JPS61266522A - Powder extruded steel - Google Patents

Powder extruded steel

Info

Publication number
JPS61266522A
JPS61266522A JP10907585A JP10907585A JPS61266522A JP S61266522 A JPS61266522 A JP S61266522A JP 10907585 A JP10907585 A JP 10907585A JP 10907585 A JP10907585 A JP 10907585A JP S61266522 A JPS61266522 A JP S61266522A
Authority
JP
Japan
Prior art keywords
steel
powder
rolling
carbon
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10907585A
Other languages
Japanese (ja)
Other versions
JPH0250962B2 (en
Inventor
Kazuichi Tsubota
坪田 一一
Yoshikazu Tanaka
義和 田中
Akihiko Yanagiya
彰彦 柳谷
Hitoshi Kumon
久門 均
Masaru Yanagimoto
勝 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Sanyo Tokushu Seiko KK
Original Assignee
Sanyo Special Steel Co Ltd
Sanyo Tokushu Seiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd, Sanyo Tokushu Seiko KK filed Critical Sanyo Special Steel Co Ltd
Priority to JP10907585A priority Critical patent/JPS61266522A/en
Publication of JPS61266522A publication Critical patent/JPS61266522A/en
Publication of JPH0250962B2 publication Critical patent/JPH0250962B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a steel having an extremely long fatigue life by forming once a molten steel into powder then working the powder by hot extrusion to form a steel product thereby dispersing extremely finely and uniformly, carbide and non-metallic inclusions. CONSTITUTION:The powder contg. >=60% particles of a carbon steel and low- and high alloy steels contg. 0.1-3.0% carbon and having <=44mu diameter to provide high wear resistance and to decrease compressive deformation is molded to a billet. The billet is put into a container and is worked by one time of hot extrusion to a building material or steel pipe unlike rolling. The non-metallic inclusions are thereby elongated in the longitudinal direction and are made finer than in the case of rolling. The powder extruded steel product of this invention provides the improvement of the service life by about 200-300% in any kinds of steel or applications when compared with the steel products produced by the conventional melting rolling.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は苛酷な使用状態にさらされる各種工具や転がり
軸受に用いることによりすぐれた性能を発揮する鋼材の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a steel material that exhibits excellent performance when used in various tools and rolling bearings that are exposed to severe usage conditions.

(従来技術) 高炭素の冷間鍛造用工具、高速度鋼、高温軸受、さらに
耐食軸受用鋼などでは鋳込の時に生成するいわゆる一次
炭化物の微細化は性能向上のために不可欠であり、従来
鋳型形状の改良や鍛錬比゛の向上、鍛造方法の教養や。
(Prior art) In high-carbon cold forging tools, high-speed steel, high-temperature bearings, and steel for corrosion-resistant bearings, the refinement of so-called primary carbides produced during casting is essential for improving performance. Improving the shape of the mold, increasing the forging ratio, and learning about forging methods.

ESR再溶解法の採用などが試みられてきた。Attempts have been made to adopt the ESR redissolution method.

またその性能向上のためには炭化物の微細化だけでなく
非金属介在物(主として酸化物系介在物、硫化物系介在
物)の減少、もしくは微細化が必要である。
In order to improve its performance, it is necessary not only to make carbides finer but also to reduce or make them finer nonmetallic inclusions (mainly oxide inclusions and sulfide inclusions).

硫化物系介在物量の減少は鋼中の硫黄量の調整により、
さらに酸化物系介在物量は溶鋼の脱ガス処理により低減
させることができるが、ある程度以上は困難であり、特
に性能に悪影響のある大型の介在物の微細分散は従来の
技術では十分とはいえなかった。
The amount of sulfide inclusions can be reduced by adjusting the amount of sulfur in the steel.
Furthermore, the amount of oxide inclusions can be reduced by degassing molten steel, but it is difficult to do so beyond a certain point, and conventional techniques are not sufficient to finely disperse large inclusions that have a negative impact on performance. Ta.

(本発明が解決しようとする問題点) 上述のように工具や軸受の材料として、より微細な炭化
物と非金属介在物を有する鋼の′ 出現が望まれていた
(Problems to be Solved by the Present Invention) As mentioned above, it has been desired that steel having finer carbides and nonmetallic inclusions be used as a material for tools and bearings.

本発明者らはこのように高硬度状態で使用される工具類
や軸受において著しくすぐれた性能を有する鋼のM進方
法を検討した結果。
The inventors of the present invention have studied the M-adjustment method for steel, which has significantly superior performance in tools and bearings used in high-hardness conditions.

溶鋼な一担粉末とした後、これを熱間押出によって鋼材
とすることにより炭化物と非金属介在物が極めて微細均
一に分散し、そのため疲労寿命の極めて長い鋼を製造す
ることができることを見出したものである。なお浸炭用
鋼など低炭素鋼においては炭化物の微細化効果は直接的
でなく小さいが、その代わり非金属介在物の微細化効果
がより顕著になる。
We discovered that by converting the powder into molten steel powder and then hot extruding it into a steel material, carbides and nonmetallic inclusions are dispersed extremely finely and uniformly, making it possible to manufacture steel with an extremely long fatigue life. It is something. Note that in low carbon steels such as carburizing steels, the effect of refining carbides is not direct and small, but instead the effect of refining nonmetallic inclusions becomes more pronounced.

(問題点を解決するための手段) 本発明は上記に鑑みなされたもので、その要旨とする所
は[α1〜3.0%の炭素を含む炭素鋼および低・高合
金鋼の直径44μ以下の粒子を60%以上含む粉末をビ
レットに成形し。
(Means for Solving the Problems) The present invention has been made in view of the above, and its gist is [diameter of carbon steel containing α1 to 3.0% carbon and low/high alloy steel of 44μ or less]. A powder containing 60% or more of particles is formed into a billet.

熱間押出によって鋼材を得ることを特徴とする鋼の製造
方法」である。
A method for producing steel characterized by obtaining a steel material by hot extrusion.

次に本発明における各構成要件について説工具や軸受な
ど耐摩耗性に富み圧縮変形が少ないことが必要なものは
少なくとも)(Rc so以上の硬さを必要とする。通
常0.5%以上の炭素があればそのままオーステナイト
化した後焼入れすればHRc50以上が得られる。
Next, we will discuss each component of the present invention. Tools, bearings, and other items that require high wear resistance and low compressive deformation require at least a hardness of Rcso or higher.Usually, 0.5% or higher hardness is required. If carbon is present, HRc of 50 or more can be obtained by converting it into austenite as it is and then quenching it.

一方浸炭鋼のように内部に表面より硬さの低い部分を存
在させて靭性の向上を図る場合、内部の硬さはHR03
0以上なければ高い面圧を受けて凹みが生ずる可能性が
ある。
On the other hand, when trying to improve toughness by creating an internal part with lower hardness than the surface, such as carburized steel, the internal hardness is HR03.
If it is not more than 0, there is a possibility that dents will be formed due to high surface pressure.

このためには炭素の下限を0.1%にする必要がある。For this purpose, it is necessary to set the lower limit of carbon to 0.1%.

なお、上限の3.0%についてはこれ以上含有量を増加
させても硬さも耐摩耗性も飽和するのでこれを上限とす
る。
Note that the upper limit of 3.0% is set as the upper limit because even if the content is increased further, both the hardness and the wear resistance are saturated.

く直径44μ以下の粉末が60%以上〉直径44μ以下
の粉末が60%以上含まれていないと後述するように非
金属介在物が大きくなり、十分な性能が得られないこと
が判明した。
It has been found that if the powder does not contain 60% or more of powder with a diameter of 44 μm or less and 60% or more of powder with a diameter of 44 μm or less, nonmetallic inclusions become large as described later, and sufficient performance cannot be obtained.

ここで直径44μの粉末粒子径の割合いを規定したのは 1)粉末製造現場で粒径管理のため使用する篩が325
 メツシュであり、これを通過する粒径が44μである
こと。
Here, the ratio of the powder particle size with a diameter of 44μ was specified because 1) the sieve used for particle size control at the powder manufacturing site was 325μ;
The particle size passing through the mesh is 44μ.

2) これ以上微細な篩は目づまりがおこり、現場作業
向きでないこと。        (による。
2) A sieve finer than this will clog and is not suitable for on-site work. (by.

く熱間押出加工を必要とする理由〉 熱間押出はビレットをコンテナーケこ入れ、−回の押出
により圧延と異なり急速に棒材もしくは鋼管とする加工
であり、非金属介在物が長手方向に伸び、圧延の場合よ
り微細にすることができる。かくすることにより後述す
るようにすぐれた性能が得られる。
Why Hot Extrusion is Necessary> Hot extrusion is a process in which a billet is put into a container and extruded several times to quickly turn it into a bar or steel tube, unlike rolling. It can be made finer than by stretching or rolling. By doing so, excellent performance can be obtained as described below.

次に本発明における炭化物と非金属介在物の微細化によ
る寿命の向上理由を述べる。
Next, the reason for the improvement in life due to the miniaturization of carbides and nonmetallic inclusions in the present invention will be described.

本発明は工具や軸受を適用するため、耐摩耗性や耐圧縮
性を向上させるため高硬度状態ト(例えば1%Cでも)
IRC65ぐらいが最大である)より硬いため応力集中
の作用する範囲は狭いことが好ましい。本発明における
炭化物と非金属介在物の微細化の効果はまさにこの応力
集中作用の軽減にある。
Since the present invention is applied to tools and bearings, high hardness (for example, even 1% C) is required to improve wear resistance and compression resistance.
(IRC65 is the maximum), so it is preferable that the range in which stress concentration acts is narrow. The effect of the refinement of carbides and nonmetallic inclusions in the present invention lies in the reduction of this stress concentration effect.

実施例) まずあらかじめ成分調整をした母材を真空中で誘導溶解
後、溶湯を190kol/14の圧力でAr雰囲気のチ
ャンバー内に水アトマイズする。得られた粉末を乾燥し
、水素気流中900℃で還元した。この粉末をゴム型に
流し込み、 50001g/dの圧力でビレットに成形
した後、肉厚2Hの軟鋼性カプセルに脱気・封入してカ
プセル全体を再び5000#//dで冷間で等友釣に圧
縮して高密度化した後、ビレットを熱間押出した。
Example) First, a base material whose components have been adjusted in advance is induction melted in a vacuum, and then the molten metal is water atomized in a chamber with an Ar atmosphere at a pressure of 190 kol/14. The obtained powder was dried and reduced at 900° C. in a hydrogen stream. This powder was poured into a rubber mold and formed into a billet at a pressure of 50,001 g/d, then degassed and sealed in a mild steel capsule with a wall thickness of 2H, and the entire capsule was then cold-casted again at 5,000 #//d. After compaction and densification, the billet was hot extruded.

冷却後軟鋼部分を除外して鋼材とする。After cooling, remove the mild steel part and use it as a steel material.

表1に、かかる方法で製造した鋼材の冷間鍛造型の寿命
と軸受寿命の溶製圧延材との比較例を示す。このように
本発明による鋼材は肌焼鋼では介在物が、高炭素鋼では
介在物と炭化物が微細化することによりすぐれた性能が
得られている。
Table 1 shows a comparison example of the life of cold forging dies and the life of bearings of steel manufactured by this method compared to melt rolled steel. As described above, the steel material according to the present invention has excellent performance due to the fineness of inclusions in case hardened steel and the fineness of inclusions and carbides in high carbon steel.

表1゛冷間鍛造用型における寿命比較 圧延材:鋼塊→圧延材 押出材:粉末→押出材=本発明 次に粉末で作成したビレットを押出した場合と鍛造した
場合の性能の比較を行った。表2は5KH51の粉末の
鍛造品と押出品の寿命。
Table 1 Comparison of lifespan in cold forging molds Rolled material: Steel ingot → Rolled material Extruded material: Powder → Extruded material = Invention Next, we compared the performance when extruding and forging billets made from powder. Ta. Table 2 shows the lifespan of 5KH51 powder forged and extruded products.

比較である。It's a comparison.

表2:押出しパンチの粉末押出品 (本発明)と粉末鍛造品の寿命比較 このように押出品がすぐれているのは押出しによる介在
物の微細化による。このことは他の鋼種についても同様
のことであろう。
Table 2: Comparison of lifespan between powder extruded products (invention) and powder forged products using extrusion punches The reason why extruded products are superior is because of the miniaturization of inclusions through extrusion. This may be true for other steel types as well.

さらに粉末の粒径と性能の関係について調査した。表3
は44μ以下の粉末の割合と転がり疲労寿命の関係を調
べたものである。
Furthermore, we investigated the relationship between powder particle size and performance. Table 3
investigated the relationship between the proportion of powder with a particle size of 44μ or less and rolling fatigue life.

このようtこ44μ以下の粒子の割合が6096以上に
なるとすぐれた寿命が得られることがわかる。これはや
はり介在物の微細化によるものと思われる。
It can be seen that an excellent lifespan can be obtained when the ratio of particles with a diameter of 44μ or less is 6096 or more. This is probably due to the miniaturization of inclusions.

(効 果) 本発明を実施することにより、従来のmlI!→圧延に
よる鋼材と比較して、いずれの鋼種あるいは用途におい
てもおよそ200−300%の使用寿命の向上が得られ
ることがわかつた。
(Effect) By implementing the present invention, conventional mlI! →It was found that the service life of any steel type or application can be improved by approximately 200-300% compared to rolled steel materials.

Claims (1)

【特許請求の範囲】[Claims] 0.1〜3.0%の炭素を含む炭素鋼および低・高合金
鋼の直径44μ以下の粒子を60%以上含む粉末をビレ
ットに成形し、熱間押出によつて鋼材を得ることを特徴
とする鋼の製造方法。
It is characterized by forming a powder containing 60% or more of particles with a diameter of 44μ or less of carbon steel containing 0.1 to 3.0% carbon and low/high alloy steel into a billet, and obtaining a steel material by hot extrusion. A method of manufacturing steel.
JP10907585A 1985-05-20 1985-05-20 Powder extruded steel Granted JPS61266522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10907585A JPS61266522A (en) 1985-05-20 1985-05-20 Powder extruded steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10907585A JPS61266522A (en) 1985-05-20 1985-05-20 Powder extruded steel

Publications (2)

Publication Number Publication Date
JPS61266522A true JPS61266522A (en) 1986-11-26
JPH0250962B2 JPH0250962B2 (en) 1990-11-06

Family

ID=14500968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10907585A Granted JPS61266522A (en) 1985-05-20 1985-05-20 Powder extruded steel

Country Status (1)

Country Link
JP (1) JPS61266522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106392085A (en) * 2016-11-24 2017-02-15 上海电机学院 Ball grinding-diameter shrinkage reciprocating extruding method for circular curing of waste titanium chips

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106392085A (en) * 2016-11-24 2017-02-15 上海电机学院 Ball grinding-diameter shrinkage reciprocating extruding method for circular curing of waste titanium chips

Also Published As

Publication number Publication date
JPH0250962B2 (en) 1990-11-06

Similar Documents

Publication Publication Date Title
US4253874A (en) Alloys steel powders
US2213523A (en) Manufacture of metal articles or masses
WO2010044740A1 (en) Steel material and a method for its manufacture
SE447071B (en) SPRAY-SPRAYED ALLOY STEEL POWDER
JPH0390530A (en) Magnesium alloy high in mechanical strength and quick hardening method for its manufacture
US2637671A (en) Powder metallurgy method of making steel cutting tools
US3744993A (en) Powder metallurgy process
DE2060605C3 (en) Powder metallurgy produced by sintering, precipitation hardenable, corrosion and high temperature resistant nickel-chromium alloy
JP5323679B2 (en) Cold work steel
WO2001079575A1 (en) Nitrogen alloyed steel, spray compacted steel, method for the production thereof and composite material produced from said steel
US4244738A (en) Method of and apparatus for hot pressing particulates
JP2003519283A (en) High speed steel manufactured by powder metallurgy
US4255193A (en) Method of manufacture of sintered pressed pieces of iron reinforced by iron oxides
JP3424156B2 (en) Manufacturing method of high strength aluminum alloy member
RU2468110C2 (en) New generation nanomodifier (ngnm)
JPS61266522A (en) Powder extruded steel
US3837848A (en) Method of making tools by impregnating a steel skeleton with a carbide, nitride or oxide precursor
JPH02182867A (en) Powdered tool steel
JPH0373614B2 (en)
JP2999655B2 (en) High toughness powder HSS
DE10064056B9 (en) A process for producing a sintered body of high-hardness, high-chromium-content cast iron
JP2001214238A (en) Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die
US4243437A (en) Process for forming articles from leaded bronzes
JP4227391B2 (en) High carbon steel plate with excellent FCF processability
JPS62222044A (en) Hot-working method for two-phase stainless steel powder