JPS6126855A - Ultrasonic flaw detecting method of centrifugally cast iron pipe - Google Patents

Ultrasonic flaw detecting method of centrifugally cast iron pipe

Info

Publication number
JPS6126855A
JPS6126855A JP14779684A JP14779684A JPS6126855A JP S6126855 A JPS6126855 A JP S6126855A JP 14779684 A JP14779684 A JP 14779684A JP 14779684 A JP14779684 A JP 14779684A JP S6126855 A JPS6126855 A JP S6126855A
Authority
JP
Japan
Prior art keywords
probes
flaw detection
probe
pipe
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14779684A
Other languages
Japanese (ja)
Inventor
Yoshiichi Mori
森 芳一
Sadao Kawashima
貞夫 河島
Akio Suzuki
紀生 鈴木
Masayoshi Iwasaki
岩崎 全良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14779684A priority Critical patent/JPS6126855A/en
Publication of JPS6126855A publication Critical patent/JPS6126855A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils

Abstract

PURPOSE:To detect information with high accuracy by arranging at least four probes for the centrifugally cast iron pipe and varying an ultrasonic frequency for multifrequency flaw detection. CONSTITUTION:Four probes, i.e. transmitting probe 2A and receiving probe 3A, and transmitting probe 2B and receiving probe 3B are arranged diagonally at four corners of a rectangule on the outer peripheral surface of the pipe 1 to be inspected. Ultrasonic waves entering the pipe 1 to be inspected from the transmitting probes 2A and 2B pass through the thick part of the object pipe and are received by the receiving probes 3A and 3B or reflected by a defect 4 and received by the receiving probes 3B and 3A. Plural waveforms of different frequencies are added to the frequency of the ultrasonic waves to be transmitted to smooth a noise waveform due to the grain boundary of an austenite centrifugally case ion pipe. Those probes are used in combination for scanning and four flaw detection data are compared to detect the defect with high precision.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、生として水蒸気接触改質炉用加熱管等の遠心
鋳造管の経年使用に伴い生ずる内部欠陥を高い確度を以
って検出することを可能とする超音波探傷による非破壊
検査方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention detects with high accuracy internal defects that occur as a result of long-term use of centrifugally cast tubes such as heating tubes for steam catalytic reforming furnaces. This invention relates to a non-destructive testing method using ultrasonic flaw detection that makes it possible to perform

この種水蒸気接触改質炉用加熱管の特質を説明すると、
この管は耐熱、耐圧、耐蝕の必要から主にHK −40
(0,4%0125%Cr%2096JJi系)材等の
オーステナイト系耐熱鋳鋼を遠心鋳造し所望長さに溶゛
接接続して製作される。使用状急においては触媒を充填
した管内に原料ガスと水蒸気を圧送し管外から加熱する
ので、高温高圧下に−置か九る。この状態で長期(6年
以上程度)使用されると経年変化が起り、7−グ応力に
よりクリーププインシャが生じまた外熱内冷の温度差に
、cv管内面の周方向に欠陥が発生している怖がある。
To explain the characteristics of this type of heating tube for steam catalytic reforming furnaces,
This pipe is mainly made of HK-40 due to the need for heat resistance, pressure resistance, and corrosion resistance.
It is manufactured by centrifugally casting austenitic heat-resistant cast steel such as (0.4%0125%Cr%2096JJi series) material and welding it to the desired length. In emergency situations, raw material gas and steam are pumped into a tube filled with catalyst and heated from outside the tube, so they are placed under high temperature and pressure. If it is used in this state for a long time (about 6 years or more), aging will occur, creep stress will occur due to stress, and defects will occur in the circumferential direction of the inner surface of the CV tube due to the temperature difference between external heating and internal cooling. There is a fear of being

従って欠陥発生状況を検査し管の残存寿命を把握して置
くことは操業安全上不必欠の重要事項となる。
Therefore, inspecting the occurrence of defects and understanding the remaining service life of the pipes is essential for operational safety.

(従来の技術) 水蒸気接触改質炉内に立設されている多数の溶接継足遠
心鋳造管につき経年変化により発生する可能性のある不
特定の欠陥を抜取破壊検査しても信頼性に疑問があるの
で、設置状態で個別に非破壊検査する必要がある。一般
に、この目的の非#J1f検査方法としては放射線透過
検査と超音波探傷とがあるが、放射線透過検査方法は、
放射線の進行方向にある程度以上の厚さ、一般的には板
厚の196程度以上の厚さと放射線の進行方向に対して
直角方向の拡がりを持った欠陥でないと検出さn iM
 < sそれ以外の欠陥。
(Prior technology) The reliability of the large number of welded joint centrifugally cast tubes installed vertically in the steam contact reforming furnace is questionable even after sampling and destructive inspection of unspecified defects that may occur due to aging. Therefore, it is necessary to perform individual non-destructive inspection in the installed state. In general, non-#J1f inspection methods for this purpose include radiographic inspection and ultrasonic flaw detection.
It is detected that the defect does not have a thickness greater than a certain level in the direction of radiation propagation, generally approximately 196 mm or more of the plate thickness, and a defect that extends perpendicular to the direction of radiation propagation.
<sOther defects.

例えばワレ状欠陥のような場合は検出ができず、検出精
度が悪い。
For example, crack-like defects cannot be detected and the detection accuracy is poor.

超音波探傷は一般的には比較的均質な鉄鋼材料の内部欠
陥に対する非破壊検査として有効なものであり、具体的
探傷方法としてはパルス反射法、透過法、共振法等があ
り、また探触子を1個あるいは2個使用するもの、さら
には超音波の被検体に入射する方向を垂直あるいは斜角
に設定するもの等各種の探傷先の構成が知られている。
Ultrasonic flaw detection is generally effective as a non-destructive test for internal defects in relatively homogeneous steel materials, and specific flaw detection methods include pulse reflection method, transmission method, resonance method, etc. Various configurations of the flaw detection target are known, such as those using one or two probes, and those in which the direction of ultrasonic waves incident on the object to be inspected is set vertically or at an oblique angle.

しかし前記の遠心鋳造管の場合には。However, in the case of the centrifugally cast tube mentioned above.

超音波の減衰が大きくま几結晶粒が粗大で粒界反射によ
る林状エコーがでやすく受信波形が複雑となるという材
質的理由によV%従従来超音波探触子では精度の高い探
傷は困難であった。
Highly accurate flaw detection is not possible with conventional ultrasonic probes due to the material's high attenuation of ultrasonic waves and coarse crystal grains, which tend to produce forest-like echoes due to grain boundary reflection and complicate the received waveform. It was difficult.

(発明の解決しようとするrIIJ題点)本発明は前記
性状の遠心鋳造管のm音波探傷に関し材質的要因による
干渉の影響を小さくして探傷精度を向上させることを目
的とする。
(rIIJ Problems to be Solved by the Invention) The present invention aims to improve the flaw detection accuracy by reducing the influence of interference due to material factors regarding m-sonic flaw detection of centrifugally cast tubes having the above properties.

(間組点を解決するための手段および作用および実施例
) 本発明は、結晶粒が粗大で超音波の減衰が大きい遠心鋳
造管に対し、少くとも4つの探触子て多重周波数の探傷
を行い探傷データカ為ら材質的影響によるノイズ波形を
平滑化して欠陥清報の識別性を良好とし被検査管の全周
走査に工9確度の高い探傷結果f:iる工うにしたもの
である。
(Means, functions, and embodiments for solving the interpolation point) The present invention performs multi-frequency flaw detection using at least four probes on a centrifugally cast tube with coarse crystal grains and high attenuation of ultrasonic waves. The noise waveform caused by the influence of the material is smoothed out from the flaw detection data to improve the identifiability of defect reports, and to obtain highly accurate flaw detection results when scanning the entire circumference of the pipe to be inspected.

本発明方法の構成上の特徴は次の諸点&−ある。The structural features of the method of the present invention are as follows.

(1)  被検査管の周上に少くとも4つの超音波探触
子を配置し、被検査管の肉厚部内全透過しあるいは内部
欠陥で反射するよう透過法および反射法に、cv深探傷
域を介在させて発受信がなされるようにしたこと。
(1) At least four ultrasonic probes are placed around the circumference of the pipe to be inspected, and the CV deep flaw detection method is used for transmission and reflection methods to completely penetrate the thick part of the pipe to be inspected or reflect at internal defects. Transmission and reception can be carried out by intervening the area.

(ロ)超音波は複数の周波数を使用しそれらのデータを
組合わせることにより精度の高い探*結果をとり出すこ
と。
(b) Ultrasound uses multiple frequencies and combines the data to obtain highly accurate detection results.

この場合に複数の発信探触子で各々異なった周波数を使
い探傷する。あるいは1個の探触子、例えばリング状探
触子で複数の周波数の超音波を発信して探傷する。
In this case, flaw detection is performed using a plurality of transmitting probes, each using a different frequency. Alternatively, flaw detection is performed by transmitting ultrasonic waves of a plurality of frequencies using a single probe, for example, a ring-shaped probe.

に) 全周を走査する。) Scan the entire circumference.

第1図は、本発明方法の実施のための探触子配li!を
示し、被検査管(1)の外周面に沿って4つの探触子が
4角形の4角頂の位置を占めるよう発信探触子(2A)
と受信探触子(6A) s発信探触子C2B)と受信探
触子(6B)を対角配置し、発信探触子(2A)および
(2B)から被検査管(1)に入射した超音波が被検査
管の肉厚部内を透過してそれぞれ受信探触子(6A)お
よび(3B) G、:受信され、また欠陥(4)で反射
してそれぞれ受信探触子(6B)および(6A)に受信
されるようになっている。
FIG. 1 shows a probe arrangement for carrying out the method of the invention! The transmitting probe (2A) is shown so that the four probes occupy the positions of the four vertices of the quadrangle along the outer peripheral surface of the tube to be inspected (1).
and the receiving probe (6A), the transmitting probe C2B) and the receiving probe (6B) are arranged diagonally, and the light enters the tube to be inspected (1) from the transmitting probes (2A) and (2B). The ultrasonic waves pass through the thick part of the tube to be inspected and are received by the receiving probes (6A) and (3B), respectively. (6A).

これら探触子を組合せて走査することに=94つの探傷
データの比較によV*検査管(υ内の欠陥(4)の形1
!!1に応じて従来の2個探触子の場合Lジ高い精度で
欠陥の存在が推知される。ただし発信探触子(2A) 
(2B)の発信する超音波の周波数が同一である場合に
は、被検査管(1)のオーステナイト鋳鋼材の管部お工
び溶接部では結晶粒が粗大であるため粒界による散乱が
著しく欠陥の判別の困難式が伐る。
By scanning these probes in combination and comparing the 94 flaw detection data, the shape of the defect (4) in the V* inspection tube (υ)
! ! 1, the presence of a defect can be inferred with higher accuracy in the case of the conventional two-probe probe. However, the transmitting probe (2A)
When the frequencies of the ultrasonic waves emitted by (2B) are the same, the crystal grains in the welded part of the austenitic cast steel pipe of the pipe to be inspected (1) are coarse, so scattering by grain boundaries is significant. It is difficult to identify defects.

本発明ではさらに進んで%被検査管を透過あるいは反射
して送信さ九る超音波の周波数に変更を加え、すなわち
複数の周波&を用いて探傷を実施する。一般にこの種材
料を検査する場合の超音波の周波数は0.5〜5 MB
2であるので被検査管の状態によりこの範囲で適宜の複
数周波数全選択すれば工い。前記オーステナイト系遠心
鋳造管においては周波#、にLり粒界の散乱状急が大き
く異なり、また周波数によって位相が反転しているもの
もるる。従って複数の異なる周波数の波形を加えること
により粒界によるノイズ波形は平滑化されるようになり
、こt′L11:対して欠陥からの探傷波形は同波数に
よらないので、探傷データの累積比較により欠陥検出の
精度が向上することとなる。
The present invention goes further by changing the frequency of the ultrasonic waves that are transmitted through or reflected from the tube to be inspected, that is, performing flaw detection using a plurality of frequencies. Generally, the frequency of ultrasonic waves when inspecting this type of material is 0.5 to 5 MB.
2, so all you have to do is select all the appropriate multiple frequencies within this range depending on the condition of the tube to be inspected. In the austenitic centrifugally cast pipes, the scattering steepness of the grain boundaries differs greatly depending on the frequency # and L, and in some cases the phase is reversed depending on the frequency. Therefore, by adding multiple waveforms with different frequencies, the noise waveform due to grain boundaries is smoothed.On the other hand, since the flaw detection waveform from a defect does not depend on the same wave number, cumulative comparison of flaw detection data This improves the accuracy of defect detection.

多重周波数の探傷を行う場合、実際には探触子mを複数
組とし各々適宜な探傷周波数の探触子を被検査管外周面
上に配置することができる。
When performing multi-frequency flaw detection, it is actually possible to arrange a plurality of sets of probes m, each having an appropriate flaw detection frequency, on the outer circumferential surface of the tube to be inspected.

第2図け〕←)はその1例を示し、周波数X IIIH
2の発信探触子(2x)に対する透過法の受信探触子(
3X)お工び反射法の受信探触子(6X)を配置し、他
方周波数Y MHzの発信探触子(2Y)に対する透過
法の受信探触子(6Y)お工び反射法の受信探触子(6
Y)を配置する。
Figure 2]←) shows one example, and the frequency
Transmission method receiving probe (2x) for transmitting probe (2x)
(3 Tentacle (6
Place Y).

あるいは%1個の探触子で&種類の周i数を発生する探
触子を用いる配置とすることができる。リング状探触子
は多重周i1に探触子の1種で、探傷領域で音場がほぼ
同じになるよう各リングの径が決められている。
Alternatively, an arrangement can be made in which probes that generate & types of orbits with %1 probes are used. The ring-shaped probe is a type of probe with multiple circumferences i1, and the diameter of each ring is determined so that the sound field is almost the same in the flaw detection area.

さらにこtしらの探触子配置においては発受信探触子の
交替を行い、第6図の探触子(A)(綽(Q中)配置の
もとに次表の探触子対岨合せお工び探傷方向の各探傷を
図中矢印に示すよう番こ実施することができる。
Furthermore, in these probe arrangements, the transmitting and receiving probes are exchanged, and the probe pairs shown in the table below are changed based on the probe (A) (Q medium) arrangement shown in Fig. Each flaw detection in the machining flaw detection direction can be carried out as shown by the arrows in the figure.

発信探触子  AAACCD 受信探触子  BCDDBB そして各探触子対を全周にわたって回転定査させること
により遠心鋳造管の欠陥判定を一層傷度の篩いものにす
ることができる。
Transmitting probe: AAACCD Receiving probe: BCDDBB By rotating each pair of probes over the entire circumference, defects in the centrifugally cast tube can be determined to be even more sensitive.

(売切の効果) 以上の工うEこ、本発明方法に1几ば超−汁波の減衰、
散乱の大きいオーステナイト系耐熱鋳鋼遠心鋳造管の場
合に、従来の超音波探傷法で検知困難であった欠陥が高
い確度を以って検出することができる効果がある。
(Effect of selling out) If the method of the present invention is applied as described above, the attenuation of the super-succulent wave,
In the case of austenitic heat-resistant cast steel centrifugally cast pipes with large scattering, defects that are difficult to detect using conventional ultrasonic flaw detection methods can be detected with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の探触子配置の1例を示す正面図、
第2図(4は他の探触子配置の側面図。 第2図(、=0はその正面図、第5図はさらに他の探触
子配置の正面図である。 (1)・・被検査管、(2A)(2E)(2X)(2M
)・・発信探触子、C5A)C5B)C51)C51)
C5Y)C6Y)−一受信探触子、0バB) (c) 
(n)・・探触子、(4)・・欠陥。
FIG. 1 is a front view showing an example of the probe arrangement of the method of the present invention;
Figure 2 (4 is a side view of another probe arrangement. Figure 2 (, = 0 is a front view thereof, and Figure 5 is a front view of yet another probe arrangement. (1)... Tube to be inspected, (2A) (2E) (2X) (2M
)...Sending probe, C5A)C5B)C51)C51)
C5Y) C6Y) - 1 receiving probe, 0 bar B) (c)
(n)...Probe, (4)...Defect.

Claims (3)

【特許請求の範囲】[Claims] (1)被検査管の周上に少くとも4つの超音波探触子を
配置しその2探触子間において探傷領域を挾んで透過法
および反射法により発受信がなされるようにするととも
に、発受超音波の周波数の変更を可能として被検査管の
全周にわたり走査し、各個発受信探傷データの関連によ
り欠陥の検出を行なうようにしたことを特徴とする遠心
鋳造管の超音波探傷法。
(1) At least four ultrasonic probes are placed around the circumference of the tube to be inspected, and the flaw detection area is sandwiched between the two probes so that transmission and reception can be performed by the transmission method and the reflection method, and An ultrasonic flaw detection method for centrifugally cast tubes, characterized in that the frequency of emitted and received ultrasonic waves can be changed to scan the entire circumference of the tube to be inspected, and defects are detected by relating each individual emitted and received flaw detection data. .
(2)複数の発信探触子から異なる周波数の超音波を発
信して探傷を行う特許請求の範囲第1項記載の遠心鋳造
管の超音波探傷法。
(2) The ultrasonic flaw detection method for centrifugally cast tubes according to claim 1, wherein flaw detection is performed by transmitting ultrasonic waves of different frequencies from a plurality of transmitting probes.
(3)1つの発信探触子から異なる周波数の超音波を発
信して探傷を行う特許請求の範囲第1項記載の遠心鋳造
管の超音波探傷法。
(3) The ultrasonic flaw detection method for centrifugally cast tubes according to claim 1, wherein flaw detection is performed by transmitting ultrasonic waves of different frequencies from one transmitting probe.
JP14779684A 1984-07-16 1984-07-16 Ultrasonic flaw detecting method of centrifugally cast iron pipe Pending JPS6126855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14779684A JPS6126855A (en) 1984-07-16 1984-07-16 Ultrasonic flaw detecting method of centrifugally cast iron pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14779684A JPS6126855A (en) 1984-07-16 1984-07-16 Ultrasonic flaw detecting method of centrifugally cast iron pipe

Publications (1)

Publication Number Publication Date
JPS6126855A true JPS6126855A (en) 1986-02-06

Family

ID=15438398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14779684A Pending JPS6126855A (en) 1984-07-16 1984-07-16 Ultrasonic flaw detecting method of centrifugally cast iron pipe

Country Status (1)

Country Link
JP (1) JPS6126855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026745A (en) * 1988-06-23 1990-01-10 Hitachi Ltd Method and device for ultrasonic flaw detection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310484A (en) * 1976-07-16 1978-01-30 Nippon Steel Corp Surface wave and ultrasonic flaw detection
JPS54128789A (en) * 1978-03-29 1979-10-05 Kubota Ltd Method of detecting flaw of tube via ultrasonic wave
JPS5599065A (en) * 1979-01-24 1980-07-28 Sumitomo Metal Ind Ltd Ultrasonic flaw detection
JPS5899748A (en) * 1981-12-10 1983-06-14 Toshiba Corp Ultrasonic test equipment
JPS58156853A (en) * 1982-03-13 1983-09-17 Toshiba Corp Ultrasonic flaw detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310484A (en) * 1976-07-16 1978-01-30 Nippon Steel Corp Surface wave and ultrasonic flaw detection
JPS54128789A (en) * 1978-03-29 1979-10-05 Kubota Ltd Method of detecting flaw of tube via ultrasonic wave
JPS5599065A (en) * 1979-01-24 1980-07-28 Sumitomo Metal Ind Ltd Ultrasonic flaw detection
JPS5899748A (en) * 1981-12-10 1983-06-14 Toshiba Corp Ultrasonic test equipment
JPS58156853A (en) * 1982-03-13 1983-09-17 Toshiba Corp Ultrasonic flaw detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026745A (en) * 1988-06-23 1990-01-10 Hitachi Ltd Method and device for ultrasonic flaw detection

Similar Documents

Publication Publication Date Title
JP2727298B2 (en) Method for detecting corrosion fatigue cracks in boiler tubes with membrane
KR890000391B1 (en) Method of and apparatus for ultrasonic flaw detection
US4685334A (en) Method for ultrasonic detection of hydrogen damage in boiler tubes
KR100304079B1 (en) Lamb wave ultrasonic probe for crack detection and measurement in thin-walled tubing and method for inspecting defects in the tubing using the same
Liu et al. Guided waves based diagnostic imaging of circumferential cracks in small-diameter pipe
KR20010015043A (en) Method for the inspection of steam generator tubing utilizing nonaxisymetric guided waves
Kupperman et al. Ultrasonic NDE of cast stainless steel
US4760737A (en) Procedure for flaw detection in cast stainless steel
JPS6126855A (en) Ultrasonic flaw detecting method of centrifugally cast iron pipe
JP2004205430A (en) Ultrasonic inspection method
JPH058778B2 (en)
CN205506757U (en) Boiler pipe internal oxidation skin deposition measuring device
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JPS612068A (en) Ultrasonic flaw detecting method of centrifugal casting pipe
Mu et al. Long-range pipe imaging with a guided wave focal scan
JPS6126857A (en) Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe
JPS61120963A (en) Ultrasonic flaw detection
US3929005A (en) Ultrasonic inspection recess in heat exchanger and nuclear steam generator tubesheets
Alleyne et al. An introduction to long-range screening using guided waves
JPS61201159A (en) Method for ultrasonic flaw detection of austenitic stainless steel
JP3556826B2 (en) Ultrasonic flaw detection method for tubes
Bujuru NONDESTRUCTIVE INSPECTION TECHNIQUES FOR ROCKET MOTOR CASINGS
JP2770634B2 (en) Measurement method of wall thickness change of jacketed tank
Jian et al. Improved guided wave inspection of complicated components–POD boiler spines at EDF energy Heysham 1 and Hartlepool advanced gas-cooled reactor power stations
Murugaiyan Time of flight diffraction (TOFD), an advanced non-destructive testing technique for inspection of welds for heavy walled pressure vessels