JPS61270314A - Production of rare earth alloy powder - Google Patents

Production of rare earth alloy powder

Info

Publication number
JPS61270314A
JPS61270314A JP60275876A JP27587685A JPS61270314A JP S61270314 A JPS61270314 A JP S61270314A JP 60275876 A JP60275876 A JP 60275876A JP 27587685 A JP27587685 A JP 27587685A JP S61270314 A JPS61270314 A JP S61270314A
Authority
JP
Japan
Prior art keywords
less
atomic
powder
rare earth
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60275876A
Other languages
Japanese (ja)
Other versions
JPH0582443B2 (en
Inventor
Naoyuki Ishigaki
石垣 尚幸
Shigeki Hamada
隆樹 浜田
Setsuo Fujimura
藤村 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Publication of JPS61270314A publication Critical patent/JPS61270314A/en
Publication of JPH0582443B2 publication Critical patent/JPH0582443B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain alloy powder for a magnet having excellent magnetic characteristics by mixing Ca for reducing to a raw material consisting of a heavy rare earth, rare earth, B, Co and Fe, heating the mixture to reduce and diffuse the same then treating the mixture with water. CONSTITUTION:The powder raw material consisting, by atomic %, of 12.5-20% R (where R1; 0.05-5%), 4-20% B, <=35% Co and 45-82% Fe is prepd. R1 is >=1 kinds among Gd, Tb, Dy, Ho, Er, Tm and Yb which are the rare earths and R is R1+R2. R2 is the rare earth element contg. >=80% Nd+Pr and the balance Y except R1. Such powder is mixed with the metallic Ca, etc. at 1.2-3.5 times the stoichiometrically required content and CaCl2 at 1-15wt% of the rare earth (oxide) as the reducing agent. The mixture is reduced and diffused at 950-1,200 deg.C in an inert atmosphere. The resultant product is brought into contact with water to form a slurry. The slurry is further treated with water and the alloy powder of which the main phase is a tetragonal crystal is obtd. The rare earth alloy powder contains <=10,000ppm O, <=1,000ppm C and <=2,000ppm Ca.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はFeCoBR系高性能希土類磁石の製造に用い
る希土類合金粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing rare earth alloy powder used in producing FeCoBR-based high performance rare earth magnets.

〔従来の技術〕[Conventional technology]

FeBR系磁石はNd、Pr等に代表される希土類元素
(R)を用いた新規な高性能永久磁石として注目されて
おり1本出願人の出願に係る特開昭59−46008号
に開示の通り従来の高性能磁石SmCoに匹敵する特性
を有すると共に高価かつ資源的に希少なSmをRとして
必須としない利点を有する。特にNdは従来利用価値の
ない成分とされており、Ndを主成分として用いること
ができることは工業的に極めて有用である。
FeBR magnets are attracting attention as new high-performance permanent magnets using rare earth elements (R) such as Nd and Pr, and as disclosed in Japanese Patent Application Laid-Open No. 1983-46008 filed by the present applicant. It has characteristics comparable to the conventional high-performance magnet SmCo, and has the advantage that Sm, which is expensive and rare in terms of resources, is not essential as R. In particular, Nd has conventionally been considered to be a component with no utility value, and the ability to use Nd as a main component is extremely useful industrially.

しかし、このFeBR磁石合金のキュリ一温度は約30
0℃付近と比較的低いため、常温以上の使用に対して安
定性に欠けるきらいがある。Feの一部なCOに置換し
たFeCoBR磁石合金としてキュリ一温度を上昇させ
ることによって温度に対する安定性の向上が計られてい
る(特開昭59−64733)。
However, the Curie temperature of this FeBR magnet alloy is about 30
Since it is relatively low at around 0°C, it tends to lack stability when used at temperatures above room temperature. It has been attempted to improve the stability against temperature by increasing the Curie temperature by using a FeCoBR magnet alloy in which a part of Fe is replaced with CO (Japanese Patent Laid-Open No. 59-64733).

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は、このFeCoBR系磁石に一層高い磁気特性
を付与し、併せて一層安価に製造可能とすることを基本
目的とする。
The basic purpose of the present invention is to provide this FeCoBR magnet with even higher magnetic properties and to enable it to be manufactured at a lower cost.

本発明はさらに詳しくはR,−R2−Fe−Co−B系
(ここテR+はGd、Tb、DV、Ho、Er、Tm、
Yb(7)内の1種以上、R2はNdとPrの合計が8
0%以上で残りがR1以外のYを含む希土類元素の少な
くとも1種を含む)の高性能希土類磁石に使用する希土
類合金粉末の製造方法に係わり、工業的量産規模におい
て安価に永久磁石用希土類合金粉末を提供しようとする
ものである。
In more detail, the present invention relates to the R, -R2-Fe-Co-B system (herein, R+ is Gd, Tb, DV, Ho, Er, Tm,
One or more types of Yb (7), R2 has a total of Nd and Pr of 8
0% or more, the remainder containing at least one rare earth element containing Y other than R1), which is used in high-performance rare earth magnets. The aim is to provide powder.

最近サマリウム−コバルト系希土類磁石に代わって注目
されているNd−Fe−B系あるいはNd−Fe−Co
−B系希土類磁石において。
Recently, Nd-Fe-B or Nd-Fe-Co magnets have been attracting attention as an alternative to samarium-cobalt rare earth magnets.
- In B-based rare earth magnets.

NdやPrなどの軽希土類成分をGd、Tb。Light rare earth components such as Nd and Pr are replaced with Gd and Tb.

Dy、Ho、Erの少なくとも1種以上の重希土類元素
で5w、子%以下こ摸することによって(BH)max
=20MGOe以上の高エネルギー積を有したまま、保
磁力(iHc)を10koe以上に飛躍的に向上し、室
温以上の100〜150℃の温度環境においても使用可
能なR。
By using at least one heavy rare earth element such as Dy, Ho, and Er at a concentration of less than 5w, (BH) max.
= R that has a high energy product of 20 MGOe or more, has a coercive force (iHc) dramatically improved to 10 koe or more, and can be used even in a temperature environment of 100 to 150°C above room temperature.

−R2−Fe−Co−B系希土類磁石(ここでR1はG
d、Tb、Dy、Ho、Erの重希土類元素のうち1種
以上、R2はNdとPrの合計が80%以上で残りがR
1以外のYを含む希土類元素の少なくとも1種である)
が提案されている(特願昭58−141850号)。
-R2-Fe-Co-B rare earth magnet (here R1 is G
d, Tb, Dy, Ho, and one or more of the heavy rare earth elements of Er, R2 is Nd and Pr in total of 80% or more, and the rest is R.
At least one rare earth element containing Y other than 1)
has been proposed (Japanese Patent Application No. 58-141850).

こty) R+  R2F e −C: o −B系希
土類磁石を製造する出発原料は電解法あるいは熱還元法
によって作られた純度99.5%以上の希土類金属、純
度99.9%以上の電解鉄、電解コバルト、ポロンなど
の不純物の少ない高価な金属塊が従来もっばら使用され
る。したがっていずれの原料もあらかじめ鉱石から精製
された不純物の少ない高品質のもので、これらの原料を
用いた製品磁石価格は非常に高価となる。とくに希土類
金属の生産には高度な分離精製技術を要し、その生産効
率も悪いのでその価格は一般にきわめて高いのが現状で
ある。
The starting materials for manufacturing R+ R2F e -C: o -B rare earth magnets are rare earth metals with a purity of 99.5% or more made by electrolytic method or thermal reduction method, and electrolytic iron with a purity of 99.9% or more. Conventionally, expensive metal ingots with few impurities, such as electrolytic cobalt and poron, are often used. Therefore, all raw materials are of high quality with few impurities and have been refined from ores in advance, and the price of magnets manufactured using these raw materials is extremely high. In particular, the production of rare earth metals requires advanced separation and purification technology, and the production efficiency is low, so their prices are generally extremely high.

そのためR,−R2−Fe−Co−B系永久磁石はiH
cが高く高性能を有し、実用永久磁石材料として非常に
有用ではあるが、その磁石価格は相当高くなってしまう
Therefore, R, -R2-Fe-Co-B permanent magnets are iH
Although it has a high c and high performance and is very useful as a practical permanent magnet material, the price of the magnet is quite high.

本発明は上述の諸問題点を解消し、希土類元素を含有し
て安価でしかも品質のすぐれた磁石材料用重希土類合金
粉末を量産規模で提供することを具体的課題とする。即
ち、本発明は、R,−R2−Fe−Co−B合金粉末を
特定の製法により得ることによって(BH)max  
20MGOe以上、iHc  10kOe以上の磁石特
性を維持したままで室温以上の高温度において安定して
使用できるR、−R2−Fe−Co−B系希土類磁石を
安価に提供することを可能にぜんとするものである。
The specific object of the present invention is to solve the above-mentioned problems and provide a heavy rare earth alloy powder for magnet materials containing rare earth elements at low cost and of excellent quality on a mass production scale. That is, the present invention provides (BH)max by obtaining R, -R2-Fe-Co-B alloy powder by a specific manufacturing method.
To make it possible to provide at a low cost an R, -R2-Fe-Co-B-based rare earth magnet that can be used stably at high temperatures above room temperature while maintaining magnetic properties of 20 MGOe or more and iHc of 10 kOe or more. It is something.

C本発明による解決手段及び作用〕 すなわち本発明は生成合金が、 R:12.5〜20原子%(Rのうち R,:0.05〜5原子%)、 B:4〜20原子%、 Co:35原子%以下 (但しCo  0%を除く、)、及び Fe+45〜82原子% (ここでR1は重希土類元素Gd、Tb、l)y、Ho
、Er、Tm、Ybのうちの18以上、R2はNdとP
rの合計が80%以上で、残りがR1以外のYを含む希
土類元素の少なくとも1種としR=R1+R2(原子%
)とする)を主成分とする組成になるように該希土類酸
化物の1種以上と、鉄粉、コバルト粉、および純ボロン
粉、フェロボロン粉およびホウ素酸化物粉末のうち少な
くとも1種以上、或いは上記構成元素との合金粉又は混
合酸化物を配合してなる原料混合粉末に、上記希土類酸
化物などの原料粉末中に含まれる酸素量に対して遺児に
要する化学量論的必要量の1.2〜3.5倍(重量比)
の金属カルシウム及び/又は水素化カルシウムと希土類
酸化物の1〜15重量%の塩化カルシウムとを混合し、
アルゴン雰囲気中において950−1200℃の温度で
還元Φ拡散を行い、得られた反応生成物を水と接触させ
てスラリー状態とし、該スラリーを水によって処理して
主相(特定の相が80%以上)が正方晶の該合金粉末を
採取し、前記組成を有し酸素含有量110000PP以
下、炭素含有量lQOOppm以下、カルシウム含有1
i2000ppm以下とすることを特徴とする希土類合
金粉末の製造方法である。
C Solution Means and Effects According to the Present Invention] That is, in the present invention, the produced alloy contains: R: 12.5 to 20 atomic % (R of R: 0.05 to 5 atomic %), B: 4 to 20 atomic %, Co: 35 atomic % or less (excluding Co 0%), and Fe + 45 to 82 atomic % (here, R1 is a heavy rare earth element Gd, Tb, l) y, Ho
, Er, Tm, Yb, R2 is Nd and P
The total of r is 80% or more, and the remainder is at least one rare earth element containing Y other than R1, and R=R1+R2 (atomic%
) with at least one of the rare earth oxides and at least one of iron powder, cobalt powder, pure boron powder, ferroboron powder, and boron oxide powder, or The raw material mixed powder made by blending the alloy powder or mixed oxide with the above-mentioned constituent elements is added to the stoichiometrically necessary amount of oxygen required for the orphan relative to the amount of oxygen contained in the raw material powder such as the rare earth oxide. 2 to 3.5 times (weight ratio)
of calcium metal and/or calcium hydride and 1 to 15% by weight of calcium chloride of a rare earth oxide,
Reduction Φ diffusion is carried out at a temperature of 950-1200°C in an argon atmosphere, the resulting reaction product is brought into contact with water to form a slurry, and the slurry is treated with water to form a main phase (specific phase is 80% (above) is a tetragonal alloy powder having the above composition, an oxygen content of 110,000 PP or less, a carbon content of 1QOO ppm or less, and a calcium content of 1
This is a method for producing rare earth alloy powder, characterized in that i is 2000 ppm or less.

本発明製法によるR1−R2−Fe−Co−B合金粉末
を用いることによって(B H) m a x20MG
Oe以上、iHc  10kOe以上の磁石特性を維持
したままで室温以上の温度において十分に安定して使用
できるR、−R2−Fe−Co−B系希土類磁石を安価
に提供することを可能にするものである。
By using R1-R2-Fe-Co-B alloy powder according to the production method of the present invention, (B H) max 20MG
An R, -R2-Fe-Co-B rare earth magnet that can be used stably at temperatures above room temperature while maintaining magnetic properties of Oe or more and iHc of 10 kOe or more at a low cost. It is.

この合金粉末は希土類金属を製造する前段階の゛ 中間
原料である価格の安いNd2o3やPr60、などの軽
希土類酸化物およびTb30dやDYzO3などの重希
土類酸化物とFe粉、コバルト粉、および純ボロン粉(
結晶性又はアモルファスいずれでもよい)、Fe−B粉
またはB2Oゴ粉末などのホウ素酸化物を出発原料とし
、還元剤として金属カルシウム及び/又は水素化カルシ
ウム、還元反応生成物の崩壊を容易にするための塩化カ
ルシウム(CaCJ12)を用いる工程によって製造さ
れるため、種々の金属塊原料を用いるよりも安価に品質
のすぐれたR + −R2−F e−Co−B磁石用の
合金粉末が工業的量産規模において容易にえられる0本
系合金粉末中に添加元素を含有せしめる場合には上述の
R,−R2−Fe−Co−Bを生成する配合原料に添加
原料として金属粉、酸化物(構成元素との混合酸化物も
含む)、合金粉(構成元素との合金も含む)あるいはそ
の他のCaにより還元可能な化合物の形で配合串混合す
る。構成元素との合金としては、V、Ti、Zr、Hf
、Ta、Nb等のホウ化物もある。
This alloy powder is used in the preliminary stage of producing rare earth metals. Intermediate raw materials include inexpensive light rare earth oxides such as Nd2O3 and Pr60, heavy rare earth oxides such as Tb30d and DYzO3, Fe powder, cobalt powder, and pure boron. powder(
(crystalline or amorphous), using boron oxide such as Fe-B powder or B2O powder as a starting material, and using metallic calcium and/or calcium hydride as a reducing agent, to facilitate the disintegration of the reduction reaction product. Since the alloy powder for R + -R2-Fe-Co-B magnets is manufactured by a process using calcium chloride (CaCJ12) of When incorporating additive elements into a zero-based alloy powder that can be easily obtained on a large scale, metal powders, oxides (constituent elements (including mixed oxides with Ca), alloy powders (including alloys with constituent elements), or other compounds reducible by Ca. As alloys with constituent elements, V, Ti, Zr, Hf
There are also borides such as , Ta, and Nb.

本発明の合金粉末を用いることによって磁石の製造工程
の短縮が可能となり、価格の安いR1−R2−Fe−C
o−B系希土類磁石を提供することが可能となってその
経済的効果は非常に太きい。
By using the alloy powder of the present invention, it is possible to shorten the manufacturing process of magnets, and the low-cost R1-R2-Fe-C
It has become possible to provide o-B rare earth magnets, and the economic effect is very significant.

ここで希土類酸化物とFe粉、Ca粉やFe−B粉など
の金属粉末との混合粉末を出発原料にして金属Caによ
って還元・拡散反応させると、還元反応温度においてC
aで還元された溶融状態の希土類金属がただちにFe粉
、CO粉、Fe−B粉ときわめて容易にしかも均質に合
金化して希土類酸化物からR,−R2−Fe−Co−B
系合金粉末が歩留りよく回収され、RIおよびR2希土
類酸化物原料を有効に利用できる。還元剤としては金属
Caの代りに水素化カルシウムを用いることもできる。
Here, if a mixed powder of rare earth oxide and metal powder such as Fe powder, Ca powder, or Fe-B powder is used as a starting material and is subjected to a reduction/diffusion reaction with metal Ca, at the reduction reaction temperature, C
The molten rare earth metal reduced in step a immediately alloys with Fe powder, CO powder, and Fe-B powder very easily and homogeneously to form R, -R2-Fe-Co-B from the rare earth oxide.
The system alloy powder can be recovered with a high yield, and the RI and R2 rare earth oxide raw materials can be used effectively. Calcium hydride can also be used as a reducing agent instead of metallic Ca.

また原料粉末中のB(ボロン)成分の含有はR,−B2
−Fe−Go−8合金粉末を生成する際の還元・拡散反
応温度の低下に有効で、本系合金粉末の還元・拡散反応
を容易にする。
In addition, the content of B (boron) component in the raw material powder is R, -B2
It is effective in lowering the reduction/diffusion reaction temperature when producing -Fe-Go-8 alloy powder, and facilitates the reduction/diffusion reaction of this alloy powder.

したがって安価な希土類酸化物から工業的規模において
大量にR,−R2−Fe−Co−B磁石用の原料合金粉
末をうるためには合口大量に生産され安価なFeとBと
の合金粉末を製造することが最も有効であり、またその
まま磁石製造に活用できる点に着目して本発明の特定組
成範囲のR1−12−Fe−Go−8合金粉末を発明す
るに至ったものである。
Therefore, in order to obtain raw material alloy powder for R, -R2-Fe-Co-B magnets in large quantities on an industrial scale from inexpensive rare earth oxides, a large quantity of aggregation is required to produce inexpensive alloy powders of Fe and B. The R1-12-Fe-Go-8 alloy powder of the present invention having a specific composition range was invented based on the fact that it is most effective to do so and can be used as it is for magnet production.

〔好適な実施の態様〕[Preferred mode of implementation]

本発明による希土類含有合金粉末は以下の工程によって
製造される。
The rare earth-containing alloy powder according to the present invention is manufactured by the following steps.

Ndm化物(Nd203)やPr酸化物(Pr60+)
などの軽希土類(R2)酸化物の少すくトもIMとTb
酸化物(Tb407 )やDV酸化物(DYzO3)な
どの重希土類(R1)酸化物の少なくとも1種、鉄(F
 e)粉、コバル)(Co)粉、および純ボロン粉。
Ndm compound (Nd203) and Pr oxide (Pr60+)
A small amount of light rare earth (R2) oxides such as IM and Tb
At least one heavy rare earth (R1) oxide such as oxide (Tb407) or DV oxide (DYzO3), iron (F
e) powder, Kobal (Co) powder, and pure boron powder.

フェロボロン(Fe−B)粉、二酸化ホロン(B20:
l )粉のうち少なくとも1種の原料粉末を R: 12.5〜20M子%(RのうちR1:0.05
〜5原子%)。
Ferroboron (Fe-B) powder, phoron dioxide (B20:
l) R: 12.5 to 20 M% (R1: 0.05 of R)
~5 atom%).

B:4〜20原子%。B: 4 to 20 atomic%.

