JPS61269417A - Complementary mos semiconductor integrated circuit - Google Patents

Complementary mos semiconductor integrated circuit

Info

Publication number
JPS61269417A
JPS61269417A JP60110713A JP11071385A JPS61269417A JP S61269417 A JPS61269417 A JP S61269417A JP 60110713 A JP60110713 A JP 60110713A JP 11071385 A JP11071385 A JP 11071385A JP S61269417 A JPS61269417 A JP S61269417A
Authority
JP
Japan
Prior art keywords
resistor
integrated circuit
complementary mos
power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60110713A
Other languages
Japanese (ja)
Inventor
Shigeyuki Yoshizawa
吉澤 茂幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60110713A priority Critical patent/JPS61269417A/en
Publication of JPS61269417A publication Critical patent/JPS61269417A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00315Modifications for increasing the reliability for protection in field-effect transistor circuits

Abstract

PURPOSE:To prevent the destruction of an integrated circuit by connecting a resistor in series between a power terminal and a power line so as to block a large current flow even when latchup takes place in the integrated circuit in a complementary MOS semiconductor integrated circuit including plural P and N-channel MOSFETs constituted on a semiconductor substrate. CONSTITUTION:The resistor 3 is connected in series between the power line 1 and the power terminal 2 of the complementary MOS circuit. In general, the complementary MOS circuit has less current consumption and a wide operating power range. When the resistor 3 is 10OMEGA and the current consumption of the complementary MOS circuit in operation in 1mA, the voltage drop of the resistor 3 is 10mV and it gives no effect on the operation of the complementary MOS circuit. If power supply voltage is 5V, a current flowing from the power terminal 2 to the ground potential Vss is limited when the resistor 3 is connected between the power terminal 2 and the power line 1 and the current with latchup is limited to 500mA or below with the power supply voltage 5V and resistor 3 of 10OMEGA. In designing the pattern of the integrated circuit as 500mA, no destruction is caused.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補M(JS形半導体集積回路に関し、特にこ
の相補MOS形半導体集積回路のラッチアップによる破
壊防止に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to complementary M (JS) type semiconductor integrated circuits, and particularly to prevention of destruction of complementary MOS type semiconductor integrated circuits due to latch-up.

〔従来の技術〕[Conventional technology]

従来の相補MOS形半導体集積回路では、電源端子と電
源線はアルミニウム等の導電体によって直接接続されて
いた。
In conventional complementary MOS type semiconductor integrated circuits, power supply terminals and power lines are directly connected through a conductor such as aluminum.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の相補M OS形半導体集積回路は電源端
子と電源線が直接接続されているので、集積回路内部で
ラッチアップが起きると大きな電流が流れ集積回路が破
壊されるという欠点がある。
In the conventional complementary MOS type semiconductor integrated circuit described above, the power supply terminal and the power supply line are directly connected, so that if latch-up occurs inside the integrated circuit, a large current will flow and the integrated circuit will be destroyed.

次に第2図の断面図を用いてラッチアノゾ現象を説明す
る。第2図においてP型基板11内にはNuのウェル領
域12が形成されている。このウェル領域12内にはP
チャネルMOf9FET 13のドレイン、ソースとな
るP+型領域14.15およびウェル領域12からコン
タクトを取るためのN+型領領域16形成され、さらに
P+型領域14゜15間の表面上にはゲート電極17が
形成される。
Next, the latch-anozo phenomenon will be explained using the cross-sectional view of FIG. In FIG. 2, a Nu well region 12 is formed in a P-type substrate 11. As shown in FIG. In this well region 12, P
P+ type regions 14 and 15 which become the drain and source of the channel MOf9FET 13 and an N+ type region 16 for making contact from the well region 12 are formed, and a gate electrode 17 is further formed on the surface between the P+ type regions 14 and 15. It is formed.

またP型基板ll内にはNチャネルMOSFET18の
ソース、ドレインとなるN+型領領域1920が形成さ
れ、このN++域19.20間の表面上にはゲート電極
21が形成される。そして上記一方のr属領域15およ
びM型領域16はともに正極性の電源電位VDDに設定
され、上記一方のN+型領域19およびP型基板11は
ともに接地電位Va8に設定される。
Further, an N+ type region 1920 which becomes the source and drain of the N channel MOSFET 18 is formed in the P type substrate 11, and a gate electrode 21 is formed on the surface between the N++ regions 19 and 20. Both the r-group region 15 and the M-type region 16 are set to the positive power supply potential VDD, and the one N+-type region 19 and the P-type substrate 11 are both set to the ground potential Va8.

このような構成において、なんらかの原因でPチャネル
MOSF’ET 13のドレイン(P+型領域14)の
電位がvDDよりもPN接合の順方向電圧Vfよりも高
くなるとP+型領域14をエミッタ、N型ウェル領域1
2をベース、P型基板11をコレクタとする寄生パーテ
ィカルPNPトランジスタ(図示せず)がオンする。こ
のPNPトランジスタがオンしてコレクタ電流が流れる
と、この電流はP型基板11に存在している抵抗Rpを
介してVjljlに流れ込む。このときこの抵抗部に発
生する電圧降下によシ、今度はN型ウェル領域12をコ
レクタ、P型基板11をベース、N+型領領域19エミ
ッタとする寄生ラテラルNPN)う/ジスタQμがオン
する。Qμのコレクタ電流はN型ウェル領域12に存在
している抵抗Rμを介してvDDより供給される。この
とき抵抗〜に発生する電圧降下により、今度はP+型領
域15をエミッタ、N型ウェル領域12をベース、P型
基板11をコレクタとする寄生パーティカルPNPトラ
ンジスタQ、がオンする。この結果、上記両寄生トラン
ジスタ喝、喝が組み合わさって構成されるPNPNサイ
リスタがオンした状態となりs  vDDからV811
に大きな電流が流れ続け、回路全体が通常動作不能とな
ってしまう。このような状態をラッチアップと称してい
る。また、上記のようなラッチアップはNチャネルMO
SFET18のドレイン(N十型領域20)の電位がV
88よりもPN接合の順方向電圧Vl よりも低くなっ
た場合にも発生する。
In such a configuration, if for some reason the potential of the drain (P+ type region 14) of the P channel MOSF'ET 13 becomes higher than vDD than the forward voltage Vf of the PN junction, the P+ type region 14 becomes the emitter and the N type well. Area 1
A parasitic particle PNP transistor (not shown) having P-type substrate 11 as a base and P-type substrate 11 as a collector is turned on. When this PNP transistor is turned on and a collector current flows, this current flows into Vjljl via the resistor Rp present in the P-type substrate 11. At this time, due to the voltage drop that occurs in this resistance section, the parasitic lateral NPN transistor Qμ, which has the N-type well region 12 as the collector, the P-type substrate 11 as the base, and the N+-type region 19 as the emitter, turns on. . The collector current of Qμ is supplied from vDD via a resistor Rμ existing in the N-type well region 12. At this time, the voltage drop generated across the resistor turns on the parasitic particle PNP transistor Q, which has the P+ type region 15 as its emitter, the N-type well region 12 as its base, and the P-type substrate 11 as its collector. As a result, the PNPN thyristor constituted by a combination of both the above parasitic transistors is turned on, and the voltage from s vDD to V811 is turned on.
A large current continues to flow through the circuit, rendering the entire circuit inoperable. Such a state is called latch-up. In addition, the above latch-up is caused by the N-channel MO
The potential of the drain of SFET 18 (N-type region 20) is V
This also occurs when the forward voltage Vl of the PN junction becomes lower than 88.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記実情に鑑みてなされたもので、その目的は
集積回路内部でラッチアップが起きても大きな電流が流
れることがなく、集積回路が破壊されることのない相補
MOS形半導体集積回路を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a complementary MOS type semiconductor integrated circuit in which a large current does not flow even if latch-up occurs inside the integrated circuit, and the integrated circuit is not destroyed. It is about providing.

本発明の相補MOS形半導体集積回路は、半導体基板上
に構成された複数のPチャネルおよびNチャネルMOS
1i’ETを含む相補MOS形半導体集積回路において
、電源端子と電源線の間に直列に抵抗を接続している。
The complementary MOS type semiconductor integrated circuit of the present invention includes a plurality of P-channel and N-channel MOSs configured on a semiconductor substrate.
In a complementary MOS type semiconductor integrated circuit including 1i'ET, a resistor is connected in series between a power supply terminal and a power supply line.

〔実施例〕〔Example〕

本発明について図面を参照して説明する。第1図は本発
明の一実施例で、相補MOS回路の電源線1と電源端子
20間に直列に抵抗3が接続されている。この抵抗3は
半導体基板上に多結晶シリコンで形成するか、半導体基
板に不純物拡散やイオン注入などの方法により形成され
る。
The present invention will be explained with reference to the drawings. FIG. 1 shows an embodiment of the present invention, in which a resistor 3 is connected in series between a power line 1 and a power terminal 20 of a complementary MOS circuit. The resistor 3 is formed of polycrystalline silicon on a semiconductor substrate, or is formed by a method such as impurity diffusion or ion implantation into the semiconductor substrate.

一般に相補MOS回路は消費電流が少なく、動作電源範
囲は広い。そこで抵抗3の値をlOΩとし、相補M0.
9回路の動作時の消費電流が1mAであったとすると、
この抵抗3の電圧降下は10mVであり相補M08回路
の動作に影響はない。
Generally, complementary MOS circuits consume less current and have a wide operating power supply range. Therefore, the value of the resistor 3 is set to lOΩ, and the complementary M0.
Assuming that the current consumption during operation of the 9 circuits is 1 mA,
The voltage drop across this resistor 3 is 10 mV and does not affect the operation of the complementary M08 circuit.

また電源電圧が5■で使用していたとすると、ラッチア
ップが起きたときに抵抗3が無く、電源端子2と電源線
1が直接接続されていた場合は、電源端子2から接地電
位VB1iに数Aの大きな電流が流れ集積回路を破壊し
てしまう。しかし抵抗3が電源端子2と電源線10間に
接続されていると電原端子2から接地電位Va8に流れ
る電流は制限され、電源電圧が5V、抵抗3の値がlO
Ωであれば、ラッテアップが起きたときの電流は500
mA以下に制限される。ここで集積回路のパターンを5
00 mAで設計してあれば破壊されることはない0 〔発明の効果〕 以上説明したように本発明は、電源端子と電源線の間に
直列に抵抗を接続することにより、ラッチアップが起き
たときの電流を制限できる効果がある。従って本発明に
よれば、ラッチアップを起こしても破壊されることのな
い相補MOS形半導体集積回路を実現できる。
In addition, if the power supply voltage is 5■ and the resistor 3 is not present when latch-up occurs, and the power supply terminal 2 and the power supply line 1 are directly connected, then the voltage from the power supply terminal 2 to the ground potential VB1i is A large current of A flows and destroys the integrated circuit. However, if the resistor 3 is connected between the power supply terminal 2 and the power supply line 10, the current flowing from the voltage source terminal 2 to the ground potential Va8 is limited, and when the power supply voltage is 5V and the value of the resistor 3 is lO
Ω, the current when latte-up occurs is 500
Limited to mA or less. Here, the integrated circuit pattern is 5
If it is designed with 00 mA, it will not be destroyed.0 [Effects of the Invention] As explained above, the present invention prevents latch-up from occurring by connecting a resistor in series between the power terminal and the power line. This has the effect of limiting the current when Therefore, according to the present invention, it is possible to realize a complementary MOS type semiconductor integrated circuit that will not be destroyed even if latch-up occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図である。 第2図はこの発明を説明するための相補MOS形半導体
集積回路の断面図である。 1・・・・・・相補M08回路の電源線、2・・・・・
・電源端子、3・・・・・・抵抗、11・・・・・・P
型半導体基板、12・・・・・・Nfiウェル領域、1
3・・・・・・PチャネルMOSFET。 14・・・・・・PチャネルMOSFETのドレイン、
15・・・・・・PチャネルMOSFETのソース、1
6・・・・・・N型ウェル領域の電源コンタクト、17
・・・・・・PチャネルMOSF’ETノ’l −) 
、18 =−・・Nf ヤネルM08FET。 19−=−NチャネルMOSFETtD 7−ス、20
 、=・・・NチャネルMOSFE Tのドレイン、2
1・・・・・・NチャネルMOSFETのゲート。 第 f 凶 第 2凶
FIG. 1 is a diagram showing an embodiment of the present invention. FIG. 2 is a sectional view of a complementary MOS type semiconductor integrated circuit for explaining the present invention. 1... Complementary M08 circuit power line, 2...
・Power terminal, 3...Resistance, 11...P
type semiconductor substrate, 12...Nfi well region, 1
3...P channel MOSFET. 14...Drain of P channel MOSFET,
15...P-channel MOSFET source, 1
6...N-type well region power contact, 17
...P channel MOSF'ET'l -)
, 18 =-...Nf Yarnel M08FET. 19-=-N channel MOSFETtD 7-s, 20
, =...Drain of N-channel MOSFET T, 2
1...Gate of N-channel MOSFET. 2nd f, 2nd

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に構成された複数のPチャネルおよびNチ
ャネルMOSFETを含む相補MOS形半導体集積回路
において、電源端子と電源線の間に直列に抵抗を接続し
たことを特徴とする相補MOS形半導体集積回路。
A complementary MOS type semiconductor integrated circuit including a plurality of P-channel and N-channel MOSFETs configured on a semiconductor substrate, characterized in that a resistor is connected in series between a power supply terminal and a power supply line. .
JP60110713A 1985-05-23 1985-05-23 Complementary mos semiconductor integrated circuit Pending JPS61269417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60110713A JPS61269417A (en) 1985-05-23 1985-05-23 Complementary mos semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60110713A JPS61269417A (en) 1985-05-23 1985-05-23 Complementary mos semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS61269417A true JPS61269417A (en) 1986-11-28

Family

ID=14542579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60110713A Pending JPS61269417A (en) 1985-05-23 1985-05-23 Complementary mos semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS61269417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000004A3 (en) * 2001-07-05 2002-05-16 Ericsson Telefon Ab L M Detrimental latch-up avoidans in digital circuits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000004A3 (en) * 2001-07-05 2002-05-16 Ericsson Telefon Ab L M Detrimental latch-up avoidans in digital circuits

Similar Documents

Publication Publication Date Title
US4672584A (en) CMOS integrated circuit
US5376816A (en) Bi-cmos integrated circuit device having buried region use in common for bipolar and mos transistors
KR0159451B1 (en) Protection circuit for a semiconductor device
US5639680A (en) Method of making analog multiplexer cell for mixed digital and analog signal inputs
US6847059B2 (en) Semiconductor input protection circuit
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
JPH09102551A (en) Semiconductor device
US6373105B1 (en) Latch-up protection circuit for integrated circuits biased with multiple power supplies
US5892263A (en) CMOS device connected to at least three power supplies for preventing latch-up
JP2602974B2 (en) CMOS semiconductor integrated circuit device
JP2661318B2 (en) Semiconductor device
JPS6197858A (en) Latch-up preventer for cmos transistor
JPS61269417A (en) Complementary mos semiconductor integrated circuit
KR930001289B1 (en) Semiconductor circuit
JP3100137B2 (en) Semiconductor integrated device
JP4826043B2 (en) Input protection circuit
JPH0313754B2 (en)
JPS61285751A (en) Cmos type semiconductor device
JPH0969572A (en) Semiconductor device and its manufacture
JP2867546B2 (en) Semiconductor integrated circuit device
JP2525142B2 (en) Semiconductor integrated circuit
JPS61208863A (en) Cmos semiconductor device
JPH0278275A (en) Conductivity modulation type mos device and circuit thereof
JPS6336145B2 (en)
JPH0753307Y2 (en) ESD protection circuit