルムール
(Armour)社の1958年1月10日出願の英国特許
第861784号には、酸素源として過酸化水素水溶液
を使うことが提案されている。使用基質は微生物
培養に現在使われる基質、すなわち炭水化物(糖
みつ、ペプトン、グルコース、ラクトース)また
は蛋白質に富んだ生産物である。しかし、これら
の生産物は経済的見地からは基質として使うのに
一層興味を減少させる大きな欠点を有している。
事実、これはつくつた生産物であつて、その若干
のものは変形せずに動物または人間の食料として
そのまま適する。他方、これら生産物のある種の
ものは農業副産物であつて、この事実のため基質
として使用できる前には複雑な予備処理を必要と
する。
To overcome this drawback, British Patent No. 861,784 filed on January 10, 1958 by Armour suggests using an aqueous hydrogen peroxide solution as the oxygen source. The substrates used are those currently used in microbial cultivation, ie carbohydrates (molasses, peptones, glucose, lactose) or protein-rich products. However, these products have major drawbacks which make them even less interesting to use as substrates from an economic point of view.
In fact, it is a manufactured product, some of which is directly suitable as animal or human food without modification. On the other hand, some of these products are agricultural by-products and due to this fact require complex pretreatment before they can be used as substrates.

別の背景で、経済的理由から、石油製品から誘
導されるもののようなはるかに一層簡単な分子か
らなる基質を使う方向に変つてきた。ブリテイツ
シユ・ペトロレアム社の1961年8月16日出願の英
国特許第914568号においては、酸素および灯油の
ような炭化水素の存在で微生物を成長させること
が提案されている。この方法をメタン、メタノー
ル、および水素と一酸化炭素または二酸化炭素の
混合物のような著しく軽質の基質に拡張すること
は、これら生産物と酸素との混合物の引火性によ
つて大きな問題を生じる。
In another context, economic reasons have turned towards using substrates consisting of much simpler molecules, such as those derived from petroleum products. In British Patent No. 914,568 filed August 16, 1961 to British Petroleum, it is proposed to grow microorganisms in the presence of oxygen and a hydrocarbon such as kerosene. Extending this process to significantly lighter substrates such as methane, methanol, and mixtures of hydrogen and carbon monoxide or carbon dioxide poses major problems due to the flammability of the mixtures of these products with oxygen.

本出願者は上記方法の欠点を有さない方法を発
明した。
The applicant has invented a method that does not have the disadvantages of the above methods.

本発明は少なくとも1種の酸素源、少なくとも
1種の炭素源、および少なくとも1種の水素源を
有する培地での好気性微生物の培養法に関するも
のであり、ただし、過酸化水素の分解で生じる酸
素を酸素源として使用し、また少なくとも1種の
高引火性生産物を炭素源および水素源として使
う。
The present invention relates to a method for culturing aerobic microorganisms in a medium containing at least one oxygen source, at least one carbon source, and at least one hydrogen source, provided that the oxygen generated from the decomposition of hydrogen peroxide is used as the oxygen source and at least one highly flammable product is used as the carbon and hydrogen source.

一般には、本発明にしたがつて使われる高引火
性生産物は1〜4個の炭素原子を含有する脂肪族
一価アルコール、水素と一酸化炭素および二酸化
炭素との混合物から選ばれる。高引火性生産物と
はその引火点が30℃かまたはそれ以下の生産物を
意味する。
Generally, the highly flammable products used according to the invention are selected from aliphatic monohydric alcohols containing 1 to 4 carbon atoms, mixtures of hydrogen with carbon monoxide and carbon dioxide. Highly flammable product means a product whose flash point is at or below 30°C.

メタノール、および水素と一酸化炭素または二
酸化炭素との混合物で最上の結果が得られる。水
素と一酸化炭素の混合物は種々の量の水素を含
み、一般には30〜99容量%の、好ましくは60〜95
容量%の水素を含む。水素と二酸化炭素の混合物
は種々の量の水素を含み、一般には40〜99容量%
の好ましくは65〜99容量%の水素を含む。
Best results are obtained with methanol and mixtures of hydrogen and carbon monoxide or carbon dioxide. The mixture of hydrogen and carbon monoxide contains varying amounts of hydrogen, generally between 30 and 99% by volume, preferably between 60 and 95%.
Contains % hydrogen by volume. Mixtures of hydrogen and carbon dioxide contain varying amounts of hydrogen, typically between 40 and 99% by volume.
preferably 65 to 99% by volume of hydrogen.

培地とは微生物が成長する媒体、微生物が繁殖
する媒体、または両操作が同時に行なわれる媒体
を意味する。
By medium is meant a medium in which microorganisms grow, a medium in which microorganisms propagate, or a medium in which both operations are carried out simultaneously.

一般には、培地は液体で、微生物をそのなかに
分散させる。本法では微生物の培地中でしたがつ
てその存在下に過酸化水素の分解を行なうのが特
に好ましい。
Generally, the culture medium is a liquid in which the microorganisms are dispersed. In this method, it is particularly preferable to decompose hydrogen peroxide in a microbial culture medium and therefore in the presence of microorganisms.

過酸化水素の分解に有利な少なくとも1種の触
媒の助けで過酸化水素の分解を実施する。
The decomposition of hydrogen peroxide is carried out with the aid of at least one catalyst that favors the decomposition of hydrogen peroxide.

この触媒は培地の正規の成分であるかまたは正
規の培地に添加する外部からの生産物である。
This catalyst is either a regular component of the medium or an external product added to the regular medium.

そこで、微生物が過酸化水素の分解に有利な生
産物を含んでいるときは、外部からの触媒を添加
する必要はかならずしもない。これはたとえばカ
タラーゼに富むある種の細菌およびある種の菌類
の場合である。しかし、少量の触媒の添加を排除
するものではない。培地中にふつう存在する栄養
成分の一つが過酸化水素の分解の触媒作用をもつ
場合も同様である。
Therefore, it is not always necessary to add an external catalyst when the microorganism contains products that are advantageous for the decomposition of hydrogen peroxide. This is the case, for example, in certain catalase-rich bacteria and certain fungi. However, the addition of small amounts of catalyst is not excluded. The same is true if one of the nutritional components normally present in the culture medium catalyzes the decomposition of hydrogen peroxide.

微生物の培地成分が過酸化水素の分解の触媒作
用をもつ化合物を全く含まないときは、1種また
はそれ以上の触媒を培地に添加する。
When the microbial medium components do not contain any compounds that catalyze the decomposition of hydrogen peroxide, one or more catalysts are added to the medium.

過酸化水素分解触媒の例はたとえばW.C.シユ
ム、C.N.サツターフイールド、R.L.ウエントワ
ース、「過酸化水素」、A.C.S.モノグラフシリー
ズ、128号、ラインホルド・パブリツシング・コ
ポレーテツド、ニユーヨーク、1955年、467〜501
頁に示されている。有機化合物および生物学的化
合物が一般に適する。このうち、高活性が公知で
あるカタラーゼおよびペルオキシターゼを使うの
が好ましい。
Examples of hydrogen peroxide decomposition catalysts include, for example, WC Schum, CN Satterfield, RL Wentworth, "Hydrogen Peroxide", ACS Monograph Series, No. 128, Reinhold Publishing Co., Ltd., New York, 1955, 467-501.
Shown on page. Organic and biological compounds are generally suitable. Among these, catalase and peroxidase, which are known to have high activity, are preferably used.

過酸化水素使用量は、培地に過剰の過酸化水素
を存在させないように、培養条件で得られる過酸
化水素の最大分解速度によつて決める必要があ
る。
The amount of hydrogen peroxide used must be determined based on the maximum decomposition rate of hydrogen peroxide that can be obtained under the culture conditions, so as to avoid the presence of excess hydrogen peroxide in the culture medium.

この最大許容速度は触媒の性質に著しく依存す
る。
This maximum permissible rate is highly dependent on the nature of the catalyst.

使用触媒が十分有効であつて生成酸素量が微生
物の成長に必要な量よりも高いときは、不当に微
生物の酸素要求を越えることなく、上記要求をみ
たすような方式で微生物の酸素要求に従つて導入
過酸化水素量を決める必要がある。この微生物の
酸素要求は微生物の型、その培地中の濃度、栄養
要素として使う基質に著しく依存する。
If the catalyst used is sufficiently effective and the amount of oxygen produced is higher than that required for microbial growth, the oxygen requirements of the microorganisms are met in such a way as to meet the above requirements without unduly exceeding the oxygen requirements of the microorganisms. Therefore, it is necessary to determine the amount of hydrogen peroxide to be introduced. The oxygen requirements of these microorganisms are highly dependent on the type of microorganism, its concentration in the medium, and the substrate used as a nutritional element.

単位時間当り培地に導入する過酸化水素量はふ
つう単位時間当り形成される乾燥微生物1mg当り
10〜10000マイクロモルと変る。使う微生物種の
性質が一層少量のまたは多量の過酸化水素の使用
を必要とし得る。炭素および水素に富み酸素の乏
しい基質の使用は一層多くの酸素の消耗を意味す
る。
The amount of hydrogen peroxide introduced into the culture medium per unit time is usually per mg of dry microorganisms formed per unit time.
It varies from 10 to 10,000 micromoles. The nature of the microbial species used may require the use of smaller or larger amounts of hydrogen peroxide. The use of carbon and hydrogen rich and oxygen poor substrates means more oxygen depletion.

過酸化水素および培地と相容性の溶剤中の溶液
形で過酸化水素を一般に使用する。水を一般に溶
剤として使う。著しく異なる濃度の溶液を使用で
きるが、一般に10重量%以下の好ましくは0.005
〜8重量%の過酸化水素を含む希釈溶液を使うの
が好ましい。著しく低濃度は大きな装置を必要と
することは明らかである。高濃度は望ましくな
い。不十分なかきまぜの場合、微生物の死を導び
き得る過酸化水素の局部的蓄積の危険を避ける必
要がある。
Hydrogen peroxide is generally used in the form of a solution in a solvent compatible with the hydrogen peroxide and the culture medium. Water is generally used as a solvent. Solutions of significantly different concentrations can be used, but generally no more than 10% by weight, preferably 0.005
Preferably, a dilute solution containing ~8% by weight hydrogen peroxide is used. It is clear that very low concentrations require large equipment. High concentrations are undesirable. It is necessary to avoid the risk of local accumulation of hydrogen peroxide, which could lead to the death of microorganisms in case of insufficient stirring.

過酸化水素を直接培地に導入するのが好まし
い。過酸化水素の分解に由来する発生期酸素が培
地と接触できる他の方法を使うこともできる。
Preferably, hydrogen peroxide is introduced directly into the medium. Other methods can also be used in which nascent oxygen derived from the decomposition of hydrogen peroxide can be contacted with the medium.

たとえば過酸化水素溶液をふつうは水溶液であ
る栄養培地に導入し、そのすべてを直接培地に送
ることができる。他の方法も使用できる。
For example, a hydrogen peroxide solution can be introduced into a nutrient medium, usually an aqueous solution, and all of it can be delivered directly to the medium. Other methods can also be used.

本法は本発明に従い使用できる基質を同化でき
るすべての偏性または通性の好気微生物の培養に
応用できる。このような微生物は生合成に必要な
エネルギーを有機化合物の発酵反応または有機ま
たは無機化合物の酸化からとり出すので化学的栄
養性である。
The method is applicable to the cultivation of all obligate or facultative aerobic microorganisms capable of assimilating the substrates that can be used according to the invention. Such microorganisms are chemotrophic because they derive the energy required for biosynthesis from fermentation reactions of organic compounds or from the oxidation of organic or inorganic compounds.

本発明の目的である本法は従属栄養
(Chemoor―ganotrophic)微生物に適用するのが
好ましい。これらのなかには、多数の細菌たとえ
ば大部分のプソイドモナルス、放線菌類、多数の
菌類たとえば大部分の藻菌類、子嚢菌類、特に酵
母菌科または酵母、原虫類、および異なる型の動
物細胞がある。
The method that is the object of the invention is preferably applied to heterotrophic (chemo-ganotrophic) microorganisms. Among these are a large number of bacteria, such as most pseudomonales, actinobacteria, a large number of fungi, such as most phycophycetes, ascomycetes, especially yeasts or yeasts, protozoa, and different types of animal cells.

本法は単細胞微生物の培養に特によく適用でき
る。
This method is particularly well applicable to the cultivation of unicellular microorganisms.

次の型の細菌を本法を適当できる工業的に興味
ある細菌として指摘できる。アセトバクター、ア
セトモナス(acetomonas)、アルスロバクテル
(arthrobacter)、ブレビバクテリウム(breviba
―cterium)、コリネバクテリア、ヒドロゲノモ
ナス(hydrogenomonas)、球菌、ミコバクテリ
ウム(micobacterium)、ノカルジア、プソイド
モナス、ストレプトミセス、ビブリオ等。菌類ま
たは酵母としては特に次の型を挙げることができ
る。コウジカビ、カンジダ、酵母菌医科
(cryptococcoid―ees)、ペニシリウム、サツカロ
ミセス、トルロプシス属(torulopsis)等。
The following types of bacteria can be pointed out as industrially interesting bacteria for which the present method is applicable. Acetobacter, acetomonas, arthrobacter, breviba
-cterium), Corynebacteria, Hydrogenomonas, Coccus, Mycobacterium, Nocardia, Pseudomonas, Streptomyces, Vibrio, etc. As fungi or yeasts, mention may be made in particular of the following types: Aspergillus, Candida, cryptococcoid-ees, Penicillium, Satucharomyces, torulopsis, etc.

培養しようとする微生物の型は、使おうとする
基質の性質と直接関係するのは明らかである。そ
こで、蛋白質生産用基質としてメタンを使おうと
する場合は、プソイドモナスのような細菌型の微
生物を使うのが有利である。基質がメタノールの
場合は、カンジダ型の酵母またはプソイドモナス
型の細菌で最上の結果が得られる。基質が水素と
一酸化炭素または二酸化炭素との混合物である場
合はヒドロゲノモナス型の細菌で最上の結果が得
られる。
It is clear that the type of microorganism to be cultivated is directly related to the nature of the substrate to be used. Therefore, when attempting to use methane as a substrate for protein production, it is advantageous to use bacterial microorganisms such as Pseudomonas. When the substrate is methanol, best results are obtained with yeast of the Candida type or bacteria of the Pseudomonas type. Best results are obtained with bacteria of the Hydrogenomonas type when the substrate is a mixture of hydrogen and carbon monoxide or carbon dioxide.

微生物の培養がおこる栄養培地はかなり複雑で
さまざまである。基質および酸素は別として、上
記培地は窒素、カリウム、カルシウム、マグネシ
ウム、硫黄、リンのような元素を含むある数の栄
養無機質(物質)、およびたとえば亜鉛、鉄、
銅、コバルトのような発達に必須の他の微量元素
の少量を含む。
The nutrient media in which microbial cultures occur are quite complex and variable. Apart from the substrate and oxygen, the medium contains a number of nutritive minerals (substances) including elements such as nitrogen, potassium, calcium, magnesium, sulfur, phosphorus, and for example zinc, iron,
Contains small amounts of other trace elements essential for development such as copper and cobalt.

微生物の性質は培養を実施する温度とPHも決め
る。一般に、多数の細菌では最適培養温度は37℃
程度であり、多数の菌類では28℃程度である。し
かし、ある種の微生物は一層低いまたは高い培養
温度を必要とする。PH値はふつう4〜8と変化
し、細菌はPH7付近で最適成長をし、菌類は4〜
5のPHを必要とする。微生物の培養中に培地のPH
を変化する傾向のある種々の生成物の生成が認め
られるときは、当該培地にPHをその最適値に維持
できる緩衝剤または他の試剤を添加することがし
ばしば必要である。
The nature of the microorganism also determines the temperature and pH at which the culture is carried out. Generally, the optimal culture temperature for many bacteria is 37°C.
The temperature for many fungi is around 28°C. However, certain microorganisms require lower or higher culture temperatures. The pH value usually varies between 4 and 8, with bacteria growing optimally around 7 and fungi between 4 and 8.
Requires a pH of 5. PH of the medium during cultivation of microorganisms
When the formation of various products that tend to change the PH is observed, it is often necessary to add to the medium buffers or other agents capable of maintaining the PH at its optimum value.

本法を連続式でまたは非連続式で実施できる。
この目的には種々の型の装置を使用できる。培養
物を死にいたらしめ得る温度の上昇を避けるよう
に、かきまぜ手段および温度制御手段を一般に備
える。
The method can be carried out continuously or discontinuously.
Various types of equipment can be used for this purpose. Agitation means and temperature control means are generally provided to avoid increases in temperature that could kill the culture.

本法はすぐれた成長速度で微生物を培養でき
る。本法はまた使う基質の発火の危険を避けるこ
ともできる。
This method allows microorganisms to be cultured with excellent growth rates. This method also avoids the risk of ignition of the substrate used.

次の実施例は本発明の1実施法で得られた顕著
な結果を示すが、本発明を制限するものではな
い。
The following example illustrates remarkable results obtained with one implementation of the invention, but is not intended to limit the invention.

次の実施例は本出願者の要請によつてゲツチン
ゲン大学微生物研究所、グリーセバツハ街8、
3400ゲツチンゲン、西独のデレクターのH.G.シ
ユレーゲル教授の監督下にベルンハード・シンク
博士によつて実施された。
The following examples were carried out at the request of the applicant at the Institute of Microbiology, University of Götztingen, Griesebach Street 8.
3400 Götztingen, carried out by Dr. Bernhard Sink under the supervision of Professor HG Schlegel, director of West Germany.

実施例1、2、および3は基質としてメタノー
ルを使い実施し、実施例4は基質として水素と二
酸化炭素の混合物を使つて実施した。
Examples 1, 2, and 3 were carried out using methanol as the substrate, and Example 4 was carried out using a mixture of hydrogen and carbon dioxide as the substrate.

実施例 1 無機質化合物、デイフコ(DIFCO)酵母エキ
ス0.2%、メタノール0.5%、ビオチン0.1mg/、
チアミン1.0mg/、カタラーゼ0.09ml、すなわ
ち90000国際単位/mlを含む水溶液30mlを広口エ
ルレンマイヤーフラスコに入れた。
Example 1 Inorganic compounds, DIFCO yeast extract 0.2%, methanol 0.5%, biotin 0.1 mg/,
30 ml of an aqueous solution containing 1.0 mg/ml of thiamine and 0.09 ml of catalase, or 90,000 international units/ml, was placed in a wide-mouth Erlenmeyer flask.

水溶液1当りの無機質元素含有量は次の通り
であつた。
The inorganic element content per aqueous solution was as follows.

NH4C 1g Na2HPO4・12H2O 9.0g KH2PO4 1.5g MgSO4・7H2O 0.2g FeNH4クエン酸塩 5mg CaC・2H2O 10mg 436nmで測定し懸濁液の初期光学密度が0.7と
なるような量で、培地にカンジダ・ビオジニー型
の酵母を注入した。
NH 4 C 1g Na 2 HPO 4・12H 2 O 9.0g KH 2 PO 4 1.5g MgSO 4・7H 2 O 0.2g FeNH 4 citrate 5mg CaC 2・2H 2 O 10mg Measured at 436 nm at the initial stage of suspension The medium was injected with Candida biogenii type yeast in an amount such that the optical density was 0.7.

酵素を含まない窒素流を培養容器の空間に流し
た。
An enzyme-free nitrogen stream was passed through the space of the culture vessel.

サーモスタツトによつて培養物の温度を30℃に
維持し、100rpmのかきまぜ機で培地をかきまぜ
た。
The temperature of the culture was maintained at 30°C by a thermostat and the medium was agitated with a stirrer at 100 rpm.

0.3%過酸化水素水溶液を夫々2.5ml/時間(試
験1)および5ml/時間(試験2)の速度で培地
に導入した。培地に浸漬した酸素電極は遊離酸素
含量を制御できた。
A 0.3% aqueous hydrogen peroxide solution was introduced into the medium at a rate of 2.5 ml/hour (test 1) and 5 ml/hour (test 2), respectively. An oxygen electrode immersed in the medium could control the free oxygen content.

毎時間、培地から試料を採取し、試料の光学密
度の測定により微生物重量の増加を計算した。
Samples were taken from the culture medium every hour and the increase in microbial weight was calculated by measuring the optical density of the samples.

両試験で、微生物の重量が2倍となるに要した
時間は3.5時間であつた。指数的成長を7時間続
けた。得られた結果を第1表に示す(曲線1およ
び2)。横軸xは時間単位で表わした時間を、縦
軸yは光学密度を示す。
In both tests, the time required for the weight of the microorganisms to double was 3.5 hours. Exponential growth continued for 7 hours. The results obtained are shown in Table 1 (curves 1 and 2). The horizontal axis x represents time expressed in hours, and the vertical axis y represents optical density.

比較のため、過酸化水素とカタラーゼを導入す
ることなく、すべての他の条件は試験1および2
と同一にして、試験(試験3R)を実施した。
For comparison, all other conditions were tested in Tests 1 and 2 without introducing hydrogen peroxide and catalase.
The test (Test 3R) was carried out in the same manner as the test.

微生物の成長は全く認められなかつた。得られた
結果を第1回(曲線3R)に示す。
No microbial growth was observed. The obtained results are shown in the first round (curve 3R).

比較のため、過酸化水素とカタラーゼを導入す
ることなく、別の試験(試験4R)を実施した。
培養容器の空間に0.5/分の速度の空気流を流
した。他の条件は試験1、2、および3Rと同一
であつた。得られた結果を第1図(曲線4R)に
示す。第1図に示した試験をしらべると、酸素の
代りに過酸化水素を使つてもカンジダ・ビオジニ
ーの成長が変化しないことがわかる。
For comparison, another test (test 4R) was conducted without introducing hydrogen peroxide and catalase.
An air stream was passed through the space of the culture vessel at a rate of 0.5/min. Other conditions were the same as Tests 1, 2, and 3R. The results obtained are shown in FIG. 1 (curve 4R). Examination of the test shown in Figure 1 shows that the growth of Candida biogenii is unchanged when hydrogen peroxide is used in place of oxygen.

実施例 2 実施例1と同一の無機質化合物同一割合、およ
びメタノール0.5%、ビオチン0.1mg/、チアミ
ン1.0mg/、カタラーゼ0.63ml、デイフコ酵母
エキス0.2%を含む水溶液200mlを広口エルレンマ
イヤーフラスコに入れた。
Example 2 200 ml of an aqueous solution containing the same proportions of the same inorganic compounds as in Example 1, 0.5% methanol, 0.1 mg of biotin, 1.0 mg of thiamine, 0.63 ml of catalase, and 0.2% of Difco yeast extract was placed in a wide-mouth Erlenmeyer flask. Ta.

436nmで測定し懸濁液の初期光学密度が3.9と
なるような割合で培地にカンジダ・ビオジニー型
酵母を注入した。
Candida biogenii yeast was injected into the medium at a rate such that the initial optical density of the suspension was 3.9 as measured at 436 nm.

酵素を含まない窒素流を培養容器の空間に流し
た。
An enzyme-free nitrogen stream was passed through the space of the culture vessel.

サーモスタツトによつて培養温度を30℃に維持
し、800rpmで回転するかきまぜ機で培地をかき
まぜた。
The culture temperature was maintained at 30°C using a thermostat, and the culture medium was stirred using a stirrer rotating at 800 rpm.

4%過酸化水素水溶液を培地に3.8ml/時間お
よび最後に5.4ml/時間の割合で導入した(試験
5)。培地に浸漬した酸素電極は遊離酸素含量を
酸素2ml/に維持できた。
A 4% aqueous hydrogen peroxide solution was introduced into the medium at a rate of 3.8 ml/hour and finally 5.4 ml/hour (Test 5). The oxygen electrode immersed in the medium was able to maintain the free oxygen content at 2 ml of oxygen/oxygen.

毎時、実施例1のように微生物の重量の増加を
しらべた。
Hourly, the increase in the weight of microorganisms was checked as in Example 1.

微生物の重量が2倍となるのに要した時間は
4.8時間であつた。得られた結果を第2図に示す
ただしxおよびyは第1図と同一定義である(試
験5)。
How long does it take for the weight of the microorganism to double?
It took 4.8 hours. The results obtained are shown in FIG. 2, where x and y have the same definitions as in FIG. 1 (Test 5).

夫々窒素流下(試験6R)および空気流下(試
験7R)、過酸化水素とカタラーゼの不在で試験5
と同一培地で2つの比較試験を行なつた。得られ
た結果を第2図の曲線6Rおよび7Rで夫々示
す。
Test 5 in the absence of hydrogen peroxide and catalase under nitrogen flow (test 6R) and air flow (test 7R), respectively.
Two comparative tests were conducted using the same medium. The results obtained are shown by curves 6R and 7R in FIG. 2, respectively.

第2図に示した結果をしらべると、微生物の成
長に関しては過酸化水素は酸素よりもごくわずか
に有効であることがわかる。
An examination of the results shown in Figure 2 shows that hydrogen peroxide is only slightly more effective than oxygen in terms of microbial growth.

実施例 3 実施例1と同一の無機質化合物同一割合、およ
びメタノール1.0%、ビオチン0.1mg/、カタラ
ーゼ0.63mlを含む水溶液200mlを広口エルレンマ
イヤーフラスコに入れた。
Example 3 200 ml of an aqueous solution containing the same proportions of the same inorganic compounds as in Example 1, 1.0% methanol, 0.1 mg of biotin, and 0.63 ml of catalase was placed in a wide-mouth Erlenmeyer flask.

フイン(Finn)菌株のプソイドモナスを培地
に導入した。操作条件は実施例2(試験5)と同
一であつた。4%過酸化水素水溶液を3.5ml/時
間の割合で培地に導入した(試験8)。培地に浸
漬した酸素電極は遊離酸素含量を酸素2mg/に
維持できた。
Pseudomonas of the Finn strain was introduced into the culture medium. The operating conditions were the same as in Example 2 (Test 5). A 4% aqueous hydrogen peroxide solution was introduced into the medium at a rate of 3.5 ml/hour (Test 8). The oxygen electrode immersed in the medium was able to maintain the free oxygen content at 2 mg/oxygen.

微生物重量が2倍となるに要した時間は約5時
間であつた。得られた結果を第3図に示す、ただ
しxおよびyは第1図と同一定義をもつ。
It took about 5 hours for the weight of the microorganisms to double. The results obtained are shown in FIG. 3, where x and y have the same definitions as in FIG.

夫々窒素流下(試験9R)および空気流下(試
験10R)、過酸化水素とカタラーゼの不在で試験
8と同一培地で2つの比較試験を実施した。得ら
れた結果を第3図の曲線9Rおよび10Rで夫々
示す。
Two comparative tests were carried out in the same medium as in test 8 in the absence of hydrogen peroxide and catalase, under nitrogen flow (test 9R) and air flow (test 10R), respectively. The results obtained are shown by curves 9R and 10R in FIG. 3, respectively.

第3図に示した結果をしらべると、微生物の成
長に関しては過酸化水素は酸素よりもごくわずか
に有効なことがわかる。
An examination of the results shown in Figure 3 shows that hydrogen peroxide is slightly more effective than oxygen in terms of microbial growth.

実施例 4 実施例1と同一の無機質化合物の同一割合およ
びカタラーゼ0.45mlを含む水溶液200mlを広口エ
ルレンマイヤーフラスコに入れた。
Example 4 200 ml of an aqueous solution containing the same proportions of the same mineral compounds as in Example 1 and 0.45 ml of catalase were placed in a wide-mouth Erlenmeyer flask.

アルカリゲネス・ユートロフス(=ヒドロゲノ
モナス)H16突然変異体PHB―4型の細菌の菌株
を培地に注入した。
A bacterial strain of Alcaligenes eutrophus (=hydrogenomonas) H16 mutant PHB-4 was injected into the medium.

水素90%と二酸化炭素10%を含むガス流を培養
容器の空間に流した。
A gas stream containing 90% hydrogen and 10% carbon dioxide was passed through the space of the culture vessel.

サーモスタツトにより培養温度を30℃に維持
し、800rpmで回転するかきまぜ機で培地をかき
まぜた。
The culture temperature was maintained at 30°C using a thermostat, and the culture medium was stirred using a stirrer rotating at 800 rpm.

4.8%過酸化水素溶液を2ml/時間の割合で培
地に導入した(試験11)。培地に浸漬した酸素電
極は遊離酸素含量を調節できた。
A 4.8% hydrogen peroxide solution was introduced into the medium at a rate of 2 ml/hour (Test 11). An oxygen electrode immersed in the medium could regulate the free oxygen content.

毎時培地の試料を採取し、試料の光学密度の測
定によつて微生物重量の増加を計算した。
Samples of the medium were taken hourly and the increase in microbial weight was calculated by measuring the optical density of the samples.

微生物重量が2倍となるのに要した時間は約5
時間であつた。得られた結果を第4図の曲線11
で示す。ただしxおよびyは第1図と同一定義を
もつ。
The time required for the weight of microorganisms to double is approximately 5
It was time. The obtained results are shown in curve 11 in Figure 4.
Indicated by However, x and y have the same definitions as in FIG.

水素70%、二酸化炭素10%、酸素20%を含むガ
ス流下に過酸化水素とカタラーゼの不在で試験11
と同一培地で比較試験(試験12R)を実施した。
得られた結果を第4図の曲線12Rで示す。
Test 11 in the absence of hydrogen peroxide and catalase under a gas flow containing 70% hydrogen, 10% carbon dioxide, and 20% oxygen
A comparative test (Test 12R) was conducted using the same medium.
The results obtained are shown by curve 12R in FIG.

第4図に示した結果をしらべると、アルカリゲ
ネス・ユートロフスH16PHB―4の培養では過酸
化水素を酸素の代りに使うとほぼ同一結果が得ら
れることがわかる。
An examination of the results shown in Figure 4 shows that almost the same results can be obtained when hydrogen peroxide is used instead of oxygen in culturing Alcaligenes eutrophus H16PHB-4.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は夫々実施例1〜4で得られた光学
密度と時間との関係を示す図である。
1 to 4 are diagrams showing the relationship between the optical density and time obtained in Examples 1 to 4, respectively.

Claims (1)

【特許請求の範囲】 1 過酸化水素の分解で生じる酸素を酸素源とし
て培地中の好気性微生物を死滅に導びく量よりも
少ない量で使用しかつ1〜4個の炭素原子を含有
する飽和脂肪族一価アルコール及び水素と一酸化
炭素または二酸化炭素との混合物から選ばれた少
なくとも1種の高引火性生産物を炭素および水素
源として使用することを特徴とする、少なくとも
1種の酸素源、少なくとも1種の炭素源及び少な
くとも1種の水素源とを有する培地で好気性微生
物の培養法。 2 炭素および水素源が1〜4個の炭素原子を含
む飽和脂肪族一価アルコールである特許請求の範
囲第1項記載の方法。 3 炭素および水素源がメタノールである特許請
求の範囲第2項記載の方法。 4 炭素および水素源が水素40〜99容量%を含む
水素と二酸化炭素の混合物である特許請求の範囲
第1項記載の方法。 5 過酸化水素の分解を培地で行なう特許請求の
範囲第1項〜第4項のいずれか一項記載の方法。 6 過酸化水素を水溶液形で培地に直接添加する
特許請求の範囲第5項記載の方法。 7 当該水溶液が10重量%以下の過酸化水素を含
む特許請求の範囲第6項記載の方法。 8 過酸化水素の分解を促進する触媒の助けで過
酸化水素の分解を行なう特許請求の範囲第1項〜
第7項のいずれか一項記載の方法。
[Claims] 1. A saturated solution containing 1 to 4 carbon atoms and using oxygen generated by the decomposition of hydrogen peroxide as an oxygen source in an amount lower than the amount that would kill aerobic microorganisms in the culture medium. At least one oxygen source, characterized in that at least one highly flammable product selected from aliphatic monohydric alcohols and mixtures of hydrogen and carbon monoxide or carbon dioxide is used as carbon and hydrogen source. , a method for culturing aerobic microorganisms in a medium comprising at least one carbon source and at least one hydrogen source. 2. The method of claim 1, wherein the carbon and hydrogen sources are saturated aliphatic monohydric alcohols containing 1 to 4 carbon atoms. 3. The method according to claim 2, wherein the carbon and hydrogen sources are methanol. 4. The method of claim 1, wherein the carbon and hydrogen source is a mixture of hydrogen and carbon dioxide containing 40 to 99% by volume of hydrogen. 5. The method according to any one of claims 1 to 4, wherein hydrogen peroxide is decomposed in a medium. 6. The method according to claim 5, wherein hydrogen peroxide is added directly to the culture medium in the form of an aqueous solution. 7. The method according to claim 6, wherein the aqueous solution contains 10% by weight or less of hydrogen peroxide. 8. Claims 1 to 8, in which hydrogen peroxide is decomposed with the help of a catalyst that promotes the decomposition of hydrogen peroxide.
The method described in any one of paragraph 7.
JP14488477A 1977-01-10 1977-12-02 Culturing of aerobic microorganism Granted JPS5388386A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LU76547A LU76547A1 (en) 1977-01-10 1977-01-10

Publications (2)

Publication Number Publication Date
JPS5388386A JPS5388386A (en) 1978-08-03
JPS6127038B2 true JPS6127038B2 (en) 1986-06-23

Family

ID=19728444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14488477A Granted JPS5388386A (en) 1977-01-10 1977-12-02 Culturing of aerobic microorganism

Country Status (8)

Country Link
US (1) US4326035A (en)
JP (1) JPS5388386A (en)
BE (1) BE862621A (en)
DE (1) DE2800917C2 (en)
FR (1) FR2376897A1 (en)
GB (1) GB1581403A (en)
IT (1) IT1092721B (en)
LU (1) LU76547A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727031A (en) * 1984-11-08 1988-02-23 International Technology Corporation Nutrient for stimulating aerobic bacteria
US5264018A (en) * 1987-01-28 1993-11-23 Plant Research Laboratories Inc. Use of metallic peroxides in biormediation
US5518907A (en) * 1989-06-07 1996-05-21 Center For Innovative Technology Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway
US5334520A (en) * 1990-05-25 1994-08-02 Center For Innovative Technology Production of poly-beta-hydroxybutyrate in transformed escherichia coli
US5395419A (en) * 1989-12-22 1995-03-07 Plant Research Laboratories Therapeutic and preventative treatment of anaerobic plant and soil conditions
US5443845A (en) * 1993-04-22 1995-08-22 Bionutratech, Inc. Composition for enhanced bioremediation of petroleum
DE4337787A1 (en) * 1993-11-05 1995-05-11 Hoechst Ag Oxygen-dependent fermentation of microorganisms
DE19727731A1 (en) * 1997-06-30 1999-01-07 Forschungszentrum Juelich Gmbh Method and device for introducing reagents into reactors

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126324A (en) * 1964-03-24 Catalase compositions
US2120643A (en) * 1933-07-03 1938-06-14 Kurt A Gerson Method of preparing an oxygenliberating composition
FR1009198A (en) * 1948-05-25 1952-05-26 Method for culturing microorganisms
US3041250A (en) * 1957-01-11 1962-06-26 Armour & Co Aerobic fermentation process
GB861784A (en) * 1957-01-11 1961-02-22 Armour & Co Improved aerobic fermentation process
GB914568A (en) 1968-08-15 1963-01-02 British Petroleum Co Improvements in the production of yeasts
US3282702A (en) * 1963-07-16 1966-11-01 Union Carbide Corp Process for removing hydrogen peroxide from liquids
US3644175A (en) * 1968-07-08 1972-02-22 Exxon Research Engineering Co Detoxification of gram-negative bacteria grown in a fermentation process
GB1270006A (en) * 1968-08-08 1972-04-12 Inst Gas Technology Improvements in or relating to the fermentation of methane utilizing microorganisms
CH488803A (en) * 1969-09-05 1970-04-15 Mueller Hans Process for the prevention of explosions in the fermentation of nutrient media with flammable components
US3711372A (en) * 1970-07-15 1973-01-16 Mobil Oil Corp Process for the production of microbial cells
US3897303A (en) * 1974-01-23 1975-07-29 Phillips Petroleum Co Integrated process of ammonia production and biosynthesis

Also Published As

Publication number Publication date
FR2376897A1 (en) 1978-08-04
BE862621A (en) 1978-07-04
DE2800917C2 (en) 1986-08-14
JPS5388386A (en) 1978-08-03
DE2800917A1 (en) 1978-07-13
US4326035A (en) 1982-04-20
LU76547A1 (en) 1978-09-18
GB1581403A (en) 1980-12-10
IT1092721B (en) 1985-07-12
IT7819138A0 (en) 1978-01-10
FR2376897B1 (en) 1982-05-28

Similar Documents

Publication Publication Date Title
Zetelaki et al. The role of aeration and agitation in the production of glucose oxidase in submerged culture
Shepherd et al. The production and growth characteristics of yeast and mycelial forms of Candida albicans in continuous culture
US5827699A (en) Strain of Rhodococcus rhodochrous as a producer of nitrile hydratase
Park et al. Batch cultivation of Methylosinus trichosporium OB3b: II. Production of particulate methane monooxygenase
KR850004268A (en) Method for preparing poly-D-(-)-3-hydroxybutyric acid
EP0424384B1 (en) Improved fermentation process for carboxylic acids
Berndt et al. Identification and physiological characterization of the nitrogen fixing bacterium Corynebacterium autotrophicum GZ 29
JPS6127038B2 (en)
KR850004267A (en) Method for preparing poly-D-(-)-3-hydroxybutyric acid
US3308035A (en) Process for producing a high protein composition by cultivating microor-ganisms on an n-aliphatic hydrocarbon feed
Tabachnick et al. Formation of esters by yeast. II. Investigations with cellular suspensions of Hansenula anomala
US4584273A (en) Method for the production of phenylalanine ammonia-lyase by fermentation
US3620927A (en) Cultivation of micro-organisms on hydrocarbons
US3440141A (en) Production of amino acids by the fermentation of c15-c22 olefins
US3558431A (en) Oxidation process
Kulla et al. Energy-dependent inactivation of citrate lyase in Enterobacter aerogenes
US3713984A (en) Cultivation of micro-organisms on hydrocarbons
US4003790A (en) Nitrogen control in mixed culture production
US4048013A (en) Process for producing single-cell protein from methanol using methylomonas sp. DSM 580
Gottschalk et al. Effect of aeration on lignin peroxidase production by Streptomyces viridosporus T7A
CA1302931C (en) Preparation of pyruvic acid
US4229543A (en) Process for culturing methanol-utilizing yeasts
CA1054541A (en) Fermentation processes
DE2751879C2 (en)
Riscaldati et al. Ammonium fumarate production by free or immobilised Rhizopus arrhizus in bench‐and laboratory‐scale bioreactors