Co : 35原子%以下 (但しCo  0%を除く、) Fe:45〜82原子% (ここでR「は重希土類元素Gd、Tb、Dy、Ho、
Er、Tm、Ybのうちの1種以上、 R2はNdとP
rの合計が80%以上で、残りがR1以外のYを含む希
土類元素の少なくとも1種としR=R,+R2(原子%
)とする)の組成となるように配合し、必要に応じて金
属、酸化物、合金あるいはその他の化合物(の粉末)と
して添加元素を加えて原料混合粉末とする。原料酸化物
の量は生成合金の組成に対し歩留りを考慮して定める(
希土類元素の場合通例的1.1倍)、さらに希土類酸化
物の還元剤として金属Ca及び/又は水素化カルシウム
を使用し、還元後の反応生成物の崩壊を促進させるため
にCaCuz粉末を添加する。Caの必要量は原料混合
粉末中に含まれる酸素を還元するのに必要な化学量論的
必要量の1゜2〜3.5倍(重量比)(好ましくは1.
5〜2.5倍、さらに好ましくは1.6〜2.0倍)と
し、CaC見2の量は希土類酸化物原料の1〜15%(
重量比)、(好ましくは2〜10%、さらに好ましくは
3〜6%)とする。
Co: 35 atomic % or less (excluding 0% Co) Fe: 45 to 82 atomic % (here, R is a heavy rare earth element Gd, Tb, Dy, Ho,
One or more of Er, Tm, Yb, R2 is Nd and P
The total of r is 80% or more, and the remainder is at least one rare earth element containing Y other than R1, and R=R, +R2 (atomic%
), and if necessary, add additional elements in the form of metals, oxides, alloys, or other compounds (powders of) to obtain a raw material mixed powder. The amount of raw material oxide is determined by considering the yield for the composition of the produced alloy (
In the case of rare earth elements, typically 1.1 times), metallic Ca and/or calcium hydride are further used as reducing agents for rare earth oxides, and CaCuz powder is added to accelerate the disintegration of the reaction product after reduction. . The required amount of Ca is 1.2 to 3.5 times (weight ratio) (preferably 1.2 to 3.5 times) the stoichiometric amount required to reduce oxygen contained in the raw material mixed powder.
5 to 2.5 times, more preferably 1.6 to 2.0 times), and the amount of CaC2 is 1 to 15% (
weight ratio), (preferably 2 to 10%, more preferably 3 to 6%).

以上の希土類酸化物粉末、Fe粉、Ca粉、フェロボロ
ン粉などの各原料粉末およびCa還元剤などからなる混
合粉末をアルゴン等の不活性ガス雰囲気中において95
0〜1200℃(好ましくは950 N1100℃)の
温度範囲で凡そ1〜5時間の還元・拡散処理を行い、室
温まで冷却して還元反応生成物をえる。この還元、拡散
処理を行うための容器には希土類元素と反応しないか。
A mixed powder consisting of the above raw material powders such as rare earth oxide powder, Fe powder, Ca powder, ferroboron powder, Ca reducing agent, etc. was heated to 95% in an inert gas atmosphere such as argon.
The reduction/diffusion treatment is carried out at a temperature range of 0 to 1200°C (preferably 950°C to 1100°C) for about 1 to 5 hours, and then cooled to room temperature to obtain a reduction reaction product. Does the container used for this reduction and diffusion treatment react with rare earth elements?

または反応性の極めて小さい材料、例えばステンレス鋼
等を用いなければならない0反応容器内壁をMgO,C
aO等でライニングするのは効果的である。これを好適
な粒径1例えば8me s h(2,4mm)以下に粉
砕して水と接触させると反応生成物中の酸化カルシウム
(Cab)、CaO・2CaCJ12および過剰なカル
シウムは水酸化カルシウム(Ca (OH) 2 )な
どとなり、反応生成物は崩壊して水との混合スラリーと
なる。このスラリーを水を用いてCa分を十分に除去処
理して粉末粒径凡そ10〜500)inの本発明の希土
類含有合金粉末がえられる。1’Opm以下では合金中
に酸素量が多くなり優れた磁石特性が得られない、また
、500 gm以上では還元時の拡散反応が十分でない
場合が多く、α−Fe相などが磁石中に出現するためi
Hcが低下し減磁曲線の角形性を悪化させる。
Alternatively, materials with extremely low reactivity such as stainless steel must be used.The inner wall of the reaction vessel must be made of MgO, C
Lining with aO or the like is effective. When this is pulverized to a suitable particle size of 1, for example, 8 me s h (2.4 mm) or less and brought into contact with water, calcium oxide (Cab), CaO・2CaCJ12 and excess calcium in the reaction product are converted to calcium hydroxide (Ca (OH) 2 ), etc., and the reaction product collapses into a mixed slurry with water. This slurry is treated to sufficiently remove the Ca content using water to obtain the rare earth-containing alloy powder of the present invention having a powder particle size of approximately 10 to 500 inches. If it is less than 1'Opm, the amount of oxygen in the alloy will increase and excellent magnetic properties cannot be obtained.If it is more than 500 gm, the diffusion reaction during reduction is often insufficient, and α-Fe phase etc. will appear in the magnet. i to do
Hc decreases and the squareness of the demagnetization curve deteriorates.

本発明の好ましい粒径は後続の磁石化工程における作業
性および磁石特性の点で20〜300ルmである。
The preferred particle size of the present invention is from 20 to 300 lm in terms of workability in the subsequent magnetization process and magnetic properties.

さらに還元反応生成物を8mesh(2,4m m )
以下に粉砕せずにそのままあるいは8meshより大と
して水中に投入すると上述の崩壊反応が著しく遅くなっ
て工業的生産に不適となり、また崩壊反応熱が還元生成
物内部に蓄積され高温となってえられた希土類合金粉末
中の酸素量が110000ppをこえその後の磁石化工
程に用いることが困難となる。また、35mesh(0
,5mm)より小となると水中での反応が激しすぎて燃
焼が発生する。ここで使用する木としてイオン交換水や
蒸留水によればこの合金粉末中の含有酸素量が少なくな
り後述の磁石化工程の歩留りや磁石特性の点から好まし
い、なお、最終製品のFeBR系焼結磁石を研摩加工す
る際に前記組成合金及びそれらの研摩粉が出るが、これ
らの研摩粉を還元反応のための出発原料として用いるこ
ともできる。
Furthermore, the reduction reaction product was made into 8 mesh (2.4 mm)
If it is poured into water without being crushed or as a mesh larger than 8 mesh, the above-mentioned collapse reaction will be extremely slow, making it unsuitable for industrial production, and the heat of the collapse reaction will accumulate inside the reduction product, resulting in a high temperature. The amount of oxygen in the rare earth alloy powder exceeds 110,000 pp, making it difficult to use it in the subsequent magnetization process. In addition, 35 mesh (0
, 5 mm), the reaction in water will be too intense and combustion will occur. If the wood used here is ion-exchanged water or distilled water, the amount of oxygen contained in this alloy powder will be reduced, which is preferable from the viewpoint of the yield and magnetic properties of the magnetization process described later. When a magnet is polished, the aforementioned compositional alloys and their abrasive powders are produced, and these abrasive powders can also be used as starting materials for the reduction reaction.

上述のようにしてえられた磁石材料用合金粉末は R:12.5〜20原子%(Rのうち R,:0.05〜5原子%)、 B:4〜20原子%、 Co : 35原子%以下 (但しCo  0%を除く、)、 Fe:45〜82原子% (ここでR1は重希土類元素cd、Tb、Dy、HO2
Erのうちの1種以上、R2はNdとPrの合計が80
%以上で、残りがR1以外のYを含む希土類元素の少な
くとも1種としR=R1+R2(原子%)とする)から
なり、主相(特定の相が80%以上)が正方晶で、酸素
含有量110000pp以下、炭素含有i1000pp
m以下、カルシウム含有312000ppm以下となる
The alloy powder for magnet materials obtained as described above has R: 12.5 to 20 at% (R: 0.05 to 5 at% of R), B: 4 to 20 at%, Co: 35 atomic% or less (excluding Co 0%), Fe: 45 to 82 atomic% (here, R1 is a heavy rare earth element CD, Tb, Dy, HO2
One or more types of Er, R2 has a total of Nd and Pr of 80
% or more and the remainder is at least one rare earth element containing Y other than R1 (R = R1 + R2 (atomic %)), the main phase (80% or more of the specific phase) is tetragonal, and contains oxygen. Amount 110000pp or less, carbon content i1000pp
m or less, and the calcium content is 312,000 ppm or less.

本発明における希土類合金粉末は、R,−R2−Fe−
Co −B磁石合金を製造した際にそのまま微粉砕して
、ひき続きプレス成形→焼結(圧縮力無印加又は印加)
→時効処理という粉末冶金的方法によって永久磁石にす
ることができる。この微粉砕はアトライタ、ボールミル
、ジェットミル等を用いて好ましくは1〜20gm、よ
り好ましくは2〜10ルmにする。なお、異方性磁石を
製造するためには磁界中にて粒子を配向、成形できる6
本発明のる土類合金粉末を用いれば、希土類金属塊、鉄
およびポロンなどの原料塊を原料にして永久磁石を製造
する場合よりも合金だ解→鋳造→粗粉砕などの磁石の製
造工程の省略が可能となり、かつ安い希土類酸化物など
の出発原料を用いるために製品磁石の価格が安価となる
という利点を有し、実用水入磁石材料を量産規模におい
て容易に作りうる点から経済的効果も大きい。
The rare earth alloy powder in the present invention is R, -R2-Fe-
When the Co-B magnet alloy is manufactured, it is finely pulverized as it is, and then press-formed and then sintered (with no compressive force applied or applied).
→It can be made into a permanent magnet by a powder metallurgy method called aging treatment. This fine pulverization is preferably carried out to 1 to 20 gm, more preferably 2 to 10 gm, using an attritor, a ball mill, a jet mill, or the like. In addition, in order to manufacture anisotropic magnets, particles can be oriented and shaped in a magnetic field6.
If the earth alloy powder of the present invention is used, the manufacturing process of magnets such as alloy melting → casting → coarse pulverization will be easier than when manufacturing permanent magnets using raw material lumps such as rare earth metal lumps, iron, and poron. It has the advantage that the cost of the finished magnet is low because it can be omitted and cheap starting materials such as rare earth oxides are used, and it is economical because practical water-immersed magnet materials can be easily produced on a mass production scale. It's also big.

本発明の合金粉末に含まれる酸素は最も酸化しやすい希
土類元素と結合して希土類酸化物を形成し、酸素含有量
が110000ppを越えると永久磁石中に酸化物(R
20wl )として4%より多く残留することになり磁
石特性とくに保磁力が10kOeより低くなるので好ま
しくない、酸素含有量は好ましくは6000ppm以下
、さらに好ましくは4000ppm以下とする。
The oxygen contained in the alloy powder of the present invention combines with the rare earth element that is most easily oxidized to form rare earth oxides, and when the oxygen content exceeds 110,000 pp, oxides (R
20wl), the oxygen content is undesirable because the magnetic properties, particularly the coercive force, become lower than 10 kOe.The oxygen content is preferably 6000 ppm or less, more preferably 4000 ppm or less.

含有炭素量が11000ppを越えると酸素の場合と同
様炭化物(HO2等)として永久磁石中に残留し減磁曲
線の角形性を低下させ保磁力が10koe以下となる。
If the carbon content exceeds 11,000 pp, it remains in the permanent magnet as a carbide (HO2, etc.) as in the case of oxygen, reduces the squareness of the demagnetization curve, and the coercive force becomes 10 koe or less.

含有炭素量は好ましくは600ppm以下とする。The carbon content is preferably 600 ppm or less.

またカルシウム含有量が2000ppmを越えると後続
のこの合金粉末を用いて磁石化する途中の焼結工程にお
いて還元性の極めて高いCa蒸気を多量に発生し、熱処
理炉をいちぢるしく汚染することになって、場合によっ
ては熱処理炉の炉壁を損耗して工業的に安定な生産が不
可能となる、また、でき上った永久磁石中に含まれるC
a量も多くなって磁石特性の劣化を生ずる。・生成合金
中のCa量は好ましくは10αOppm以下とする。
Furthermore, if the calcium content exceeds 2000 ppm, a large amount of highly reducing Ca vapor will be generated during the subsequent sintering process during which the alloy powder is magnetized, which will seriously contaminate the heat treatment furnace. In some cases, the furnace wall of the heat treatment furnace may be damaged, making stable industrial production impossible, and the carbon contained in the finished permanent magnet may be damaged.
The amount of a also increases, causing deterioration of magnetic properties. - The amount of Ca in the produced alloy is preferably 10αOppm or less.

本発明における原料の還元剤としてのCa量が化学量論
的必要量の3.5倍より多い場合には還元・拡散反応時
に急激な化学反応を生じ、著しい発熱と還元性の強いC
aによる還元・拡散用の容器の消耗が激しくて工業的に
安定な生産が不可能となる。また還元によってできた合
金粉末中の残留Ca量も多くなって、後続の磁石化にお
ける熱処理時にCa蒸気を多量に発生し熱処理炉体を損
耗したり、でき上った磁石中のCa量も多く磁石特性の
劣化を生ずる。
If the amount of Ca as a reducing agent in the raw material in the present invention is more than 3.5 times the stoichiometrically required amount, a rapid chemical reaction will occur during the reduction/diffusion reaction, resulting in significant heat generation and strongly reducing C.
The reduction/diffusion containers are severely consumed by a, making industrially stable production impossible. In addition, the amount of residual Ca in the alloy powder produced by reduction increases, causing a large amount of Ca vapor to be generated during the subsequent heat treatment for magnetization, causing wear and tear on the heat treatment furnace body, and increasing the amount of Ca in the finished magnet. This causes deterioration of magnetic properties.

一方Ca量が1.2倍より少ない場合には還元φ拡散反
応が不完全で未還元物が多量に残り1本発明の希土類合
金粉末をうることができない。
On the other hand, if the amount of Ca is less than 1.2 times, the reduction φ diffusion reaction is incomplete and a large amount of unreduced substances remains, making it impossible to obtain the rare earth alloy powder of the present invention.

Cac12量が希土類酸化物の15%(重量%)を越え
ると還元O拡散反応物を水で処理する際にその水中のC
1−(塩素イオン)が著しく増大して生成した希土類合
金粉末と反応して粉末の酸素量が110000ppを越
えR1−R2−Fe−Co−B磁石用原料として利用で
きない。
If the amount of Cac12 exceeds 15% (wt%) of the rare earth oxide, when the reduced O-diffusion reactant is treated with water, C
1- (chloride ions) increases significantly and reacts with the generated rare earth alloy powder, and the oxygen content of the powder exceeds 110,000 pp, making it unusable as a raw material for R1-R2-Fe-Co-B magnets.

また1重量%以下の場合には還元・拡散反応物を水中に
入れても崩壊を生ぜず水によって処理することが不可能
となってしまう。
If the amount is less than 1% by weight, the reduction/diffusion reactant will not disintegrate even if placed in water, making it impossible to treat with water.

本願発明の希土類合金粉末の成分範囲の限定理由は以下
による。
The reason for limiting the component range of the rare earth alloy powder of the present invention is as follows.

R(Yを含む希土類元素のうち少なくとも1種)は、新
規なR1−R2−Fe−Co−B系永久磁石の必須元素
であって−,12,5)X子%よりも少なくなると本系
合金中にFeが析出して保磁力が急激に低下し、20原
子%を越え゛ると保磁力は1okoe以上の大きい値を
示すが残留磁束密度(Br)が低下して(BH)max
20MGOe以上に必要なりrが得られなくなる。
R (at least one rare earth element including Y) is an essential element for the new R1-R2-Fe-Co-B permanent magnet, and when it is less than -,12,5)X%, the present system As Fe precipitates in the alloy, the coercive force rapidly decreases, and when it exceeds 20 atomic %, the coercive force shows a large value of 1 okoe or more, but the residual magnetic flux density (Br) decreases and (BH) max.
If more than 20 MGOe is required, r will not be obtained.

したがって希土類元素(R)は、12.5原子%〜20
jlX子%の範囲とする。
Therefore, the rare earth element (R) is 12.5 at% to 20
jlX child% range.

R1の量は上述のRを部分的に構成するsR1量は僅か
0.05原子%の置換でもHcが増加しており、ざらに
減磁曲線の角形性も改善され(BH)maxが増加する
。そこでR1量の下限値はiHc増加の効果と(BH)
max増大の効果を考慮して0.05原子%以上とする
。R1量が増加するにつれて、iHcは上昇していき(
BH)waxは0.4原子%をピークとしてわずかずつ
減少するが、例えば3%の置換でも(BH)maxは3
0MGOe以上を示す。
The amount of R1 partially constitutes the above-mentioned R. Even if the amount of R1 is only 0.05 at% substitution, Hc increases, the squareness of the demagnetization curve is also roughly improved, and (BH) max increases. . Therefore, the lower limit of R1 amount is determined by the effect of iHc increase and (BH)
Considering the effect of increasing max, the content is set to 0.05 at.% or more. As the amount of R1 increases, iHc increases (
BH)wax peaks at 0.4 at% and decreases little by little, but for example, even with 3% substitution, (BH)max decreases to 3.
Indicates 0MGOe or more.

安定性が特に要求される用途にはiHcが高いほど、す
なわちR1を多く含有する方が有利である。しかしR,
を構成する元素は希土類鉱石中にもわずかしか含まれて
おらず、大変高価である。
For applications where stability is particularly required, it is more advantageous to have a higher iHc, that is, to contain more R1. But R,
The elements that make up the rare earth ore are only contained in small amounts in rare earth ores and are very expensive.

従ってその上限は5原子%とする。また、R1としては
Dy、’rbが特に望ましい、残りのR2元素は本発明
方法による永久磁石の主要な成分元素であって、Nd及
び/又はPrを主体としその合計が80原子%以上、そ
の残りがR1以外のYを含む希土類元素の1種以上で、
この範囲外では(BH)max20MGOe以上、iH
c  10koe以上の磁石特性が得られなくなる。な
おR2としてはSm、Laはできるだけ少ないことが望
ましい。
Therefore, the upper limit is set at 5 at.%. In addition, as R1, Dy and 'rb are particularly preferable.The remaining R2 elements are the main constituent elements of the permanent magnet according to the method of the present invention, and are mainly composed of Nd and/or Pr, and the total is 80 atomic % or more. The remainder is one or more rare earth elements containing Y other than R1,
Outside this range (BH) max 20MGOe or more, iH
c It becomes impossible to obtain magnetic properties of 10 koe or more. Note that as for R2, it is desirable that Sm and La be as small as possible.

B量は、4原子%以下になるとiHcが10koe以下
になる。またB量の増加もR量の増加と同じ<IHcを
増加させるが、Brが低下してい<、(BH)max 
 20MGOe以上であるためにはB  20%以下が
必要である。よって。
When the amount of B is 4 atomic % or less, iHc becomes 10 koe or less. Also, an increase in the amount of B increases <IHc, which is the same as an increase in the amount of R, but Br decreases <, (BH)max
In order to achieve 20 MGOe or more, B is required to be 20% or less. Therefore.

B量は、4原子%〜20原子%の範囲とする。The amount of B is in the range of 4 atomic % to 20 atomic %.

本発明においてFeBR系中のFeの一部をCoで置換
したとさの磁石のキュリ一温度はC。
In the present invention, the Curie temperature of the tosa magnet in which part of the Fe in the FeBR system is replaced with Co is C.

の置換量の増大に伴い徐々に増大する。Coの置換はわ
ずか(例えば0.1%)でもキュリ一温度増大に有効で
あり、その置換量により約310〜約640℃の任意の
キュリ一点をもつ合金が得られる(特開昭59−647
33)、従って、Co        量の下限は特に
限定されないが0.1原子%以上とするのが好ましい、
Coの含有量が35%を越えると(BH)maxは低下
して20MGOeより低くなる。FeBR系では室温か
ら150℃までの間のBrの温度係数は約0.13%/
℃であるが、Co  5[子%以上の含有により、Br
の温度係数は約0.1%/℃以下になる。なお、Co 
 25原子%以下で他の特性を実質的に劣化することな
くキュリ一点の増大に寄芋し、約20原子%前@(17
〜23原子%)ではiHcも増大させる。Co量は5〜
6原子%とするのが最も好ましい。
It gradually increases as the amount of substitution increases. Even a small amount of Co substitution (for example, 0.1%) is effective in increasing the Curie point, and depending on the amount of Co substitution, an alloy with an arbitrary Curie point of about 310 to about 640°C can be obtained (Japanese Patent Laid-Open No. 59-647
33), therefore, the lower limit of the amount of Co is not particularly limited, but it is preferably 0.1 atomic % or more.
When the Co content exceeds 35%, (BH)max decreases and becomes lower than 20MGOe. In the FeBR system, the temperature coefficient of Br from room temperature to 150°C is approximately 0.13%/
℃, but by containing more than 5% of Co, Br
The temperature coefficient of is approximately 0.1%/°C or less. In addition, Co
At 25 atomic % or less, it is possible to increase the Curie point without substantially deteriorating other properties, and about 20 atomic % before @ (17
~23 at%) also increases iHc. The amount of Co is 5~
Most preferably, it is 6 atom %.

また、COの凹換は磁石合金の耐酸化性を向上させ、製
造工程上の還元反応生成物の崩壊時の歩留りの向上及び
、微粉末の耐醸化性向上に著しい効果がある。
In addition, CO concaveness improves the oxidation resistance of the magnetic alloy, and has a remarkable effect on improving the yield of reduction reaction products during the production process when they disintegrate, and improving the brewing resistance of fine powder.

Feは、新規なR,−R2−Fe−Co−B系永久磁石
の必須元素であるが、45原子%未満では残留磁束密度
(Br)が低下し、82原子%を越えると、高い保磁力
が得られないので、Feelは45原子%〜B2g子%
に限定する。Fe量はさらに好ましくは45〜80W子
%とする。さらに、FeとCoの合計量は60原子%以
上とするのが好ましく、最も好ましくはFe量は60原
子%以上とする。
Fe is an essential element for new R, -R2-Fe-Co-B permanent magnets, but if it is less than 45 at%, the residual magnetic flux density (Br) will decrease, and if it exceeds 82 at%, it will have a high coercive force. is not obtained, so the Feel is 45 atomic% to B2g%
limited to. The amount of Fe is more preferably 45 to 80 W%. Further, the total amount of Fe and Co is preferably 60 atomic % or more, and most preferably the Fe amount is 60 atomic % or more.

また、この発明による合金粉末は、R,B。Further, the alloy powder according to the present invention is R, B.

C01Feの他、工業的生産上不可避的不純物の含有を
許容できる0例えば2原子%以下のP、2原子%以下の
S、2原子%以下のCu、合計量で2原子%以下を含有
してもなお実用的な磁気特性を示し、磁石合金の製造性
改善、低価格化が可能である。但しこれらの元素は一般
にBrを低下させるので少ない方がよく(例えば0.5
原子%以下、より好ましくは0.1原子%未満)、Br
9kG以上の範囲とする。さらに、前記R−Fe−Co
−B合金中のFeに部分的に代わり下記の添加元素のう
ち少なくとも1種を含有させることにより、永久磁石合
金の高保磁力化が可能になる: 5.0原子%以下のA旦、 3.0f原子%以下c7)Ti、 5.5原子%以下のV、 6.0原子%以下のNi、 4.5原子%以下のCr、 5.0g子%以下(1’) M n、 5.0原子%以下のBf、 9.0原子%以下のNb、 7.0原子%以下のTa、 5.2原子%のM 0 。
In addition to C01Fe, the inclusion of unavoidable impurities in industrial production is acceptable.For example, 2 at% or less of P, 2 at% or less of S, 2 at% or less of Cu, the total amount of which is at most 2 at%. However, it still shows practical magnetic properties, and it is possible to improve the manufacturability and lower the cost of magnetic alloys. However, since these elements generally lower Br, it is better to have less of them (for example, 0.5
Br
The range shall be 9kG or more. Furthermore, the R-Fe-Co
By containing at least one of the following additional elements in place of Fe in the -B alloy, it is possible to increase the coercive force of the permanent magnet alloy: 5.0 at% or less of A, 3. 0f atomic % or less c7) Ti, 5.5 atomic % or less V, 6.0 atomic % or less Ni, 4.5 atomic % or less Cr, 5.0 atomic % or less (1') M n, 5. Bf of 0 atomic % or less, Nb of 9.0 atomic % or less, Ta of 7.0 atomic % or less, M 0 of 5.2 atomic %.

5.0原子%以下のW、 1.0原子%以下のSb、 3 、5[子%以下のGe、 1.5原子%以下のSn、 3.3原子%以下のZr、 3.3原子%以下のHf、及び 5.0原子%以下のSi。W of 5.0 atomic % or less, Sb of 1.0 atomic % or less, 3, 5 [Ge below %, Sn of 1.5 atomic % or less, Zr of 3.3 atomic % or less, 3.3 atomic % or less of Hf, and Si of 5.0 atomic % or less.

これらの添加元素は、出発原料混合粉末中に、金属粉、
酸化物、或いは合金a成元素との合金粉ないし混合酸化
物、或いはCaにより還元可能な化合物として添加する
ことができる。
These additive elements are added to the starting raw material mixed powder, such as metal powder,
It can be added as an oxide, an alloy powder or mixed oxide with alloy a-component elements, or a compound reducible with Ca.

上述の添加元素は一般にiHcを増し、減磁曲線の角形
性を増す効果があるが、一方その含有量が増すに従い、
Brが低下していく。
The above-mentioned additive elements generally have the effect of increasing iHc and increasing the squareness of the demagnetization curve, but on the other hand, as their content increases,
Br is decreasing.

(BH)max  20MGOs以上を有するにはBr
9kG以上が必要であり、そのためBE、Ni、Mnの
場合を除き含有量の各々の上限は先述の値以下と定めら
れる。Biについてはその高い蒸気圧、Ni、Mnにつ
いてはiHcの観点からその上限を定める。またSiは
キュリ一温度を高める効果がある。2種以上の元素を含
有する場合には合計含有量の上限値は、当該元素の各上
限値のうち最大値を有するものの値以下となる0例えば
、Ti、Ni、Nbを含有する場合には、Nbの9%以
下となる。特に含有元素のうち、V、Nb、Ta、Mo
、W、Cr、A文が好ましい、添加元素の含有量は少量
が好ましく、一般に3原子%以下が有効である(Anの
場合0.1〜3TX子%、特に0.2〜2原子%)。
(BH)max Br to have 20MGOs or more
9 kG or more is required, and therefore, the upper limit of each content is determined to be below the above-mentioned value, except in the case of BE, Ni, and Mn. The upper limit of Bi is determined from the viewpoint of its high vapor pressure, and the upper limit of Ni and Mn is determined from the viewpoint of iHc. Further, Si has the effect of increasing the Curie temperature. If two or more elements are contained, the upper limit of the total content shall be less than or equal to the maximum value of the respective upper limits of the elements. For example, if Ti, Ni, and Nb are contained, the upper limit of the total content shall be 0. , 9% or less of Nb. Especially among the contained elements, V, Nb, Ta, Mo
, W, Cr, and A are preferable.The content of the added element is preferably small, and generally 3 atomic % or less is effective (0.1 to 3 TX element % in the case of An, especially 0.2 to 2 atomic %) .

結晶相は主相(特定の相が80容量%以上、好ましくは
90@量%以上、ざらに好ましくは95容量%以上)が
正方晶であることが、磁石として高い磁気特性を発現し
うる微細で均一な合金粉末を得るのに不可欠である。こ
の磁性相はFeCoBR正方晶化合物結晶で構成され、
非磁性相により粒界を囲まれている。非磁性相は主とし
てRリッチ相(R金属)から成る。Bの多い場合Bリッ
チな相も部分的に存在しうる。非磁性層粒界域の存在は
高特性に寄与するものと考えられ1本発明合金の重要な
組織上の特徴を成す。
The main crystal phase (the specific phase is 80% by volume or more, preferably 90% by volume or more, more preferably 95% by volume or more) is tetragonal, which is fine enough to exhibit high magnetic properties as a magnet. is essential to obtain a uniform alloy powder. This magnetic phase is composed of FeCoBR tetragonal compound crystals,
The grain boundaries are surrounded by a non-magnetic phase. The non-magnetic phase mainly consists of an R-rich phase (R metal). When there is a large amount of B, a B-rich phase may also be partially present. The presence of the non-magnetic layer grain boundary region is considered to contribute to high properties and constitutes an important structural feature of the alloy of the present invention.

非磁性層はほんのわずかでも有効であり1例えば1vo
1%以上は十分な量である。正方晶結晶のであり、その
中心組成はR2(Fe、Co)I aBであると考えら
れる。この合金粉末は一般に結晶性であり、典型的には
粉末粒子を構成する結晶の粒径が、約11.m以上であ
る(但し、粉末粒子径がこれ以上の場合に限る)、正方
晶相の量は、X線回折の強度やX線マイクロアナライザ
等を用いて測定できる。さらに、この合金粉末を用いた
焼結永久磁石は納品質であり、R(Fe、Co)B正方
晶相の平均結晶粒径は、1〜40ILm(さらに好まし
くは3〜204m)であることが優れた永久磁石特性の
ために望ましい。
Even a small amount of non-magnetic layer is effective; for example, 1vo
1% or more is a sufficient amount. It is a tetragonal crystal, and its central composition is thought to be R2(Fe,Co)I aB. This alloy powder is generally crystalline, and typically the grain size of the crystals constituting the powder particles is about 11 mm. The amount of tetragonal phase, which is larger than m (however, only when the powder particle size is larger than this), can be measured using the intensity of X-ray diffraction, an X-ray microanalyzer, or the like. Furthermore, the sintered permanent magnet using this alloy powder is of delivery quality, and the average crystal grain size of the R(Fe, Co)B tetragonal phase is 1 to 40 ILm (more preferably 3 to 204 m). Desirable for its excellent permanent magnetic properties.

以下本発明の態様及び効果について実施例に従って説明
する。但し、本発明は、実施例の記載に必ずしも制限さ
れない。
Hereinafter, aspects and effects of the present invention will be explained according to examples. However, the present invention is not necessarily limited to the description of the examples.

〔実施例〕〔Example〕

実施例l Nd2O,粉末:54.8gr、 DY203粉末:5.6gr。 Example l Nd2O, powder: 54.8gr, DY203 powder: 5.6 gr.

フェロボロン粉末(19,5wt%B−Fe合金粉末)
:6.5gr、 Fe粉:42.6gr。
Ferroboron powder (19.5wt% B-Fe alloy powder)
: 6.5gr, Fe powder: 42.6gr.

Ca粉:18.6gr。Ca powder: 18.6gr.

金属Ca:53.5gr (化学量論比の2.5倍)。Metal Ca: 53.5gr (2.5 times the stoichiometric ratio).

CaCJ12 :2.6gr (希土類酸化物原料の4.3wt%) の原料粉末合計184.2grを用い、30.0%Nd
−3,8%D7−47.7%Fe−17,5%Co−1
,12%B(wt%)(14,0%Nd−1,5%Dy
−57,5%Fe−20%Co−7,0%B CM子%
)〕組成合金狙いにして、V型混合機を用いて混合した
CaCJ12: Using a total of 184.2 gr of raw material powder of 2.6 gr (4.3 wt% of rare earth oxide raw material), 30.0% Nd
-3,8%D7 -47.7%Fe-17,5%Co-1
, 12%B (wt%) (14,0%Nd-1,5%Dy
-57,5%Fe-20%Co-7,0%B CM child%
)] Mixing was performed using a V-type mixer, aiming at the composition alloy.

ついでこの混合原料の圧縮体をステンレス製容器に充填
し、マツフル炉中に装入後宮器内をアルゴンガス流気中
において昇温した。1150”0X3hrの恒温保持後
室源まで炉冷した。えられた還元反応生成物を8 m 
e s hスルーに粗粉砕後10又のイオン交換水中に
投入し1反応生成物中の酸化カルシウム(Cab)、C
aO・2CaCu2.未反応の残留カルシウムを水酸化
カルシウム(Ca (OH) 2 )にして反応生成物
を崩壊させスラリー状にした。1時間攪拌した後、30
分間静置して水酸化カルシウム懸濁液をすて、再び注水
し、撹拌壷静置・懸濁液除去の工程を複数回くり返した
。このようにして分離・採取されたNd−Dy−Fe−
Co−B系合金粉末を真空中で乾燥し、本発明の20〜
300pLmの磁石材料用希土類合金粉末84grをえ
た。
Next, the compressed body of this mixed raw material was filled into a stainless steel container, placed in a Matsufuru furnace, and the temperature inside the inner chamber was raised in an argon gas stream. After maintaining the temperature at 1150"0x3hr, the furnace was cooled to the room temperature.The obtained reduction reaction product was heated to 8 m
Calcium oxide (Cab) and C
aO・2CaCu2. The unreacted residual calcium was converted into calcium hydroxide (Ca (OH) 2 ) to disintegrate the reaction product into a slurry. After stirring for 1 hour, 30
The calcium hydroxide suspension was left to stand for a minute, water was poured again, and the process of leaving the jar still in a stirring pot and removing the suspension was repeated several times. Nd-Dy-Fe- separated and collected in this way
The Co-B alloy powder is dried in vacuum, and the 20~
84 gr of rare earth alloy powder for magnet materials with a capacity of 300 pLm was obtained.

成分分析の結果下記の通り Nd:30.2vrL%。The results of component analysis are as follows: Nd: 30.2vrL%.

Dy:3.3wt%。Dy: 3.3wt%.

Fe:48.2wt%、 Co:15.8wt%、 B:1−1wt%。Fe: 48.2wt%, Co: 15.8wt%, B: 1-1 wt%.

Ca:800ppm。Ca: 800ppm.

02 :4100ppm、 C:670ppm の所望の合金粉末かえられた。X線回析図形の測定によ
り、 を有する正方晶系の金属間化合物を95%以上の主相と
する合金粉末であった。
The desired alloy powders of 02: 4100 ppm and C: 670 ppm were obtained. According to the measurement of the X-ray diffraction pattern, it was an alloy powder containing 95% or more of the main phase of a tetragonal intermetallic compound having the following.

この粉末を微粉砕し、平均粒径2.50μmの粉末にし
て1.5t/Crn’(7)圧力で10kOeの磁界中
において圧縮成形体にした。その後1120℃−2時間
(1)Ar気流中焼結と600℃−1時間の時効処理を
行い、永久磁石試料を作製した。
This powder was finely pulverized to a powder having an average particle size of 2.50 μm and compressed into a compact in a magnetic field of 10 kOe at a pressure of 1.5 t/Crn'(7). Thereafter, sintering was performed at 1120° C. for 2 hours (1) in an Ar flow and aging treatment was performed at 600° C. for 1 hour to prepare a permanent magnet sample.

Br=11.5kG。Br=11.5kG.

1Hc=16.3koe。1Hc=16.3koe.

(BH)max=31.7MGOe のすぐれた磁石特性かえられた。(BH)max=31.7MGOe The excellent magnetic properties have been changed.

またこの合金磁石のBrの温度係数はα=0.075%
/℃であった。
Also, the temperature coefficient of Br in this alloy magnet is α=0.075%
/℃.

実施例2 Nd203粉末+47.Ogr、 Dy20:l: 1.6gr、 7、bポeyン粉末(19、Owt%B−Fe合金粉末
):6.4gr。
Example 2 Nd203 powder +47. Ogr, Dy20: l: 1.6gr, 7, b poey powder (19, Owt%B-Fe alloy powder): 6.4gr.

Fe粉:61.2gr、 Ca粉:4.4gr・ 金属Ca二43.3gr (化学量論比の2.5倍)、 CaCl2 :2.5gr (希土類酸化物原料の5.0wt%) の原料粉末合計166.4grを用い、30.4%Nd
−1,2%0y−62,7%Fa−4.5%Go−1,
2%B(wt%)(13,8%Nd−〇、5%DY−7
3.5%Fe−5%Co−7,2%B(原子%)〕組成
合金狙いにして、実施例1と同様にして1070℃−3
時間の還元処理をし、本発明の20〜500 pmの磁
石材料用希土類合金粉末を79grえた。
Raw materials: Fe powder: 61.2gr, Ca powder: 4.4gr, metallic Ca2 43.3gr (2.5 times the stoichiometric ratio), CaCl2: 2.5gr (5.0wt% of rare earth oxide raw material) Using a total of 166.4 gr of powder, 30.4% Nd
-1,2%Oy-62,7%Fa-4.5%Go-1,
2%B (wt%) (13,8%Nd-〇, 5%DY-7
3.5%Fe-5%Co-7,2%B (atomic %)] was heated at 1070°C in the same manner as in Example 1, aiming at the composition alloy.
After the reduction treatment for several hours, 79g of the 20-500 pm rare earth alloy powder for magnet materials of the present invention was obtained.

成分分析の結果、下記の通り Nd:29.5wt%、 Dy:1.1wt%、 Fe:61.3wt%、 Co:4.1wt%、 B:1.1wL%。The results of component analysis are as follows. Nd: 29.5wt%, Dy: 1.1wt%, Fe: 61.3wt%, Co: 4.1wt%, B: 1.1 wL%.

Ca:490ppm。Ca: 490ppm.

02  :3300ppm、 C:480ppm の所望の合金粉末がえられた。X線回析図形の測定によ
り、 a=8.79A、c=12.18A を有する正方晶系の金属間化合物を93%以上の主相と
する合金粉末であった。
Desired alloy powders containing 02: 3300 ppm and C: 480 ppm were obtained. According to the measurement of the X-ray diffraction pattern, it was an alloy powder containing 93% or more of the main phase of a tetragonal intermetallic compound having a=8.79A and c=12.18A.

実施例1と同様にして永久磁石試料を作製した。A permanent magnet sample was prepared in the same manner as in Example 1.

Br=12.5kG、 tHc=12.1koe、 (BH)maX=37.4MGO のすぐれた磁石特性がえられた。Br=12.5kG, tHc=12.1koe, (BH)maX=37.4MGO Excellent magnetic properties were obtained.

この合金磁石のBrの温度係数はα=0 、09%/℃
であった。
The temperature coefficient of Br in this alloy magnet is α=0, 09%/℃
Met.

実施例3 Nd20v粉末:36.3gr、 CeO2粉末:9.2gr。Example 3 Nd20v powder: 36.3gr, CeO2 powder: 9.2 gr.

Dy2O3粉末:3.1gr、 Gd20ff粉末:3.Ogr、 Fe粉:49.9gr、 Ca粉:8.Ogr。Dy2O3 powder: 3.1gr, Gd20ff powder: 3. Ogr, Fe powder: 49.9gr, Ca powder: 8. Ogr.

フxロポロン粉(19,0wt%B−Fe合金粉):9
.Ogr、 金属Ca+88.5gr (化学量論比の3.2倍)、 Ca(、l、:5.2gr (希土類酸化物原料の10wt%) の原料粉末合計192.2grを用い、24.4%Nd
−4,3%Ce−2,5%DY−2,4%Gd−55,
7%Fe−9,0%Co−1,7%B(wt%)〔11
%Nd−2%Ce−1%DY−1%Gd−75%Fe−
10%B(原子%)〕組成合金狙いにして実施例1と同
様にして30〜500 pmの粉末87grをえた。
Fluoporon powder (19.0wt% B-Fe alloy powder): 9
.. Using a total of 192.2 gr of raw material powder of Ogr, metallic Ca + 88.5 gr (3.2 times the stoichiometric ratio), Ca (, l,: 5.2 gr (10 wt% of rare earth oxide raw material)), 24.4% Nd
-4,3%Ce-2,5%DY-2,4%Gd-55,
7%Fe-9,0%Co-1,7%B (wt%) [11
%Nd-2%Ce-1%DY-1%Gd-75%Fe-
10% B (atomic %)] Aiming for a composition alloy, 87 gr of powder of 30 to 500 pm was obtained in the same manner as in Example 1.

成分分析の結果、下記の通り Nd:24.1wt%、 Ce:4.0wt%、 Dy:2.3wt%、 Gd:2.2wt%、 Fe:55.9wt%、 Co:8.8wt%、 B : 1.6wt%、 Ca: 11100pp、 02:5500ppm、 C:600ppm の所望の合金粉末が得られた。X線回析図形の測定によ
り、 を有する正方晶系の金属間化合物を87%以上の主相と
する合金粉末であった。
The results of component analysis are as follows: Nd: 24.1 wt%, Ce: 4.0 wt%, Dy: 2.3 wt%, Gd: 2.2 wt%, Fe: 55.9 wt%, Co: 8.8 wt%, A desired alloy powder containing B: 1.6 wt%, Ca: 11100 ppm, 02: 5500 ppm, and C: 600 ppm was obtained. According to the measurement of the X-ray diffraction pattern, it was an alloy powder containing 87% or more of the main phase of a tetragonal intermetallic compound having the following.

えられた粉末を微粉砕し、平均粒度3.5pmの粉末に
して1.5t/crn’の圧力でLOkOeの磁界中に
おいて圧縮成型体にした。その後1100℃−2時間の
Ar気流中焼結と600℃−1時間の時効処理を行い永
久磁石試料を作製した。
The obtained powder was finely pulverized to a powder having an average particle size of 3.5 pm and compressed into a compact in a magnetic field of LOkOe at a pressure of 1.5 t/crn'. After that, sintering in an Ar flow at 1100°C for 2 hours and aging treatment at 600°C for 1 hour were performed to prepare a permanent magnet sample.

Br=10.7kG、 1Hc=lo、4koe、 (BH)max=25.2MGOe のすぐれた磁石特性かえられた。Br=10.7kG, 1Hc=lo, 4koe, (BH)max=25.2MGOe The excellent magnetic properties have been changed.

この磁石のBrの温度係数はα=o、oaa%/℃であ
った。
The temperature coefficient of Br in this magnet was α=o, oaa%/°C.

実施例4 Nd203粉末:45.Ogr、 Dy2O3粉末:5.Ogr、 Fe粉:42.3gr。Example 4 Nd203 powder: 45. Ogr, Dy2O3 powder:5. Ogr, Fe powder: 42.3gr.

Ca粉: 18.9gr、・ Fe−B粉(19、Owt%B−Fe合金粉末)ニア、
4gr。
Ca powder: 18.9gr, Fe-B powder (19, Owt% B-Fe alloy powder) near,
4 gr.

AJL203(アルミナ)粉末:1.Ogr。AJL203 (alumina) powder: 1. Ogr.

金属Ca:49.5gr (化学量論比の2.8倍)、 CaCu2  :3.5gr (酸化物原料の7wt%) の原料粉末合計170.6grを用い、29.6%Nd
−3,7Dy−56,02%Fe−8,96%Co−1
,3%B−0,4%kl(wt%)(13,5%Nd−
1,5%DV−66,0%Fe−10%C0−8%B−
1,0%八文(原子%)〕組成合金狙いにして実施例1
と同様にしてtoao℃×3時間の還元処理をして30
〜500#Lmの合金粉末88grをえた。
Using a total of 170.6 gr of raw material powder of metal Ca: 49.5 gr (2.8 times the stoichiometric ratio) and CaCu2: 3.5 gr (7 wt% of the oxide raw material), 29.6% Nd
-3,7Dy-56,02%Fe-8,96%Co-1
,3%B-0,4%kl(wt%)(13,5%Nd-
1,5%DV-66,0%Fe-10%C0-8%B-
1.0% Hachimon (atomic %)] Example 1 aiming at composition alloy
In the same manner as above, perform reduction treatment at 30°C for 3 hours.
88 gr of alloy powder of ~500 #Lm was obtained.

成分分析の結果、下記の通り Nd:29.6wt%、 Dy:3.7wt%。The results of component analysis are as follows. Nd: 29.6wt%, Dy: 3.7wt%.

Fe:55.9wt%。Fe: 55.9wt%.

Co:8.9wt%、 B:1.2wt%。Co: 8.9wt%, B: 1.2wt%.

AjL:0.4wt%、 Caニア50ppm、 02 : 3100ppm。AjL: 0.4wt%, Ca near 50ppm, 02: 3100ppm.

C:670ppm   ’″ の所望の合金粉末かえられた。X線回析図形の測定によ
り、 を有する正方晶系の金属間化合物を92%以上の主相と
する合金粉末であった。
C: 670 ppm ''' of the desired alloy powder was obtained. Measurement of the X-ray diffraction pattern revealed that the alloy powder had 92% or more of tetragonal intermetallic compounds as the main phase.

実施例2と同様にして永久磁石試料を作製した。A permanent magnet sample was prepared in the same manner as in Example 2.

Br=11.5kG、 tHc=17.5koe、 (BH)max=30.8MGOe のすぐれた磁石特性かえられた。Br=11.5kG, tHc=17.5koe, (BH)max=30.8MGOe The excellent magnetic properties have been changed.

この磁石のDrの温度係数はα=0.085%/℃であ
った。
The temperature coefficient of Dr of this magnet was α=0.085%/°C.

実施例5 Nd20.粉末:44.1gr、 Dy2O3粉末:4.5gr。Example 5 Nd20. Powder: 44.1gr, Dy2O3 powder: 4.5gr.

Fe粉末:49.9gr、 Co粉末:8.Ogr、 7 z Oポロン粉末(19、Owt%B−Fe合金粉
末)ニア、Ogr、 フェロニオブ粉末(67,3wt%Nb−Fe合金粉末
):2.2gr、 金属Ca:43.Ogr (化学量論比の2.5倍)、 CaCjL2 :5.8gr (希土類酸化物原料の12wt%) の原料粉末合計158.2grを用い、27.4%Nd
−3,7%0y−52,7%Fe−13,5%Co−1
,3%B−1,4%Nb(wL%)(12,5%Nd−
1,5%ny−62.0%Fe−15,0%Co−8%
B−1%Nb(原子%)〕組成合金狙いにして実施例3
と同様にして20〜500 pmの粉末88grをえた
Fe powder: 49.9gr, Co powder: 8. Ogr, 7z O poron powder (19, Owt% B-Fe alloy powder) Nia, Ogr, Ferron niobium powder (67,3wt% Nb-Fe alloy powder): 2.2gr, Metal Ca: 43. Using a total of 158.2 gr of raw material powder of Ogr (2.5 times the stoichiometric ratio), CaCjL2: 5.8 gr (12 wt% of rare earth oxide raw material), and 27.4% Nd.
-3,7%0y-52,7%Fe-13,5%Co-1
,3%B-1,4%Nb(wL%)(12,5%Nd-
1,5%ny-62.0%Fe-15,0%Co-8%
B-1%Nb (atomic %)] Example 3 aiming at composition alloy
In the same manner as above, 88 gr of powder of 20-500 pm was obtained.

成分分析の結果、下記の通り Nd:27.2wt%、 Dy:3.7wt%。The results of component analysis are as follows. Nd: 27.2wt%, Dy: 3.7wt%.

Fe:51.7wt%。Fe: 51.7wt%.

Co : 13.9wt%。Co: 13.9wt%.

B:1.2wt%、 Nb:1.4wt%、 Caニア00ppm、 02二4800ppm。B: 1.2wt%, Nb: 1.4wt%, Ca near 00ppm, 0224800ppm.

C:560ppm の所望の合金粉末かえられた。X線回折図形の測定によ
り、 a=8.78A、c=12.17A を有する正方晶系の金属間化合物を95%以上の主相と
する合金粉末であった。
C: 560 ppm of the desired alloy powder was changed. The measurement of the X-ray diffraction pattern revealed that the alloy powder contained 95% or more of the main phase of a tetragonal intermetallic compound having a=8.78A and c=12.17A.

実施例3と同様にして永久磁石試料を作製した。A permanent magnet sample was prepared in the same manner as in Example 3.

Br=11.5kG、 1Hc=14.5koe、 (BH)max=30.5MGOe のすぐれた磁石特性がえられた。Br=11.5kG, 1Hc=14.5koe, (BH)max=30.5MGOe Excellent magnetic properties were obtained.

〔効果〕〔effect〕

詳述の通り1本発明によれば、R,−R2−Fe−Co
−B系の磁石上製造するための同様な組成の合金粉末が
希土類酸化物及び酸化ホウ素原料を出発原料として用い
て安価に得られ、その使用により、温度特性及び耐食性
の優れたR1−R2−Fe−Go−B系永久磁石が得ら
れると共に磁石製造工程から希土類金属の単離精製−合
金の溶製−冷却(通例鋳造)−粉砕という所定合金粉末
の製造工程が省略でき、磁石製造工程の短縮が実現する
。この工程短縮は、好ましくない成分ないし不純物(酸
素等)の工程中における混入を避ける上で極めて有用で
ある。特に溶製から粉砕までの工程において#素等の混
入を防止することは複雑な工程管理を必要として困難で
あり、製造コストの増大の一因となるからである。
As detailed, according to the present invention, R, -R2-Fe-Co
- An alloy powder with a similar composition for producing B-based magnets can be obtained at low cost using rare earth oxide and boron oxide raw materials as starting materials, and by using it, R1-R2- has excellent temperature characteristics and corrosion resistance. Fe-Go-B permanent magnets can be obtained, and the manufacturing steps of rare earth metal isolation and refining, melting of the alloy, cooling (usually casting), and pulverization of the specified alloy powder can be omitted from the magnet manufacturing process. Shortening is realized. This shortening of the process is extremely useful in avoiding the contamination of undesirable components or impurities (such as oxygen) during the process. In particular, it is difficult to prevent # elements from being mixed into the process from melting to pulverization because it requires complicated process control, and this is a cause of increased manufacturing costs.

さらに希土類酸化物として、夫々の希土類酸化物として
分離されたものを用いる必要は必ずしもなく、目標組成
に近い酸化物混合物あるいは1部分的に不足希土類酸化
物を加えて出発原料とすることにより、希土類酸化物の
分離工程自体においても、工程の短縮−コストダウンが
可能となる。
Furthermore, it is not necessarily necessary to use separated rare earth oxides, but it is possible to use an oxide mixture close to the target composition or a partially deficient rare earth oxide as a starting material. Even in the oxide separation process itself, it is possible to shorten the process and reduce costs.

また本発明の合金は、直接還元法によって直接に、磁気
特性上必須の正方晶磁性相を主相とする合金として得ら
れる点で効果大であり、しかも粉末状として得られるこ
とも大きな利点である。希土類磁石を希土類酸化物を還
元した合金粉末から得る方法はSm−コバルト磁石で知
られている。しかし、Sm・コバルト磁石は1150〜
1300℃の高い還元温度を必要とするため粒成長を起
こしたり、廟壊時に粒度の揃った粉末を得に<<、また
還元時に用いる容器を反応のために著しく損傷させる。
Furthermore, the alloy of the present invention is highly effective in that it can be obtained directly by a direct reduction method as an alloy whose main phase is a tetragonal magnetic phase, which is essential for magnetic properties, and it is also a great advantage that it can be obtained in powder form. be. A method for obtaining rare earth magnets from alloy powder obtained by reducing rare earth oxides is known for Sm-cobalt magnets. However, Sm/cobalt magnets are 1150~
Since a high reduction temperature of 1300° C. is required, grain growth occurs, it is difficult to obtain a powder with uniform particle size during mausoleum destruction, and the container used during reduction is significantly damaged due to the reaction.

以上を総合して1本発明の効果は、J11著なものであ
ると認められる。
Taking all the above into account, it is recognized that the effects of the present invention are those of author J11.

出願人  住友特殊金属株式会社 代理人  弁理士  加藤  覇道 (外1名)Applicant: Sumitomo Special Metals Co., Ltd. Agent Patent Attorney Kato Hado (1 other person)

Claims (1)

【特許請求の範囲】 1)生成合金が R:12.5〜20原子%(Rのうち R_1:0.05〜5原子%)、 B:4〜20原子%、 Co:35原子%以下 (但しCo0%を除く。)、及び Fe:45〜82原子% (ここでR_1は重希土類元素Gd、Tb、Dy、Ho
、Er、Tm、Ybのうちの1種以上、R_2はNd及
び/又はPrが80原子%以上で、残りがR_1以外の
Yを含む希土類元素の少なくとも1種としR=R_1+
R_2(原子%)とする)を主成分とする組成になるよ
うに該希土類酸化物の1種以上、鉄粉、コバルト粉、お
よび純ボロン粉、フェロボロン粉およびホウ素酸化物粉
末のうち少なくとも1種以上、或いは上記構成元素の合
金粉又は混合酸化物を配合してなる原料混合粉末に、上
記希土類酸化物などの原料粉末中に含まれる酸素量に対
して還元に要する化学量論的必要量の1.2〜3.5倍
(重量比)の金属カルシウム及び/又は水素化カルシウ
ムと希土類酸化物の1〜15重量%の塩化カルシウムと
を混合し、不活性雰囲気中において950〜1200℃
の温度で還元・拡散を行い、得られた反応生成物を水と
接触させスラリー状態とし、該スラリーを水によって処
理して主相(合金の80容量%以上)が正方晶の該合金
粉末を採取し、前記組成を有し酸素含有量10000p
pm以下、炭素含有量1000ppm以下、カルシウム
含有量2000ppm以下とすることを特徴とする希土
類合金粉末の製造方法。 2)前記Feに部分的に代わり前記原料混合粉末中に、 5.0原子%以下のAl、 3.0原子%以下のTi、 5.5原子%以下のV、 6.0原子%以下のNi、 4.5原子%以下のCr、 5.0原子%以下のMn、 5.0原子%以下のBi、 9.0原子%以下のNb、 7.0原子%以下のTa、 5.2原子%以下のMo、 5.0原子%以下のW、 1.0原子%以下のSb、 3.5原子%以下のGe、 1.5原子%以下のSn、 3.3原子%以下のZr、 3.3原子%以下のHf、及び 5.0原子%以下のSiのうち少なくとも 1種を金属粉、酸化物又は構成元素との合金粉ないし混
合酸化物として添加含有させることを特徴とする請求の
範囲第1項記載の製造方法。
[Scope of Claims] 1) The produced alloy contains R: 12.5 to 20 atomic % (R_1: 0.05 to 5 atomic % of R), B: 4 to 20 atomic %, Co: 35 atomic % or less ( However, Co0% is excluded), and Fe: 45 to 82 atomic% (here, R_1 is a heavy rare earth element Gd, Tb, Dy, Ho
, Er, Tm, and Yb, R_2 is at least one rare earth element containing Nd and/or Pr at 80 atomic % or more, and the remainder is Y other than R_1 R = R_1+
R_2 (at. The above, or the raw material mixed powder made by blending the alloy powder or mixed oxide of the above constituent elements, has a stoichiometric amount required for reduction with respect to the amount of oxygen contained in the raw material powder such as the rare earth oxide. 1.2 to 3.5 times (weight ratio) metallic calcium and/or calcium hydride and 1 to 15% by weight of calcium chloride of rare earth oxide are mixed and heated at 950 to 1200°C in an inert atmosphere.
Reduction and diffusion are carried out at a temperature of Collected, having the above composition and oxygen content of 10,000p
pm or less, carbon content of 1000 ppm or less, and calcium content of 2000 ppm or less. 2) Partially replacing the Fe, in the raw material mixed powder, 5.0 atomic % or less Al, 3.0 atomic % or less Ti, 5.5 atomic % or less V, 6.0 atomic % or less Ni, 4.5 atom% or less Cr, 5.0 atom% or less Mn, 5.0 atom% or less Bi, 9.0 atom% or less Nb, 7.0 atom% or less Ta, 5.2 Mo at % or less, W at 5.0 atomic % or less, Sb at 1.0 atomic % or less, Ge at 3.5 atomic % or less, Sn at 1.5 atomic % or less, Zr at 3.3 atomic % or less , characterized in that at least one of Hf of 3.3 atomic % or less and Si of 5.0 atomic % or less is added as a metal powder, an oxide, or an alloy powder or mixed oxide with a constituent element. The manufacturing method according to claim 1.
JP60275876A 1984-12-10 1985-12-10 Production of rare earth alloy powder Granted JPS61270314A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59-260480 1984-12-10
JP26048084 1984-12-10

Publications (2)

Publication Number Publication Date
JPS61270314A true JPS61270314A (en) 1986-11-29
JPH0582443B2 JPH0582443B2 (en) 1993-11-19

Family

ID=17348538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60275876A Granted JPS61270314A (en) 1984-12-10 1985-12-10 Production of rare earth alloy powder

Country Status (1)

Country Link
JP (1) JPS61270314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022545855A (en) * 2020-03-25 2022-11-01 ネオ・パフォーマンス・マテリアルズ(シンガポール)プライヴェト・リミテッド Alloy powder and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022545855A (en) * 2020-03-25 2022-11-01 ネオ・パフォーマンス・マテリアルズ(シンガポール)プライヴェト・リミテッド Alloy powder and its manufacturing method

Also Published As

Publication number Publication date
JPH0582443B2 (en) 1993-11-19

Similar Documents

Publication Publication Date Title
US4770702A (en) Process for producing the rare earth alloy powders
EP0237587B1 (en) Method for producing a rare earth alloy and rare earth alloy
JP2904571B2 (en) Manufacturing method of rare earth anisotropic sintered permanent magnet
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
US4898613A (en) Rare earth alloy powder used in production of permanent magnets
JPS62173704A (en) Manufacture of permanent magnet
JPS61270314A (en) Production of rare earth alloy powder
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JPS61270313A (en) Production of rare earth alloy powder
JPS61207545A (en) Manufacture of permanent magnet material
JPS61270304A (en) Rare earth-containing alloy powder
JPH0457724B2 (en)
JPS6333506A (en) Production of raw material powder for permanent magnet material
JPS61270303A (en) Rare earth-containing alloy powder
JPS62262406A (en) Manufacture of powder for permanent magnet alloy
JPS62261101A (en) Manufacture of alloy powder for permanent magnet
JPH0526858B2 (en)
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3299000B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP3151088B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JPS624806A (en) Production of alloy powder for rare earth magnet
JPS6160801A (en) Rare earth alloy powder
JPH0586441B2 (en)
JPS62177149A (en) Production of permanent magnet material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees