JPS61266542A - Inorganic friction material - Google Patents

Inorganic friction material

Info

Publication number
JPS61266542A
JPS61266542A JP13289185A JP13289185A JPS61266542A JP S61266542 A JPS61266542 A JP S61266542A JP 13289185 A JP13289185 A JP 13289185A JP 13289185 A JP13289185 A JP 13289185A JP S61266542 A JPS61266542 A JP S61266542A
Authority
JP
Japan
Prior art keywords
friction
glass
friction material
sliding
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13289185A
Other languages
Japanese (ja)
Other versions
JPH0524214B2 (en
Inventor
Susumu Watanabe
渡邊 迪
Takashi Hanazawa
花澤 孝
Osamu Fujimura
修 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP13289185A priority Critical patent/JPS61266542A/en
Publication of JPS61266542A publication Critical patent/JPS61266542A/en
Publication of JPH0524214B2 publication Critical patent/JPH0524214B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the coefft. of friction and to improve the wear resistance by adding prescribed percentages of lubricative glass contg. P2O5, B2O3, Al2O3, etc., graphite and silica or mullite to a matrix of a Cu alloy or the like. CONSTITUTION:An inorg. friction material is obtd. by adding, by weight, 3-10% lubricative glass, 10-20% graphite and 3-20% silica or mullite to a metallic matrix of a Cu or Fe alloy. The lubricative glass contains 25-35% P2O5, 20-30% B2O3, 10-20% Al2O3, 4-10% Na2O, 4-10% Li2O, 2-6% NaF, 1-5% ZnO and 3-15% alkaline earth metallic oxide.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、有機系成分を含まないメタリック摩擦材や
サーメット摩擦材などの無機摩擦材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to inorganic friction materials such as metallic friction materials and cermet friction materials that do not contain organic components.

2つの物体が相互に接触を保って運動する場合、その接
触する面上においては滑りや転がりなどの運動が生じ、
そこに摩擦力が発生する。この摩擦力を積極的に利用す
る機械要素としてブレーキやクラッチがある。
When two objects move while maintaining contact with each other, movement such as sliding or rolling occurs on the contact surfaces,
Frictional force is generated there. Brakes and clutches are mechanical elements that actively utilize this frictional force.

ブレーキにあっては、接触して摺動する2面の運動を、
この2面間に発生する摩擦力によって静止させる役目を
果す、その結果、摺動面には摩擦熱が発生する。換言す
れば、ブレーキは摩擦力によって運動エネルギーを熱エ
ネルギーに変換する役割を演じている。
In the case of brakes, the motion of two surfaces sliding in contact is
The frictional force generated between these two surfaces serves to keep it stationary, and as a result, frictional heat is generated on the sliding surfaces. In other words, the brake plays the role of converting kinetic energy into thermal energy through frictional force.

他方、クラッチの役割は、互いに接触する2面に作用す
る摩擦力を利用し、静止する物体に運動エネルギーを付
与することにある。別の表現をとるならば、クラッチは
摩擦力によって一方の面から他方の面に運動エネルギー
を伝達する働きを持っていると言うことができる。
On the other hand, the role of a clutch is to apply kinetic energy to a stationary object by utilizing the frictional force that acts on two surfaces that are in contact with each other. Expressed in another way, a clutch can be said to have the function of transmitting kinetic energy from one surface to the other through frictional force.

このことから、ブレーキやクラッチのような機械要素に
組込まれて相対向する一方の面を構成する摩擦材料は、
当該摩擦材料の摺接面が他の面と接触しながら互いに摺
動し、そこに摩擦力を発生させる役割を演じるものであ
る。このように、摩擦材料は、摩擦熱と加圧力に耐えつ
一相千面と摺動して使用されるものであり、したがって
、比較的高くかつ一定した摩擦力或いは摩擦係数を要求
されるだけでなく、自分自身の摩耗は勿論のこと、相手
面をも極力少ない摩耗で抑えることのできる材料でなけ
ればならない。
From this, the friction material that is incorporated into mechanical elements such as brakes and clutches and constitutes one opposing surface,
The sliding surfaces of the friction material slide against each other while contacting other surfaces, and play the role of generating frictional force there. In this way, friction materials are used to withstand frictional heat and pressure while sliding on a thousand surfaces, and therefore only require a relatively high and constant frictional force or coefficient of friction. Rather, it must be a material that can minimize wear on itself as well as on the other side.

この発明は、以上述べたようなブレーキやクラッチなど
の摩擦パッド材としての使用に適した摩擦材料、特に、
メタリック摩擦材やサーメット摩擦材などの無機摩擦材
料の改良に関する。
The present invention provides a friction material suitable for use as a friction pad material for brakes, clutches, etc. as described above, and in particular,
This article relates to the improvement of inorganic friction materials such as metallic friction materials and cermet friction materials.

(従来の技術) これまでブレーキやクラッチに使用されてきた摩擦材料
の大部分は、耐熱性のあるアスベスト繊維を必須成分と
し、これに用途に応じて炭素粉末、金属粉末、金属酸化
物粉末、ゴム粉、及びナツツ殻粉末などの各種粉末を加
え、有機バインダー(多くはフェノール樹脂)で固めた
複合材料によって占められていた。しかし、ブレーキや
クラッチの軽量化、小型化及び使用条件の過酷化に直面
して、このような材料では、耐熱性からもまた耐圧強度
的にも十分社会的ニーズに応じきれなくなってきた。
(Prior art) Most of the friction materials that have been used for brakes and clutches have heat-resistant asbestos fibers as an essential ingredient, and depending on the application, carbon powder, metal powder, metal oxide powder, etc. Composite materials were made by adding various powders such as rubber powder and nut shell powder, and hardening them with organic binders (mostly phenolic resins). However, as brakes and clutches become lighter and smaller, and their usage conditions become more severe, these materials are no longer able to adequately meet social needs in terms of heat resistance and pressure resistance.

そこで、耐熱性の向上と強度の増大とをはかって、金属
成分を多く含んだセミメタリック摩擦材や、耐熱性に劣
る有機系成分を全く含まないメタリック摩擦材、或いは
金属とセラミックスとからなるサーメット摩擦材などの
無機摩擦材料が1価額的不利にも拘らず前記のアスベス
ト系摩擦材料に代ってブレーキやクラッチの一部に使用
されるようになってきた。
Therefore, in order to improve heat resistance and increase strength, we developed semi-metallic friction materials that contain a large amount of metal components, metallic friction materials that do not contain any organic components that have poor heat resistance, or cermets that are made of metal and ceramics. Inorganic friction materials such as friction materials have come to be used in parts of brakes and clutches in place of the asbestos-based friction materials, despite their disadvantage in price.

すなわち、摩擦材料が相手材と摺動されて使用される両
名の接触面上では、摩擦熱に由来する顕著な温度の上昇
がみちれる。一方、物体が接触する場合1面の凹凸に基
づき両面の接触は、全面積に均一に当たるものではない
、その一部分で行われているに過ぎない、これがいわゆ
る真実接触点であり、見掛けの接触面積よりは真実接触
面積が重要な意味をもつのである。換言すれば、摺動時
の真実接触点には高温と高圧とが作用することになる。
That is, on the contact surfaces between the friction material and the mating material, where the friction material and the mating material slide, there is a significant temperature rise due to frictional heat. On the other hand, when objects come into contact, the contact between both surfaces is not evenly applied to the entire area, but only on a portion of the surface due to the unevenness of one surface.This is the so-called true contact point, and the apparent contact area Rather, the actual contact area has an important meaning. In other words, high temperature and high pressure act on the real contact point during sliding.

このために、過酷な摺動と言われる油なしのいわゆる乾
式摩擦では耐熱性と強度が重要になる。
For this reason, heat resistance and strength are important in so-called dry friction without oil, which is said to be a harsh sliding process.

航空機や新幹線のブレーキライニングの例を挙げるまで
もなく、有機物を含有しないメタリック摩擦材やサーメ
ット摩擦材が高価にも拘らず賞用される理由がこの点に
ある。
This is the reason why metallic friction materials and cermet friction materials that do not contain organic substances are preferred despite their high prices, as is the case with brake linings for aircraft and Shinkansen trains.

そして、以上述べたメタリック摩擦材やサーメット摩擦
材は、いづれも金属(銅合金或いは鉄合金)を材料構成
の基本成分とし、これに鉛、黒鉛等の固体潤滑成分と、
シリカやアルミナのような硬質で耐熱性のあるセラミッ
ク成分とをその中に分散保持した構造をもっている。中
でもサーメット摩擦材は、特に耐熱性を高めるために金
属成分を少なくし、高融点の非金属成分を増量してこれ
に対応している。したがって、サーメット摩擦材と言っ
ても、材料組織的にはメタリック摩擦材と基本的に異な
った材料ではない。
The metallic friction materials and cermet friction materials described above all have metal (copper alloy or iron alloy) as the basic material component, and solid lubricant components such as lead and graphite.
It has a structure in which hard, heat-resistant ceramic components such as silica and alumina are dispersed and retained. Among these, cermet friction materials are designed to specifically improve heat resistance by reducing the amount of metal components and increasing the amount of non-metal components with high melting points. Therefore, even though it is called a cermet friction material, it is not fundamentally different from a metallic friction material in terms of material structure.

(発明の背景) このような認識の下に、これら材料における固体潤滑成
分の役割に注目するならば、その作用は、摺動面に介在
して相接触する2面の真実接触点の過大な増大を防止し
、真実接触面積を調整することを目的とすることがわか
る。摩擦力とは、真実接触点における2面間の凝着や、
一方の軟らかい面に対する他方の硬い面の凸部による掘
起し作用によるものであること、すなわち、「全摩擦力
=凝着摩擦力十掘起し摩擦力」であることは。
(Background of the Invention) Based on this recognition, if we pay attention to the role of the solid lubricant component in these materials, its action is due to the excessive increase in the true contact point of the two surfaces interposed in the sliding surface and in contact with each other. It can be seen that the purpose is to prevent increase and adjust the true contact area. Frictional force is the adhesion between two surfaces at the point of real contact,
This is due to the digging action of the protrusions of the other hard surface against one soft surface, that is, ``total frictional force = adhesive friction force + digging frictional force''.

広く認められた事実と言える。This can be said to be a widely recognized fact.

摩擦材料にとっては、摺動時の摩擦力の高いことも勿論
必要であるが、それにも増して摩擦力が安定し、可能な
らば一定であることが望ましいのである0例えば、ブレ
ーキ制動時の静止直前における摩擦係数の急激な増大は
ブレーキのチャタリング現象を惹起し、運動体の停止直
前における異常振動を生起させる。また、クラッチにお
ける2面の相対運動停止直前の同様な現象は、クラッチ
のシャダーや兎飛び現象を引起す原因ともなっている。
For friction materials, it is of course necessary to have a high frictional force during sliding, but it is even more desirable that the frictional force be stable and, if possible, constant. A sudden increase in the coefficient of friction immediately before this causes chattering of the brake, which causes abnormal vibrations immediately before the moving body comes to a stop. Further, a similar phenomenon immediately before the relative movement of the two surfaces of the clutch stops is also a cause of clutch shudder and rabbit-flying phenomena.

したがって、摩擦材料には、摺動速度の変化に拘らず安
定して変動の少ない摩擦係数を有することが強く望まれ
るのである。摩擦材料に含有される固体潤滑成分は、こ
のような性能改善のために添加される極めて重要な成分
なのである。
Therefore, it is strongly desired that friction materials have a coefficient of friction that is stable and has little fluctuation regardless of changes in sliding speed. The solid lubricant component contained in friction materials is an extremely important component added to improve performance.

(発明が解決しようとする問題点) 固体潤滑成分の中で最も一般的な材料は鉛と黒鉛である
。鉛の潤滑性は、軟質金属としての低剪断力と金属に対
する低溶解度特性によるものである。一方、黒鉛の潤滑
性は、その結晶の層状構造に基づく低剪断力と銅合金に
対する低溶解度特性に由来するものである。特に、鉛は
、低温からその融点近傍の300℃付近にかけて優れた
潤滑特性を示す、また、黒鉛は、低温から1,000℃
と言った高温にかけて潤滑作用を呈する。このような理
由で、殆どのメタリックやサーメット摩擦材には鉛と黒
鉛が含まれ、300℃付近迄の比較的低温の摺動には鉛
の潤滑性が性能を発揮し、それ以上の高温では、専ら黒
鉛の潤滑性に倹存するという方式がとられてきた。
(Problems to be Solved by the Invention) The most common materials among solid lubricant components are lead and graphite. The lubricity of lead is due to its low shear force as a soft metal and its low solubility properties in metals. On the other hand, the lubricity of graphite is derived from its low shear force based on its crystalline layered structure and its low solubility in copper alloys. In particular, lead exhibits excellent lubricating properties from low temperatures to around 300°C, near its melting point, and graphite exhibits excellent lubricating properties from low temperatures to 1,000°C.
It exhibits a lubricating effect at high temperatures. For this reason, most metallic and cermet friction materials contain lead and graphite, and the lubricity of lead is effective for sliding at relatively low temperatures of around 300°C, but at higher temperatures. , a method has been adopted that relies exclusively on the lubricity of graphite.

なお、最近では固体潤滑剤に関する技術が進歩し、多く
の優れた材料が開発されてきた。特に、MoS2やWS
eなどは、油で潤滑できない潤滑部分や過酷な摺動部分
に使われ、したがって、摩擦材料にも、これらの固体潤
滑剤が応用されて好成績を収めているが、これらの固体
潤滑剤は価格の点で不利であるばかりか、摩擦材料の製
造過程で材料の主要構成成分である金属成分と反応(例
えば銅合金の場合に、2 Cu+ MoS 2−h 2
 CuS + No)するために潤滑特性を十分発揮し
難く、かつ、金属マトリックスを脆化させて摩擦材料の
強度を劣化させるという欠点もあった。
Note that technology regarding solid lubricants has recently progressed, and many excellent materials have been developed. In particular, MoS2 and WS
Solid lubricants such as e are used in lubricated parts that cannot be lubricated with oil or in harsh sliding parts.Therefore, these solid lubricants are also applied to friction materials and have achieved good results, but these solid lubricants are expensive. Not only is it disadvantageous in terms of friction material manufacturing process, it also reacts with the metal component that is the main component of the material (for example, in the case of copper alloy, 2 Cu+ MoS 2-h 2
CuS + No), it is difficult to exhibit sufficient lubricating properties, and it also has the drawback of embrittling the metal matrix and deteriorating the strength of the friction material.

そうかといって、過酷な摺動条件に曝されて使用される
耐熱性のサーメット摩擦材にあっては、鉛を含有した場
合に300℃以上の高温では含有された鉛が液化し、金
属マトリックスの脆化を招いて摩擦材料の強度を低下さ
せる欠点があった。
However, in the case of heat-resistant cermet friction materials that are used under harsh sliding conditions, if they contain lead, the lead will liquefy at high temperatures of 300°C or higher, causing the metal matrix to liquefy. This has the disadvantage of causing embrittlement and reducing the strength of the friction material.

このような理由から、鉛に代りかつ鉛に劣もない潤滑作
用を、低温から300℃以上の高温に至るまで保持する
ような固体潤滑剤を求めて種々の試みが行われてきた。
For these reasons, various attempts have been made to find a solid lubricant that can replace lead and maintain a lubricating effect comparable to lead from low temperatures to high temperatures of 300° C. or higher.

 pboが鉛に劣らない潤滑時    ・ “性を30
0℃以上の高温でも有する点に着目して、これを含有さ
せる試みも企てられてきた。しかし、pboも金属成分
と反応(PbO+ 2 Cu −Pb+Cu20) シ
、その目的を達するのは困難であった。pboの反応性
を防止するためにPbOに5i02を溶かし込み、融点
の低下を図ってPbO−SiO2系の低融点のガラスと
して添加する試みも行われているが、思わしい成果は得
られていない。
When lubrication is as good as lead, PBO is 30%
Attempts have also been made to incorporate it, focusing on its ability to survive at high temperatures of 0° C. or higher. However, since pbo also reacts with metal components (PbO+ 2 Cu -Pb+Cu20), it was difficult to achieve this goal. In order to prevent the reactivity of pbo, attempts have been made to dissolve 5i02 into PbO and add it as a low melting point PbO-SiO2 glass in an attempt to lower the melting point, but no desired results have been obtained. .

上記PbO−SiO□系ガラスを固体潤滑成分として使
用する試みは、その後1種々のガラスに展開されている
。金属の熱間加工用のガラス潤滑剤の先例に倣って、多
くのガラスを利用して行われてきた。しかし、ガラスは
、低温では極めて硬い粒子として作用するため、室温か
ら300℃付近にかけて実用できる摩擦材料用の低温潤
滑性を備え、十分鉛に代替できる固体潤滑剤は現在のと
ころ開発されていない。
Attempts to use the above-mentioned PbO--SiO□ type glass as a solid lubricant component have since been developed into one variety of glasses. Following the precedent of glass lubricants for hot working of metals, many types of glass have been used. However, since glass acts as extremely hard particles at low temperatures, no solid lubricant has been developed so far that has low-temperature lubricity for friction materials that can be used in practical applications from room temperature to around 300° C., and that can sufficiently replace lead.

(問題点を解決するための手段) この発明は、メタリック摩擦材やサーメット摩擦材など
の無機摩擦材料における潤滑成分の重要性に注目して、
その改善を図ることを目的とする。すなわち、穏やかな
摺動条件から高温、高圧の出現する過酷な摺動条件と広
い使用条件に耐えて、安定した摩擦係数と優れた耐摩耗
性とを有する無機摩擦材料を提供することを目的とする
(Means for Solving the Problems) This invention focuses on the importance of lubricating components in inorganic friction materials such as metallic friction materials and cermet friction materials, and
The purpose is to improve this. In other words, the purpose is to provide an inorganic friction material that can withstand harsh sliding conditions ranging from mild sliding conditions to high temperatures and pressures, and a wide range of usage conditions, and has a stable coefficient of friction and excellent wear resistance. do.

(構成) この目的達成のために、この発明にあっては、銅合金或
いは鉄合金をマトリックスとし、これに重量パーセント
で黒鉛粉末を10〜20%、従来の材料において含有さ
れる鉛の代りに後述する組織を備えた燐酸ガラスを3〜
lO%含有させ、さらに、相手材の面の掘起こし効果を
狙った増摩擦性物質としてムライト(3AhO3・2S
i02)或いはシリカを3〜20%含有させることによ
り、摺動面に好ましい潤滑作用を呈する低剪断性物質を
形成させ、低温から高温、低速から高速、低面圧から高
面圧と、広い範囲の摺動条件に亘って安定した摩擦係数
と優れた耐摩耗性とを摩擦材料に与えるようにしたので
ある。
(Structure) In order to achieve this object, the present invention uses a copper alloy or iron alloy as a matrix, and 10 to 20% by weight of graphite powder is added to the matrix in place of lead contained in conventional materials. Phosphate glass with the structure described below is
In addition, mullite (3AhO3・2S
i02) Alternatively, by containing 3 to 20% silica, a low shearing material that exhibits a favorable lubricating effect on sliding surfaces is formed, allowing a wide range of applications from low to high temperatures, low to high speeds, and low to high surface pressures. The friction material is provided with a stable coefficient of friction and excellent wear resistance over various sliding conditions.

(発明の作用) すなわち、この発明に用いた燐酸ガラスは、NaFを添
加したためにガラスの軟化温度が低い。
(Action of the Invention) That is, the phosphoric acid glass used in the present invention has a low softening temperature due to the addition of NaF.

しかも、含有するLi20の作用により温度が上昇して
600℃付近に達すると、結晶の析出が進行するために
昇温に伴うガラスの粘度の急激な低下が阻止される。こ
のような粘度特性を備えた燐酸ガラスの潤滑作用によっ
て、300℃付近から著しくなる鉛に由来するメタリッ
ク摩擦材やサーメット摩擦材などの無機摩擦材料の摩擦
係数の低下と摩耗の増大を防止することが可能になる。
Moreover, when the temperature rises to around 600° C. due to the action of Li20 contained, crystal precipitation progresses, thereby preventing the viscosity of the glass from rapidly decreasing as the temperature rises. The lubricating action of phosphoric acid glass with such viscosity characteristics prevents the decrease in the coefficient of friction and increase in wear of inorganic friction materials such as lead-derived metallic friction materials and cermet friction materials, which become noticeable at around 300°C. becomes possible.

さらに、摩擦熱のために摺動面温度が上昇して500〜
600℃を越えると、摩擦材料及び相手材料とも酸化が
顕著となる。その結果、摩擦材料からは組成に応じて酸
化銅、酸化錫或いは酸化鉄が、相手材料からは酸化鉄が
それぞれの摺動面に形成される。
Furthermore, due to frictional heat, the temperature of the sliding surface increases to 500~
When the temperature exceeds 600°C, oxidation of both the friction material and the mating material becomes significant. As a result, copper oxide, tin oxide, or iron oxide is formed from the friction material depending on the composition, and iron oxide from the mating material is formed on the respective sliding surfaces.

これらの金属酸化物は、摩擦材料から摩耗分離した黒鉛
やセラミックスの粉砕物と共に、前記の燐酸ガラスの軟
化物と混合かつ練り合わされ、低剪断性の混合物となっ
て摺動面に介在する。この混合物は、低剪断性のために
潤滑作用を呈し、摺動面における真実接触面積を調整し
て摩擦係数の一定化に役立つことになる。
These metal oxides are mixed and kneaded with the softened phosphoric acid glass, together with the crushed graphite and ceramics that have been abraded and separated from the friction material, to form a low-shear mixture that is present on the sliding surface. This mixture exhibits a lubricating effect due to its low shear properties, and adjusts the true contact area on the sliding surface, thereby helping to keep the coefficient of friction constant.

摺動条件がさらに過酷化して摺動面温度が1.000℃
にも達すると、前記混合物の形成を待つまでもなく摩擦
材料と相手材の酸化はさらに進み、多量の酸化鉄、酸化
銅、酸化錫などが形成される。これらの金属酸化物は摺
動面で高温と高圧にさらされ、流動性をもった金属酸化
物混合物となって、摩擦材料の成分として含まれる黒鉛
やセラミックスの摩耗した粉砕物をもその中に取込み、
多量に摺動面に存在することになる。このことは、摺動
面が低剪断性の流動性物質によって広く覆われることを
意味し、結果的には、潤滑過剰となって摩擦係数の低下
は著しくなるが、しかし、この発明の摩擦材料では、前
記特性を備えた燐酸ガラスを潤滑成分として含むために
このような潤滑過剰の現象は生起しない、それは、50
0〜600℃から形成される燐酸ガラスを含有する低剪
断性混合物が摺動面に存在してこれを薄く覆うため、摩
擦材料と相手材の両方の酸化が防止されて酸化鉄、酸化
鋼、酸化錫などの生成量が少なくなり、これにより、前
記の高温になればなる程増加する流動性の金属酸化物混
合物の量が少なくなるからである。
The sliding conditions have become even more severe, and the sliding surface temperature has reached 1.000℃.
When this temperature is reached, the oxidation of the friction material and the mating material further progresses without waiting for the formation of the mixture, and a large amount of iron oxide, copper oxide, tin oxide, etc. is formed. These metal oxides are exposed to high temperatures and pressures on the sliding surfaces, becoming a fluid metal oxide mixture that also contains worn-out crushed graphite and ceramics, which are components of friction materials. Intake,
A large amount of it will be present on the sliding surface. This means that the sliding surface is extensively covered with a low shear fluid material, resulting in excessive lubrication and a significant decrease in the coefficient of friction. However, the friction material of the present invention In this case, this phenomenon of excessive lubrication does not occur because the phosphoric acid glass with the above characteristics is included as a lubricating component.
A low shear mixture containing phosphoric acid glass formed at temperatures of 0 to 600°C exists on the sliding surface and thinly covers it, preventing the oxidation of both the friction material and the mating material, resulting in the formation of iron oxide, oxidized steel, This is because the amount of produced tin oxide and the like decreases, and as a result, the amount of the fluid metal oxide mixture, which increases as the temperature increases, decreases.

さらに、この発明の燐酸ガラスは、その中に存在するL
i20の作用によって600℃付近からガラスの結晶化
が進むため、摺動面に形成された低剪断性の混合物は温
度が上昇すると却って粘度を増し、剪断力の顕著な低下
がない、その結果、この発明の特徴とする燐酸ガラスの
不存在の場合に形成される酸化鉄、酸化銅、酸化錫など
の金属酸化物を主体とした混合物のように、多量にしか
もそれに加えて全摺動面に被覆されるような過剰潤滑の
状態は出現しない、すなわち、好ましい割合の真実接触
面積が確保されて摩擦力の低下がないことになる。換言
すれば、過酷な摺動条件にさらされて摺動面が1,00
0℃前後の高温に達しても、jI!擦係数の低下を防止
することが可能になるのである。
Furthermore, the phosphoric acid glass of this invention has L present therein.
Due to the action of i20, glass crystallization progresses from around 600°C, so the low shear mixture formed on the sliding surface increases in viscosity as the temperature rises, and there is no significant decrease in shear force.As a result, A mixture mainly composed of metal oxides such as iron oxide, copper oxide, and tin oxide, which is formed in the absence of phosphoric acid glass, which is a feature of this invention, is used in large amounts and in addition to all sliding surfaces. A state of excessive lubrication such as coating does not occur, that is, a desirable proportion of the actual contact area is ensured and there is no reduction in frictional force. In other words, the sliding surface is exposed to harsh sliding conditions and
Even if the temperature reaches around 0℃, jI! This makes it possible to prevent a decrease in the coefficient of friction.

(発明の実施例) 以下、実施例を説明するに当って、まづ、この発明によ
る摩擦材料の詳細と組成範囲の選定理由とについて述べ
る。
(Embodiments of the Invention) In describing the embodiments below, details of the friction material according to the present invention and reasons for selecting the composition range will be described first.

前のも述べたように1発明者らは、銅合金或いは鉄合金
をマトリックスとし、これに重量パーセントで10〜2
0%の黒鉛粉末と、後述する組織を備えた燐酸ガラスを
3〜10%含有させ、さらに、相手材の面の掘起こし効
果を狙った増摩擦性物質としてムライト(3AI2o3
・2Si02 )或いはシリカを3〜20%含有させる
ことにより、摺動面に好ましい潤滑作用を呈する低剪断
性物質を形成させ、低温から高温、低速から高速、低面
圧から高面圧と、広い範囲の摺動条件に亘って安定した
摩擦係数と優れた耐摩耗性とを摩擦材料に与えることに
成功したのである。
As mentioned above, the inventors used copper alloy or iron alloy as a matrix, and added 10 to 2% by weight to this matrix.
It contains 0% graphite powder and 3 to 10% phosphoric acid glass with the structure described below, and also contains mullite (3AI2o3
・2Si02) or by containing 3 to 20% of silica, it forms a low shear material that exhibits a favorable lubricating effect on sliding surfaces, allowing it to be used in a wide range of applications, from low to high temperatures, from low speeds to high speeds, and from low surface pressures to high surface pressures. They succeeded in providing a friction material with a stable coefficient of friction and excellent wear resistance over a wide range of sliding conditions.

すなわち、黒鉛は、鉛を含有しない無機摩擦材料におい
て極めて重要な潤滑成分であって、この黒鉛を10〜2
0%含有させることにより、静止状態の低温から600
℃付近の潤滑は黒鉛によってその殆どが分担されるばか
りか、それ以上の温度では後述する燐酸ガラスと協同し
て潤滑作用を呈する、なお、10%以下では潤滑効果が
不十分となるし、また、20%以上では摩擦材料自体の
強度が落ち、摩擦係数が低下すると共に耐摩耗性も劣化
する。
That is, graphite is an extremely important lubricating component in inorganic friction materials that do not contain lead.
By containing 0%, it is possible to reduce the temperature from the low temperature of the static state to 600%.
Not only is most of the lubrication at temperatures around ℃ covered by graphite, but at higher temperatures it also exhibits a lubricating effect in cooperation with phosphoric acid glass, which will be described later.If it is less than 10%, the lubricating effect will be insufficient; , 20% or more, the strength of the friction material itself decreases, the friction coefficient decreases, and the wear resistance also deteriorates.

析出性の燐酸ガラスは、400℃付近から軟化して低剪
断性の潤滑成分として作用し、特に、600℃付近から
1,000℃にかけて黒鉛との協同作用により、好まし
い潤滑性能を保持しつづける役割を演じる。従来、添加
されたガラス性の潤滑成分は、軟化点付近から潤滑作用
が顕著となるとはいえ、その反面、温度の上昇に伴って
粘度を減じることから、これが摺動面に介在して好まし
い潤滑作用を保持することが不可能であった。
Precipitable phosphoric acid glass softens from around 400°C and acts as a low-shear lubricating component, and in particular, from around 600°C to 1,000°C, it plays a role in maintaining favorable lubrication performance through cooperative action with graphite. perform. Conventionally, added glassy lubricating components have a pronounced lubricating effect near their softening point, but on the other hand, their viscosity decreases as the temperature rises, so they intervene on sliding surfaces and provide favorable lubrication. It was impossible to keep it working.

これにより、特に、高温では摩擦係数が低下し、摩耗も
増大するなどの欠点があった0以上の欠点を取除いて好
ましい潤滑作用を呈させるために、この発明においては
、P20s * B 203及び’   Al2O,の
3成分によってガラスを構成し、これにNa20を加え
て軟化温度を下げ、さらに、NaFの添加によってガラ
スの流動性の改善を図り、400℃付近の低温から潤滑
作用を呈しさせることが可能になった。また、 Li2
0の添加によって600℃付近から結晶を析出させ、昇
温に伴うガラスの粘度の低下を防ぎ、1,000℃もの
高温にかけての潤滑作用を持続させることに成功した。
In this invention, in order to eliminate the disadvantages of 0 or more, which had disadvantages such as a decrease in the coefficient of friction and an increase in wear at high temperatures, and to exhibit a preferable lubricating effect, in this invention, P20s * B 203 and ' The glass is made up of three components: Al2O, and Na20 is added to lower the softening temperature, and NaF is added to improve the fluidity of the glass so that it exhibits a lubricating effect from low temperatures around 400°C. is now possible. Also, Li2
By adding 0, crystals were precipitated from around 600°C, preventing the viscosity of the glass from decreasing as the temperature rose, and successfully sustaining the lubricating effect at temperatures as high as 1,000°C.

上記高温潤滑性のガラス成分としては1重量パーセント
でP2O5を25〜35%、B2O3を20〜30%、
Al2o3を10〜20%、 Na20を4〜10%、
 Li20t−4〜10%、 NaFを2〜6%、 Z
nOを 1〜5%、アルカリ土類金属酸化物の1種類以
上を3〜15%含有するものである。
The above-mentioned high temperature lubricity glass components include 25 to 35% P2O5 and 20 to 30% B2O3 at 1% by weight;
Al2o3 10-20%, Na20 4-10%,
Li20t-4~10%, NaF 2~6%, Z
It contains 1 to 5% nO and 3 to 15% of one or more alkaline earth metal oxides.

上記成分において、P2O5はガラスの網目形成成分で
あって、25%以下では軟化温度が高くなり、35%を
越えると耐水性が劣化して実用性を失う、B2O3もガ
ラスの網目形成成分であって、20%以下では軟化温度
が高くなり、30%を越えると耐水性が低下する。Al
2o3もガラスの網目形成成分であって、10%以下で
は耐水性が不足し、20%以上では軟化温度が上昇して
流動性が低下する0以上の成分によってSiO2を含有
しない低融点のガラスが構成される。
In the above components, P2O5 is a glass network forming component, and if it is less than 25%, the softening temperature becomes high, and if it exceeds 35%, water resistance deteriorates and practicality is lost. B2O3 is also a glass network forming component. If it is less than 20%, the softening temperature becomes high, and if it exceeds 30%, the water resistance decreases. Al
2O3 is also a network-forming component of glass, and if it is less than 10%, water resistance is insufficient, and if it is more than 20%, the softening temperature increases and fluidity decreases. configured.

Na20添加の目的は、軟化温度を下げてガラスの流動
性を増し、金属面に対する濡れ性を増進して潤滑性を改
善するが、4%以下では添加効果がなく、10%を越え
ると耐水性が劣化する。 Li20は、燐酸ガラスの結
晶化を促進する成分であって、4%以下ではその効果が
ないが、10%を越えるとガラスの硬度を増して400
℃以下の低温において相手材を損傷して好ましくない、
また、NaFは、ガラスの流動性を改善する役割を演じ
るが、2%以下では添加効果がなく、6%を越えると耐
水性が低下する。アルカリ土類金属酸化物としてはMg
O、CaO、BaOが好ましく、ガラス化温度範囲を広
げる作用をもつが、3%以下では耐水性が劣化し、15
%を越えると軟化温度が上昇して潤滑作用が低下する。
The purpose of adding Na20 is to lower the softening temperature, increase the fluidity of the glass, improve wettability to metal surfaces, and improve lubricity, but if it is less than 4%, it has no effect, and if it exceeds 10%, it will reduce water resistance. deteriorates. Li20 is a component that promotes crystallization of phosphoric acid glass, and if it is less than 4%, it has no effect, but if it exceeds 10%, it increases the hardness of the glass and increases the hardness of the glass.
It is undesirable to damage the mating material at low temperatures below ℃.
Further, NaF plays a role in improving the fluidity of glass, but if it is less than 2%, it has no effect, and if it exceeds 6%, the water resistance decreases. Mg as an alkaline earth metal oxide
O, CaO, and BaO are preferable and have the effect of widening the vitrification temperature range, but if it is less than 3%, water resistance deteriorates and 15
%, the softening temperature increases and the lubricating effect decreases.

 ZnOは、燐酸ガラス中のB203F&分を安定化す
るが、1%以下では添加効果がなく、5%以上では軟化
温度が上昇して流動性が下がる。
ZnO stabilizes B203F& in phosphoric acid glass, but if it is less than 1%, there is no effect of addition, and if it is more than 5%, the softening temperature increases and fluidity decreases.

ムライト或いはシリカの役割は、摩擦材料による相手面
掘起こし作用による摩擦係数の増大と耐熱性の改善とに
貢献する。3%以下では添加効果が乏しく、20%以上
では相手材に対する攻撃性を高め、相手材摩耗を増大さ
せて好ましくない。
The role of mullite or silica is to contribute to an increase in the coefficient of friction and an improvement in heat resistance due to the digging action of the friction material on the opposing surface. If it is less than 3%, the effect of addition is poor, and if it is more than 20%, it increases the aggressiveness toward the mating material and increases the wear of the mating material, which is not preferable.

実施例1 200メツシユ以下の銅粉、200メツシユ以下の錫粉
、100メツシユ以下の黒鉛粉末。
Example 1 Copper powder of 200 mesh or less, tin powder of 200 mesh or less, graphite powder of 100 mesh or less.

lOOメツシュ以下の鉛粉末、100メツシユ以下のム
ライト粉末、200メツシユ以下のシリカ粉末、325
メツシユ以下のモリブデン粉末、及び150メツシユ以
下の各種潤滑性ガラス粉末を次頁表1に示す割合に混合
し、いづれも3 t/cm2の圧力を加えて成型した後
、H2ガス雰囲気中で最高温度800℃に30分間加熱
保持し、次で、これを室温に冷却した後、6 t/cm
2の加圧力で再加圧してそれぞれの摩擦材料を製造した
Lead powder of 100 mesh or less, mullite powder of 100 mesh or less, silica powder of 200 mesh or less, 325
Molybdenum powder with a mesh size or less and various lubricating glass powders with a mesh size or less of 150 meshes were mixed in the proportions shown in Table 1 on the next page, molded under a pressure of 3 t/cm2, and then molded at the maximum temperature in an H2 gas atmosphere. Heated and held at 800°C for 30 minutes, then cooled to room temperature, and then heated to 6 t/cm
Each friction material was manufactured by repressurizing with a pressure of 2.

同表1に示した比較例1は、この発明で用いられる潤滑
性の燐酸ガラス(G−3)の代りに鉛が用いられたクラ
ッチ用摩擦材料の代表例の組成であり、また、比較例2
は、鉛添加による高温摩擦性能の劣化を防いだ重負荷の
クラッチ用摩擦材料として広く使用されている組成であ
る。それに対し、比較例3及び4は、この発明に至るま
での試作品の組成で、これらはいづれも発明品と同一条
件で製造した。また、この発明で使用した潤滑性のガラ
ス成分G−3、及び比較例として使用した他の潤滑性ガ
ラス成分組成表を21頁の表2に示した0表2中の比較
例1は、PbO−9f02ガラスであり、比較例2と3
は、この発明に至るまでの試作ガラスである。
Comparative Example 1 shown in Table 1 is a typical composition of a friction material for a clutch in which lead is used instead of lubricating phosphoric acid glass (G-3) used in the present invention. 2
is a composition widely used as a friction material for heavy-load clutches that prevents deterioration of high-temperature friction performance due to lead addition. On the other hand, Comparative Examples 3 and 4 have the compositions of prototype products up to the present invention, and both were manufactured under the same conditions as the invented product. In addition, the lubricating glass component G-3 used in this invention and the other lubricating glass component composition table used as a comparative example are shown in Table 2 on page 21. Comparative Example 1 in Table 2 is PbO -9f02 glass, Comparative Examples 2 and 3
This is the prototype glass that was produced before this invention.

実施例で得られた試料について、鋳鉄(FC−25材)
製ディスクを相手材とし、摺動速度20m/s 、荷重
7 、5 kg/am2.摺動温度200℃の条件で2
5秒間摺動させ、5秒間摺動を休止させる一連の操作を
50回反復する摩擦試験を行い、その性能を比較した結
果を18頁の表3に示した。
Regarding the samples obtained in the examples, cast iron (FC-25 material)
A manufactured disc was used as the mating material, the sliding speed was 20 m/s, the load was 7, and the load was 5 kg/am2. 2 under the condition of sliding temperature 200℃
A friction test was conducted in which a series of operations of sliding for 5 seconds and stopping the sliding for 5 seconds was repeated 50 times, and the performance comparison results are shown in Table 3 on page 18.

この表3から明らかなように、この発明による摩擦材料
は、潤滑が適度に行われているために摩擦係数が0.4
8と高いにも拘らず安定した値を示し、摩耗は、摩擦材
料自身と相手材ともに少ない。
As is clear from Table 3, the friction material according to the present invention has a friction coefficient of 0.4 due to appropriate lubrication.
Although it is high at 8, it shows a stable value, and the wear of both the friction material itself and the mating material is low.

これに対し、比較例1の摩擦材料は、鉛の溶解のため摩
擦係数が低下し、相手材への摩擦材料の凝着もあって摩
耗も比較的多く、また、比較例2の摩擦材料は、無鉛の
ため耐熱性がありかつ摩擦係数も高いが、潤滑作用が不
足し、摩擦係数の変動が激しく、相手材の摩耗も多い、
さらに、比較例3の摩擦材料は、潤滑成分として加えた
鉛量を減らして4%としたため、低温域での鉛による潤
滑が不十分となった。また、300℃を越えると鉛の溶
解のため摩擦材料の強度が低下した。そのため、摩擦材
料の摩耗も増え、摩擦係数は低下し、その変動も激しく
なった。すなわち、この材料に加えたPbO−9i02
ガラスの潤滑作用は期待した効果を示さなかった。比較
例4の摩擦材料は、この発明に達する直前の試作組成で
、燐酸ガラスの添加による潤滑性能改善の効果はかなり
認められ、摩擦係数も0.45と比較的高く、安定した
値が得られたが、相手材に対する攻撃性が若干残り(ス
クラッチの発生)、摩耗量も予想以上に多かった。
On the other hand, the friction material of Comparative Example 1 has a lower friction coefficient due to the dissolution of lead, and also has relatively high wear due to adhesion of the friction material to the mating material. Since it is lead-free, it is heat resistant and has a high friction coefficient, but it lacks lubrication, the friction coefficient fluctuates sharply, and the mating material wears frequently.
Furthermore, in the friction material of Comparative Example 3, the amount of lead added as a lubricating component was reduced to 4%, so lubrication by lead was insufficient in the low temperature range. Furthermore, when the temperature exceeded 300°C, the strength of the friction material decreased due to dissolution of lead. As a result, wear of the friction material increased, the coefficient of friction decreased, and its fluctuations became more severe. That is, PbO-9i02 added to this material
The lubricating action of glass did not have the expected effect. The friction material of Comparative Example 4 had a prototype composition just before reaching the present invention, and the effect of improving lubrication performance by adding phosphoric acid glass was considerably recognized, and the coefficient of friction was relatively high at 0.45, and a stable value was obtained. However, the material remained slightly aggressive toward the mating material (occurrence of scratches), and the amount of wear was greater than expected.

実施例2 200メツシユ以下の銅粉、20Gメツシユ以下の錫粉
、150メツシユ以下の鉄粉、100メツシユ以下の黒
鉛粉末、100メツシユ以下の鉛粉末、325メツシユ
以下のモリブデン粉末、及び前記21頁の表2に示した
組成をもつ150メツシユ以下の各種潤滑性ガラス粉末
を次頁の表4に示す割合に混合し、いづれも3 t/c
m2の圧力を加えて成型した後、H2ガス雰囲気中で最
高温度t、o o o℃に30分間加熱保持し、次で、
室温まで冷却した後に6 t/cm2の加圧力で再加圧
し、この発明による摩擦材料を製造した。
Example 2 Copper powder of 200 meshes or less, tin powder of 20G meshes or less, iron powder of 150 meshes or less, graphite powder of 100 meshes or less, lead powder of 100 meshes or less, molybdenum powder of 325 meshes or less, and the Various lubricating glass powders of 150 mesh or less having the composition shown in Table 2 are mixed in the proportions shown in Table 4 on the next page, and each powder is 3 t/c.
After molding under a pressure of m2, heat and hold for 30 minutes at a maximum temperature of t, o o o °C in an H2 gas atmosphere, and then:
After cooling to room temperature, the material was pressurized again with a pressure of 6 t/cm2 to produce a friction material according to the present invention.

同24頁の表4に示した比較例1は、この発明の摩擦材
料において用いられた潤滑性の燐酸ガラスG−3の代り
に鉛が用いられたディスクブレーキパッド用摩擦材料の
例であり、比較例2は、鉛を含有しない耐熱性の重負荷
クラッチ用の摩擦材料として使用されているものである
。また、比較量3と4は、この発明に至るまでの試作品
組成であり、これらはいづれも、この発明による摩擦材
料と同一条件で製造した。
Comparative Example 1 shown in Table 4 on page 24 is an example of a friction material for a disc brake pad in which lead was used in place of the lubricating phosphoric acid glass G-3 used in the friction material of the present invention. Comparative Example 2 is a heat-resistant friction material for a heavy-load clutch that does not contain lead. Comparative amounts 3 and 4 are prototype compositions developed up to the present invention, and both were manufactured under the same conditions as the friction material according to the present invention.

この実施例で得られた試料については、鋳鉄製(FC−
25材)ディスクを相手材とし、実施例1で行った試験
と同一条件の下で摩擦試験を行い、その性能を評価した
結果を前頁の表5に示す、比較例1は、鉛潤滑による低
温摩擦の安定を狙った製品であるが、摺動面温度が30
0℃を越えると前記実施例1における比較例1の鉛潤滑
の場合と同様に摩擦係数が低下し、相手材に対する摩擦
材料の転移が認められた。比較例2は、鉛を除去して黒
鉛のみの潤滑とした耐熱性の優れた摩擦材料である。但
し、潤滑成分が不足するために相手材の摩耗が多く、摩
擦係数は比較的変動が多かった。比較例3は、PbO−
3i02系のガラスによる潤滑性能の改善を図った試作
品であるが、期待した効果が得られず、初期摩耗の段階
で相手材に対する攻撃性がみられ、その結果、相手材に
スクラッチ痕が発生し、摩擦材料の摩耗も多くなった。
The samples obtained in this example were made of cast iron (FC-
25 material) A friction test was conducted using a disc as the mating material under the same conditions as the test conducted in Example 1, and the performance evaluation results are shown in Table 5 on the previous page. This product aims to stabilize low-temperature friction, but the sliding surface temperature is 30
When the temperature exceeds 0°C, the friction coefficient decreases as in the case of lead lubrication in Comparative Example 1 in Example 1, and transfer of the friction material to the mating material was observed. Comparative Example 2 is a friction material with excellent heat resistance in which lead has been removed and lubricant is only graphite. However, due to the lack of lubricating components, there was a lot of wear on the mating material, and the friction coefficient fluctuated relatively frequently. Comparative example 3 is PbO-
This prototype was designed to improve the lubrication performance using 3i02 glass, but it did not have the expected effect and showed aggressiveness towards the mating material during the initial wear stage, resulting in scratch marks on the mating material. However, the wear of the friction material also increased.

比較例4は、試作段階にあった燐酸ガラスG−2により
潤滑性能の向上を図ったもので、摩擦係数の点でかなり
改善効果はあったが、まだ潤滑が不足して摩耗も比較的
多く、相手材にスクラッチの発生がみられた。それに対
し、これらの比較例に比べてこの発明による摩擦材料は
、燐酸ガラスG−3による潤滑効果が顕著であって高い
摩擦係数が得られ、摩耗の点でも摩擦材料、相手材とも
減少した。
Comparative Example 4 was an attempt to improve the lubrication performance using phosphoric acid glass G-2, which was in the prototype stage, and although there was a considerable improvement effect in terms of the friction coefficient, there was still insufficient lubrication and relatively high wear. , scratches were observed on the mating material. On the other hand, compared to these comparative examples, the friction material according to the present invention had a remarkable lubricating effect due to phosphoric acid glass G-3, and a high coefficient of friction was obtained, and the wear of both the friction material and the mating material was reduced.

(発明の効果) 以上のように、この発明によれば、穏やかな摺動条件か
ら高温、高圧の出現する過酷な摺動条件と広い使用条件
に亘り、安定した摩擦係数と優れた耐摩耗性とを備えた
摺動摩擦材料を提供することが可能となったのである。
(Effects of the Invention) As described above, according to the present invention, a stable coefficient of friction and excellent wear resistance can be achieved over a wide range of usage conditions, from gentle sliding conditions to harsh sliding conditions with high temperatures and pressures. It has now become possible to provide a sliding friction material having the following features.

Claims (1)

【特許請求の範囲】[Claims] 金属マトリックスが銅合金または鉄合金からなるメタリ
ック摩擦材或いはサーメット摩擦材において、重量パー
セント表示でP_2O_5が25〜35%、B_2O_
3が20〜30%、Al_2O_3が10〜20%、N
a_2Oが4〜10%、Li_2Oが4〜10%、Na
Fが2〜6%、ZnOが1〜5%、アルカリ土類金属酸
化物の1種以上が3〜15%の組成からなる潤滑性ガラ
スを3〜10%、黒鉛を10〜20%、シリカ或いはム
ライトを3〜20%含有させたことを特徴とする無機摩
擦材料。
In a metallic friction material or a cermet friction material in which the metal matrix is made of a copper alloy or an iron alloy, P_2O_5 is 25 to 35% in weight percentage, B_2O_
3 is 20-30%, Al_2O_3 is 10-20%, N
a_2O 4-10%, Li_2O 4-10%, Na
Lubricating glass with a composition of 2 to 6% F, 1 to 5% ZnO, 3 to 15% of one or more alkaline earth metal oxides, 3 to 10% graphite, 10 to 20% graphite, and silica. Alternatively, an inorganic friction material characterized by containing 3 to 20% of mullite.
JP13289185A 1985-05-20 1985-05-20 Inorganic friction material Granted JPS61266542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13289185A JPS61266542A (en) 1985-05-20 1985-05-20 Inorganic friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13289185A JPS61266542A (en) 1985-05-20 1985-05-20 Inorganic friction material

Publications (2)

Publication Number Publication Date
JPS61266542A true JPS61266542A (en) 1986-11-26
JPH0524214B2 JPH0524214B2 (en) 1993-04-07

Family

ID=15091968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13289185A Granted JPS61266542A (en) 1985-05-20 1985-05-20 Inorganic friction material

Country Status (1)

Country Link
JP (1) JPS61266542A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112609A (en) * 1995-10-20 1997-05-02 Tokyo Yogyo Co Ltd Brake lining material for crane motor
JPH09112610A (en) * 1995-10-20 1997-05-02 Tokyo Yogyo Co Ltd Brake lining material for tilting motor
JPH09112611A (en) * 1995-10-20 1997-05-02 Tokyo Yogyo Co Ltd Brake lining material for conveyor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586408U (en) * 1992-05-08 1993-11-22 ユキワ精工株式会社 Collet chuck holder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09112609A (en) * 1995-10-20 1997-05-02 Tokyo Yogyo Co Ltd Brake lining material for crane motor
JPH09112610A (en) * 1995-10-20 1997-05-02 Tokyo Yogyo Co Ltd Brake lining material for tilting motor
JPH09112611A (en) * 1995-10-20 1997-05-02 Tokyo Yogyo Co Ltd Brake lining material for conveyor

Also Published As

Publication number Publication date
JPH0524214B2 (en) 1993-04-07

Similar Documents

Publication Publication Date Title
JP5716494B2 (en) Sintered friction material for high-speed railway
CN107523716B (en) Sintered friction material for friction linings
EP1291542B1 (en) Non-asbestos-based friction materials
JP5189333B2 (en) Amorphous composite alkali metal titanate composition and friction material
CN101823856A (en) Copper-free ceramic friction material with little falling ash and preparation method thereof
WO2016190403A1 (en) Sintered friction material for high speed railway vehicles and method for manufacturing same
JPH08100227A (en) Sintered sliding member
JP6923320B2 (en) Sintered metal friction material
CN105618766A (en) Powder metallurgy brake lining friction block for high-speed train and preparation method thereof
JP7169981B2 (en) Friction material composition, friction material and friction member using friction material composition
JPS6330617A (en) Friction material composition
CN113444915A (en) Low-cost copper-based powder metallurgy friction material and preparation method thereof
EP1482204A1 (en) Friction material
JPS61266542A (en) Inorganic friction material
US3844800A (en) Friction material
CN207213000U (en) A kind of high-speed train powder metallurgy brake pad brake pad
JPH07797B2 (en) Solid lubricant for hot working
CN104164289A (en) Grease composition for assembling standard sections of tower crane and preparation method of grease composition
US3370006A (en) Bearings
JPH109294A (en) Roller brake for motorcycle and its manufacture
US5346634A (en) Lubricant composition for hot plastic working
JPS63109131A (en) Friction material of sintered alloy
JP2983186B2 (en) Self-lubricating composite material
US4350530A (en) Sintered alloy for friction materials
US2848795A (en) Friction elements

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees