JPS61266442A - Production of porous fluorinated polyolefin article - Google Patents

Production of porous fluorinated polyolefin article

Info

Publication number
JPS61266442A
JPS61266442A JP10794085A JP10794085A JPS61266442A JP S61266442 A JPS61266442 A JP S61266442A JP 10794085 A JP10794085 A JP 10794085A JP 10794085 A JP10794085 A JP 10794085A JP S61266442 A JPS61266442 A JP S61266442A
Authority
JP
Japan
Prior art keywords
porous body
porous
polyolefin
article
fluorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10794085A
Other languages
Japanese (ja)
Inventor
Yoshihiko Muto
武藤 善比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10794085A priority Critical patent/JPS61266442A/en
Publication of JPS61266442A publication Critical patent/JPS61266442A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled porous article having excellent resistance to heat and chemicals, suitable for use as a microfilter and having a uniform pore structure, by deaerating a porous polyolefin article having a three- dimensional network structure in vacuum and fluorinating it. CONSTITUTION:A porous polyolefin article having a three-dimensional structure having an average pore size of 0.01-1mu and a void content of 30-95%, composed of fibers having an average diameter of 1mu or below, obtd. by mixing a fine inorg. powder and an org. liquid with a polyolefin resin, melt-molding the mixture and extracting the fine inorg. powder and the org. liquid, is deaerated under reduced pressure of 0.5X10<-1>mmHg or below for at least 10min. Fluorine gas under a pressure of 1-300mmHg and optionally, inert gas such as N2 or Ar are added (repeatedly several times) thereto to thereby bring the article into, contact with it for 1min-24hr in total, whereby the article is fluorinated to such an extent that a degree of fluorination reaches at least 40%.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はフッ素化ポリオレフィン多孔体及びその製造方
法に関するものである。さらに詳しくいえば、本発明は
、特に半導体製造工程で用いられる各種薬品精製用のミ
クロフィルターなどとして好適な、耐熱性や耐薬品性に
極めて優れ、かつ均一な孔構造を有するフッ素化ポリオ
レフィン多孔体及びこのものを有利に製造するための方
法に関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a porous fluorinated polyolefin material and a method for producing the same. More specifically, the present invention is directed to a fluorinated polyolefin porous material having extremely excellent heat resistance and chemical resistance and having a uniform pore structure, which is suitable as a microfilter for refining various chemicals used particularly in semiconductor manufacturing processes. and a method for advantageously manufacturing the same.

従来の技術 近年、半導体需要の急速な増大に伴い、該半導体製造工
程で使用される熱濃硫酸、熱濃硝酸、熱リン酸などの薬
品を精製するための耐熱性及び耐薬品性に優れたミクロ
フィルターの需要も著しく増大している〇 従来、このようなミクロフィルターとしては、耐熱性及
び耐薬品性に優れたポリテトラフルオロエチレン(以下
PTFEと略記する)樹脂から成る孔径lμ以下の多孔
膜(例えば、ボアゐアソシエイト社製、r GORE−
Tl!:X (登録商標名)」、住友電工社製、「フロ
ロボア(登録商標名)」など)が用いられている。
Background of the Invention In recent years, with the rapid increase in demand for semiconductors, there has been an increase in the demand for products with excellent heat and chemical resistance for refining chemicals such as hot concentrated sulfuric acid, hot concentrated nitric acid, and hot phosphoric acid used in the semiconductor manufacturing process. The demand for microfilters is also increasing significantly. Conventionally, such microfilters have been made of porous membranes with a pore size of 1μ or less made of polytetrafluoroethylene (hereinafter abbreviated as PTFE) resin, which has excellent heat resistance and chemical resistance. (For example, r GORE-
Tl! :

しかしながら、PTFK樹脂は加工性が悪いために、成
形品の形状が限定される上に、均一な孔構造の多孔体が
得られず、しかも生産性が低く、かつコストが高いので
、それから得られた多孔体が高価になるなどの欠点を有
している。
However, since PTFK resin has poor processability, the shape of the molded product is limited, and a porous body with a uniform pore structure cannot be obtained, and productivity is low and cost is high. This method has disadvantages such as the high cost of the porous material.

発明が解決しようとする問題点 本発明の目的は、このような欠点を克服し、特に半導体
製造工程で用いられる各種薬品精製用のミクロフィルタ
ーとして好適な、耐熱性及び耐薬品性に優れる上に、均
一な孔構造を有し、かつ安価な多孔体を提供することに
ある。
Problems to be Solved by the Invention The object of the present invention is to overcome these drawbacks and to provide a microfilter that has excellent heat resistance and chemical resistance, and is particularly suitable as a microfilter for purifying various chemicals used in semiconductor manufacturing processes. The object of the present invention is to provide an inexpensive porous body having a uniform pore structure.

問題点を解決するための手段 本発明者らは、ポリオレフィンは加工性に優れていて、
均一な孔構造を有する多孔体を容易に与え、かつ安価で
あることに着目し、鋭意研究を重ねた結果、特定の構造
を有するポリオレフィン多孔体にフッ素ガスを導入して
、該ポリオレフィンをフッ素化することによシ、前記目
的を達成しうろことを見出し、この知見に基づいて本発
明を完成するに至った。
Means for Solving the Problems The present inventors discovered that polyolefins have excellent processability;
Focusing on the fact that a porous material with a uniform pore structure can be produced easily and at low cost, as a result of intensive research, we introduced fluorine gas into a polyolefin porous material with a specific structure to fluorinate the polyolefin. By doing so, they discovered that the above object could be achieved, and based on this knowledge, they completed the present invention.

すなわち、本発明は、平均太さ1μ以下の繊維で構成さ
れた、平均孔径0.01〜1μの三次元網状構造を有し
、かつフッ素化度404以上にフッ素化されていること
を特徴とするフッ素化ポリオレフィン多孔体を提供する
ことである。このようなフッ素化ポリオレフィン多孔体
は、平均太さ1μ以下の繊維で構成された、平均孔径0
.01〜1μの三次元網状構造を有するポリオレフィン
多孔体を減圧脱気したのち、該多孔体中へ減圧下にフッ
素ガスを導入し、ポリオレフィンをフッ素化することに
よって、製造することができる。
That is, the present invention is characterized in that it has a three-dimensional network structure composed of fibers with an average thickness of 1 μm or less, has an average pore diameter of 0.01 to 1 μm, and is fluorinated to a degree of fluorination of 404 or more. It is an object of the present invention to provide a porous fluorinated polyolefin material. Such a fluorinated polyolefin porous material has an average pore diameter of 0 and is composed of fibers with an average diameter of 1 μm or less.
.. It can be produced by degassing a polyolefin porous body having a three-dimensional network structure of 0.01 to 1 μm under reduced pressure, and then introducing fluorine gas into the porous body under reduced pressure to fluorinate the polyolefin.

ところで、ポリオレフィン樹脂から成る成形品に対する
フッ素化処理技術については1例えばフィルムなどの成
形品の表面を改質するために、既に工業的に利用されて
おシ、また該表面のみでなく、内部までフッ素化処理す
ることも試みられている(英国特許第710523号明
細書)。しかしながらこの方法は、成形品内部までフッ
素化するためには、極めて長時間(数日間)のフッ素化
処理を必要とするので生産性が低く、工業的には実施す
るには不適当である。
By the way, regarding fluorination treatment technology for molded products made of polyolefin resin, it has already been used industrially to modify the surface of molded products such as films. Fluorination treatment has also been attempted (UK Patent No. 710,523). However, this method requires a very long fluorination treatment (several days) in order to fluorinate the inside of the molded product, resulting in low productivity and is not suitable for industrial implementation.

これに対し、本発明によると、平均太さ1μ以下の繊維
で構成された三次元網状構造を有するポリオレフィン多
孔体を特定の方法でフッ素化処理することによシ、極め
て短時間(数分〜数時間)で樹脂内部までほぼ完全にフ
ッ素化することができ、したがって、該三次元網状構造
の形状を実質的にそのまま保持し、かつPTFE多孔膜
と同程度に優れた耐熱性及び耐薬品性を有するものを得
ることができる。
On the other hand, according to the present invention, a polyolefin porous material having a three-dimensional network structure composed of fibers with an average thickness of 1 μm or less is fluorinated in a specific method, thereby making it possible to fluorinate the material in an extremely short time (several minutes to several minutes). The inside of the resin can be almost completely fluorinated in just a few hours), and the shape of the three-dimensional network structure is maintained essentially as is, while the heat resistance and chemical resistance are as excellent as those of porous PTFE membranes. You can get one with

本発明においては、多孔体の素材としてポリオレフィン
を用いるが、このポリオレフィンは安価である上に、加
工性が良好であって容易に均一な多孔体を与えることが
でき、かつフッ素ガスによシフッ素化されやすいという
特徴を有している0このようなものとしては、例えばポ
リエチレン、ポリプロピレン、ポリブテン、ポリ−4−
メチルペンテン−1,エチレン−プロピレン共重合体、
あるいはエチレン−テトラフルオロエチレン共重合体、
エチレン−クロロトリフルオロエチレン共重合体などの
オレフィンとフッ素系モノマーから成る共重合体などが
挙げられる。これらの中で。
In the present invention, polyolefin is used as the material for the porous body, but this polyolefin is not only inexpensive, but also has good processability and can easily provide a uniform porous body. Examples of such materials include polyethylene, polypropylene, polybutene, poly-4-
Methylpentene-1, ethylene-propylene copolymer,
Or ethylene-tetrafluoroethylene copolymer,
Examples include copolymers made of olefins and fluorine-based monomers, such as ethylene-chlorotrifluoroethylene copolymers. Among these.

特に、安価であシ、かつフッ素化されやすいなどの点で
ポリエチレンが好適である。
In particular, polyethylene is suitable because it is inexpensive, easy to fluorinate, and so on.

本発明においては、前記ポリオレフィンから成る多孔体
として、平均太さ1μ以下の繊維で構成された三次元網
状構造を有するものが用いられる。
In the present invention, the polyolefin porous body having a three-dimensional network structure composed of fibers having an average thickness of 1 μm or less is used.

この三次元網状構造とは、多孔体の表面及び各方向の断
面において、樹脂から成る網状構造が観測される多孔構
造のことであって、連通孔を有する、いわゆるスポンジ
構造を指す。このような三次元構造は、多孔体として強
度的に優れ、かつこの多孔体をフィルター用に使用する
場合は、微粒子除去効果に優れている。
This three-dimensional network structure refers to a porous structure in which a network structure made of resin is observed on the surface of the porous body and in cross sections in each direction, and refers to a so-called sponge structure having communicating pores. Such a three-dimensional structure has excellent strength as a porous body, and when this porous body is used for a filter, it has an excellent particulate removal effect.

また、網状構造を構成する繊維とは、孔を取シ囲む網状
樹脂部のことであシ、便宜上繊維と表現しているが、そ
の形状については特に制限はなく。
Further, the fibers constituting the network structure refer to the network resin portion surrounding the holes, and are expressed as fibers for convenience, but there are no particular restrictions on their shape.

三次元網状構造を形成するものであれば、繊維状以外に
薄膜状、結節状、さらに不定形なものでも差しつかえな
い。
As long as it forms a three-dimensional network structure, other than fibrous shapes, thin film shapes, nodular shapes, and even irregularly shaped materials may be used.

本発明においては、網を構成する繊維の平均太さは1μ
以下であることが必要である。その太さが1μを超える
とフッ素化処理に長時間を要し、生産性が低下する。さ
らに、生産性及び多孔体の強度の点から、0.01〜0
.5μの範囲にあることが好ましい。なお、繊維の太さ
は、多孔体の表面及び断面を電子顕微鏡によシ観察し、
各部の繊維の太さを平均化した値である。
In the present invention, the average thickness of the fibers constituting the network is 1 μm.
It is necessary that the following is true. If the thickness exceeds 1 μm, the fluorination treatment will take a long time and productivity will decrease. Furthermore, from the viewpoint of productivity and strength of the porous body, 0.01 to 0
.. Preferably, it is in the range of 5μ. The thickness of the fibers can be determined by observing the surface and cross section of the porous body using an electron microscope.
This value is the average thickness of the fibers in each part.

また、該ポリオレフィン多孔体の平均孔径は0.01〜
1μ、好ましくは0.05〜0.5μの範囲内で選ばれ
る。この平均孔径が0.01μ未満では、フッ素化処理
の際にフッ素ガスの多孔体内部への拡散に対し抵抗が大
きくて、処理斑が生じやすく、また、多孔体をミクロフ
ィルターとして利用する場合、透過性が低くなシ好まし
くない。一方、1μを超えると、ミクロフィルターとし
て利用する場合、微粒子除去率が低くなり好ましくない
Moreover, the average pore diameter of the polyolefin porous material is 0.01 to
It is selected within the range of 1μ, preferably 0.05 to 0.5μ. If the average pore diameter is less than 0.01μ, there is a large resistance to the diffusion of fluorine gas into the porous body during fluorination treatment, and treatment spots are likely to occur, and when the porous body is used as a microfilter, Low permeability is not desirable. On the other hand, if it exceeds 1μ, the particle removal rate will be low when used as a microfilter, which is not preferable.

さらに、多孔体の気孔率は30〜95係の範囲にあるこ
とが望ましく、よシ好ましくは50〜90%の範囲であ
る。この気孔率が30憾未満では、多孔体をミクロフィ
ルターとして利用する場合、透過性が低くなシ好ましく
なく、また95憾を超えると多孔体の強度が低くなり好
ましくない。
Furthermore, the porosity of the porous body is desirably in the range of 30 to 95%, more preferably in the range of 50 to 90%. If the porosity is less than 30, the permeability will be undesirably low when the porous body is used as a microfilter, and if it exceeds 95, the strength of the porous body will be undesirable.

本発明で用いる孔構造の均一なポリオレフィン多孔体は
1例えば無機微粉体と有機液状体とポリオレフィン樹脂
とを混合したのち溶融成形し、この成形物より無機微粉
体及び有機液状体を抽出することによシ製造することが
できる(特開昭55−131028号公報)。
The porous polyolefin material with a uniform pore structure used in the present invention can be obtained by, for example, mixing inorganic fine powder, organic liquid, and polyolefin resin, melt-molding the mixture, and extracting the inorganic fine powder and organic liquid from this molded product. (Japanese Unexamined Patent Publication No. 55-131028).

本発明においては、前記ポリオレフィン多孔体にフッ素
ガスを接触させてポリオレフィンをフッ素化する。この
接触法によるフッ素化処理については、例えば常圧のフ
ッ素ガスを成形品表面に流しながら接触させてフッ素化
する方法が知られているが(英国特許第710523号
明細書)、この方法によると、フッ素ガスの多孔体内部
への拡散に時間がかがシ、多孔体表面部と内部にフッ素
化度の斑が生じる上に、多孔体全体を十分フッ素化する
のに長時間を要し、好ましくない。
In the present invention, the polyolefin is fluorinated by bringing the polyolefin porous body into contact with fluorine gas. Regarding the fluorination treatment using this contact method, for example, a method is known in which fluorination is carried out by flowing fluorine gas at normal pressure onto the surface of the molded product (British Patent No. 710,523), but according to this method, , it takes time for the fluorine gas to diffuse into the porous body, and unevenness of fluorination occurs on the surface and inside of the porous body, and it takes a long time to sufficiently fluorinate the entire porous body. Undesirable.

これに対し、本発明はポリオレフィン多孔体を減圧脱気
したのち、減圧下に該多孔体中へフッ素ガスを導入する
方法であシ、均一かつ短時間で多孔体をフッ素化するこ
とができる。本発明において、特に均一なフッ素化処理
を施すためには、高濃度のフッ素ガスを用いて1度でフ
ッ素化処理するよりも、低濃度のフッ素ガスを用いて数
回繰り返してフッ素化処理するのが有利である。このフ
ッ素ガスの濃度については、圧力が1〜30(lIIH
gの範囲、特に10〜100100lの範囲にあること
が好ましい。圧力がl ml Hg未満ではフッ素化処
理に長時間を要し、また30(llIHgを超えると樹
脂劣化などの副反応が生じるので好ましくない。また、
所望に応じ、フッ素ガスに窒素、ヘリウム、アルゴンな
どの不活性ガスを混合して用いることができるが、この
場合、フッ素ガスの濃度については、その分圧で1〜3
001mHgの範囲、好ましくは10〜100m11!
Hgの範囲で選ばれる。
In contrast, the present invention employs a method in which a porous polyolefin material is degassed under reduced pressure and then fluorine gas is introduced into the porous material under reduced pressure, and the porous material can be fluorinated uniformly and in a short time. In the present invention, in order to perform a particularly uniform fluorination treatment, the fluorination treatment is repeated several times using a low concentration fluorine gas, rather than one time fluorination treatment using a high concentration fluorine gas. is advantageous. Regarding the concentration of this fluorine gas, the pressure is 1 to 30 (lIIH
It is preferably in the range of g, especially in the range of 10 to 100,100 l. If the pressure is less than 1 ml Hg, the fluorination treatment will take a long time, and if it exceeds 30 ml Hg, side reactions such as resin deterioration will occur, which is not preferable.
If desired, fluorine gas may be mixed with an inert gas such as nitrogen, helium, or argon.
001 mHg, preferably 10-100 m11!
Selected within Hg range.

また、ポリオレフィン多孔体とフッ素ガスとの接触時間
は、フッ素ガスの濃度によって左右されるが、合討接触
時間を1分〜24時間、特に30分〜10時間の範囲に
するのが望ましい。この接触時間が1分未満ではフッ素
化度が十分でなく、かつ均一処理が困難であシ、また2
4時間を超えると生産性の点で不利になる。
Further, the contact time between the polyolefin porous body and the fluorine gas depends on the concentration of the fluorine gas, but it is desirable that the combined contact time is in the range of 1 minute to 24 hours, particularly 30 minutes to 10 hours. If this contact time is less than 1 minute, the degree of fluorination will not be sufficient and uniform treatment will be difficult;
If it exceeds 4 hours, it will be disadvantageous in terms of productivity.

このようなフッ素化処理の際に、酸素が存在すると、樹
脂の劣化や着色などの副反応を生じるので、本発明にお
いては、フッ素ガスを導入する前に、予めポリオレフィ
ン多孔体の減圧脱気を行う。
During such fluorination treatment, the presence of oxygen causes side reactions such as deterioration and coloring of the resin. Therefore, in the present invention, the porous polyolefin material is degassed under reduced pressure before introducing fluorine gas. conduct.

この減圧脱気は5 X 10  llHg以下の減圧度
で10分以上、好ましくは30分以上行う。
This vacuum degassing is carried out at a vacuum degree of 5×10 11Hg or less for 10 minutes or more, preferably 30 minutes or more.

さらに、フッ素ガス中又はフッ素ガスと不活性ガスとの
混合ガス中の酸素濃度は10%以下、特に2壬以下が好
ましい。また、フッ素化処理の温度は、樹脂劣化などの
副反応を防止するため50℃以下、特に30℃以下がよ
い。必要に応じて多孔体を冷却しながらフッ素化処理し
てもよい。
Further, the oxygen concentration in the fluorine gas or in the mixed gas of fluorine gas and inert gas is preferably 10% or less, particularly 2 min or less. Further, the temperature of the fluorination treatment is preferably 50° C. or lower, particularly 30° C. or lower in order to prevent side reactions such as resin deterioration. If necessary, the porous body may be subjected to fluorination treatment while being cooled.

フッ素化処理後の未反応フッ素ガスは、減圧脱気し、さ
らに水洗することによシ多孔体よシ除去される。
Unreacted fluorine gas after the fluorination treatment is removed from the porous body by degassing under reduced pressure and further washing with water.

このようにしてフッ素化されたポリオレフィン多孔体の
フッ素化の程度は、フッ素化ポリオレフィンの元素構成
から、次の式で求められるフッ素化度によって示される
The degree of fluorination of the polyolefin porous body fluorinated in this manner is indicated by the degree of fluorination determined by the following formula from the elemental composition of the fluorinated polyolefin.

例えば、炭素原子1個に対し、フッ素原子2個の元素構
成比から成るフッ素化ポリオレフィンは、フッ素化度1
00憾となる。なお、フッ素化ポリオレフィンの元素構
成は元素分析によシ決定される。
For example, a fluorinated polyolefin having an elemental ratio of 1 carbon atom to 2 fluorine atoms has a degree of fluorination of 1
00 I regret it. Note that the elemental composition of the fluorinated polyolefin is determined by elemental analysis.

例えば、「高分子分析ノ・ンドプツク」(日本分析化学
会編、朝食書店発行)、106ページ、294ページ(
1985年)に記載されている方法に従って測定するこ
とができる。また、このフッ素化ポリオレフィンの元素
構成は、フッ素化処理前のポリオレフィンの元素構成が
既知の場合、フッ素化によシフッ素原子が同数の水素原
子と置換したとして、フッ素化処理前後の多孔体の重量
測定によシ、簡便に概略決定することができる。
For example, "Polymer Analysis No Ndoptsuk" (edited by the Japan Society of Analytical Chemistry, published by Breakfast Shoten), pages 106 and 294 (
(1985). In addition, if the elemental composition of the polyolefin before fluorination treatment is known, the elemental composition of this fluorinated polyolefin is determined by assuming that the fluorine atoms are replaced with the same number of hydrogen atoms by fluorination. It can be roughly determined easily by weight measurement.

本発明においては、フッ素化度は40係以上であること
が必要であシ、好ましくは70%以上、さらに好ましく
は80%以上であることが望ましい。このフッ素化度が
40%未満では、フッ素化ポリオレフィン多孔体の耐熱
性及び耐薬品性が低くなる。
In the present invention, the degree of fluorination must be 40% or higher, preferably 70% or higher, and more preferably 80% or higher. If the degree of fluorination is less than 40%, the heat resistance and chemical resistance of the fluorinated polyolefin porous body will be low.

ところで、フィルター用に供する場合、一般に多孔体か
ら成るフィルターを7・ウジングと接着剤で一体化した
モジュールの形でろ過装置として使用される。この場合
には、ポリオレフィン多孔体を用いたモジュールを作成
したのち、このモジュールをフッ素化処理して、該ポリ
オレフィン多孔体をフッ素化することも可能である。
By the way, when used as a filter, it is generally used as a filtration device in the form of a module in which a filter made of a porous body is integrated with a housing and an adhesive. In this case, it is also possible to create a module using a polyolefin porous material and then subject this module to a fluorination treatment to fluorinate the polyolefin porous material.

本発明の多孔体の形状としては、例えばフィルム状、中
空糸状、チューブ状、パイプ状、棒状などが挙げられる
が、該多孔体の優れた機能が特に有効なミクロンフィル
ター用として、フィルム状、中空糸状、とシわけ中空糸
状が好適である0発明の効果 本発明のフッ素化ポリエチレン多孔体は、均一な孔構造
を有し、かつPTFE多孔体と同程度の優れた耐熱性及
び耐薬品性を有する上に、安価であって、この多孔体を
ミクロフィルターとして利用することによシ、半導体製
造工程において用いられる熱濃硫酸、熱硝酸、熱リン酸
などのろ過精製のような耐熱的及び耐薬品的に極めて厳
しい条件でのろ過精製を、高精度かつ安価に実施するこ
とが可能となった。
Examples of the shape of the porous body of the present invention include a film shape, a hollow fiber shape, a tube shape, a pipe shape, a rod shape, and the like. The fluorinated polyethylene porous material of the present invention has a uniform pore structure, and has excellent heat resistance and chemical resistance comparable to that of a PTFE porous material. In addition, it is inexpensive, and by using this porous material as a microfilter, it can be used for heat-resistant and resistant materials such as filter purification of hot concentrated sulfuric acid, hot nitric acid, hot phosphoric acid, etc. It has become possible to carry out filtration and purification under extremely harsh chemical conditions with high precision and at low cost.

実施例 次に実施例によって本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

なお、多孔体の各物性は次の方法に従って測定した。In addition, each physical property of the porous body was measured according to the following method.

(1)  平均孔径(μ) 試料の表面及び断面について電子顕微鏡によ多孔径を測
定し、平均化した。
(1) Average pore diameter (μ) The pore diameter was measured on the surface and cross section of the sample using an electron microscope and averaged.

(2)最大孔径(μ) ASTM F−316に準じてバブルポイント法によシ
測定した。
(2) Maximum pore diameter (μ) Measured by bubble point method according to ASTM F-316.

(3)気孔率(憾) 次の式により求めた。(3) Porosity (regret) It was calculated using the following formula.

ただし、空孔容積は、多孔体孔中に水を満たした多孔体
の重量よシ多孔体のみの重量を差し引くことによって求
めた。
However, the pore volume was determined by subtracting the weight of only the porous body from the weight of the porous body whose pores were filled with water.

実施例 高密度ポリエチレン(旭化成工業■製、サンチック@S
 −360) 20.0重量係、ジオクチルフタレート
56.4重量%、微粉シリカ23.6重量%を混合機で
混合したのち、粉砕機で粉砕した。この原料を押出機及
び中空ノズルを用いて中空糸状に溶融押出、したのち、
冷却して引取った。この中空糸を1.1.1−)リクロ
ルエタンに浸せきしてジオクチルフタレートを抽出除去
したのち、40重量%苛性ソーダ水溶液及び水にて洗浄
し、さらに乾燥して、ポリエチレン中空糸状多孔体を得
た。この多孔体は、内径Q 、 7 am、膜厚250
μ、平均孔径0.15μ、最大孔径0.30μ、気孔率
70壬で、網を構成する繊維の太さが0.12μの三次
元網状構造を育する均一な多孔体であった。
Example High-density polyethylene (manufactured by Asahi Kasei Corporation, Santic@S)
-360) 20.0% by weight, 56.4% by weight of dioctyl phthalate, and 23.6% by weight of finely divided silica were mixed in a mixer and then ground in a pulverizer. After melt-extruding this raw material into a hollow fiber shape using an extruder and a hollow nozzle,
It was cooled and taken away. The hollow fibers were immersed in 1.1.1-) dichloroethane to extract and remove dioctyl phthalate, washed with a 40% by weight aqueous sodium hydroxide solution and water, and further dried to obtain a polyethylene hollow fiber porous body. This porous body has an inner diameter Q of 7 am and a film thickness of 250
It was a uniform porous body that grew a three-dimensional network structure with an average pore diameter of 0.15 μ, a maximum pore diameter of 0.30 μ, and a porosity of 70 μ, and the thickness of the fibers constituting the network was 0.12 μ.

このポリエチレン中空糸状多孔体を反応容器(内径2(
1+m、長す30011m)K入れ、I X 10−’
jllHgの真空度で30分間脱気したのち、反応容器
にフッ素ガスを3Q111Hgの濃度まで導入して20
℃にて30分間反応させた。次いで、脱気したのちフッ
素ガスを3011Hgtで導入して30分間反応させる
操作を9回縁シ返した。多孔体とフッ素ガスの接触時間
は討5時間である。次に、脱気して窒素ガスを導入した
のち、多孔体を反応容器よシとシ出し、水洗、乾燥して
フッ素化ポリオレフィン中空糸状多孔体を得た。このフ
ッ素化ポリオレフィン多孔体は、内径Q 、 7 n 
、膜厚250μ、平均孔径0015μ、最大孔径0.3
0μ、気孔率70係で、網を構成する繊維の太さが0.
12μの三次元網状構造を有する均一な多孔体であり、
フッ素化度98易であった。
This polyethylene hollow fiber porous material was placed in a reaction vessel (inner diameter 2 (
1+m, length 30011m) K insert, I x 10-'
After degassing for 30 minutes at a vacuum level of 111Hg, fluorine gas was introduced into the reaction vessel to a concentration of 3Q111Hg for 20 minutes.
The reaction was carried out at ℃ for 30 minutes. Next, after degassing, fluorine gas was introduced at 3011 Hgt and reacted for 30 minutes, which was repeated 9 times. The contact time between the porous body and the fluorine gas was 5 hours. Next, after degassing and introducing nitrogen gas, the porous body was taken out of the reaction vessel, washed with water, and dried to obtain a fluorinated polyolefin hollow fiber porous body. This fluorinated polyolefin porous body has an inner diameter Q, 7 n
, film thickness 250μ, average pore diameter 0015μ, maximum pore diameter 0.3
0μ, porosity is 70, and the thickness of the fibers making up the net is 0.
It is a uniform porous body with a three-dimensional network structure of 12μ,
The degree of fluorination was 98.

このフッ素化ポリオレフィン多孔体を、250℃で10
時間熱暴露しても実質的な変化はなく、また、150℃
の98%濃硫酸に10日間浸せきしても実質的な変化は
なく、耐熱性、耐薬品性は良好であった。
This fluorinated polyolefin porous body was heated at 250°C for 10
There was no substantial change even after hours of heat exposure;
There was no substantial change even after immersion in 98% concentrated sulfuric acid for 10 days, and the heat resistance and chemical resistance were good.

比較のために、フッ素化処理前のポリエチレン中空糸状
多孔体を、250℃で熱暴露すると瞬時に溶融して著し
く変形して孔が消滅し、また、150℃の98憾濃硫酸
に浸せきすると瞬時に溶融して著しく変形して孔が消滅
し、かつ黒変して非常にもろくなった。
For comparison, when a polyethylene hollow fiber porous material before fluorination treatment was exposed to heat at 250°C, it instantly melted and was significantly deformed, causing the pores to disappear; It melted and was significantly deformed, the pores disappeared, and it turned black and became extremely brittle.

実施例2 実施例1と同じ原料を用いて押出機及びフラットダイを
使用してフィルム状に溶融押出したのち、実施例1と同
様な操作をしてポリエチレンフィルム状多孔体を得た。
Example 2 The same raw materials as in Example 1 were melt-extruded into a film using an extruder and a flat die, and the same operations as in Example 1 were carried out to obtain a polyethylene film-like porous body.

この多孔体は、膜厚300μ、平均孔径0.15μ、最
大孔径0.30μ、気孔率70憾で、網を構成する繊維
の太さが0゜12μの三次元網状構造を有する均一な多
孔体であった。
This porous material has a thickness of 300μ, an average pore diameter of 0.15μ, a maximum pore diameter of 0.30μ, a porosity of 70, and a three-dimensional network structure with a thickness of 0° and 12μ for the fibers that make up the network. Met.

このポリエチレンフィルム状多孔体を反応容器に入れ、
lXl0  萬IHgの真空度で30分間脱気したのち
1反応容器にフッ素ガスを80mmHgの濃度まで導入
して20℃にて30分間反応させた〇次いで、脱気した
のちフッ素ガスを80+lllHgまで導入して30分
間反応させる操作を3回繰り返した。多孔体とフッ素ガ
スの接触時間は語2時間である。次に、脱気して窒素ガ
スを導入したのち、多孔体を反応容器よシとり出し、水
洗、乾燥してフッ素化ポリオレフィンフィルム状多孔体
を得た。
This polyethylene film-like porous material is placed in a reaction container,
After degassing for 30 minutes at a vacuum level of 1X10,000 IHg, fluorine gas was introduced into one reaction vessel to a concentration of 80 mmHg and reacted at 20°C for 30 minutes. Next, after degassing, fluorine gas was introduced to a concentration of 80 mmHg. The operation of reacting for 30 minutes was repeated three times. The contact time between the porous body and the fluorine gas was approximately 2 hours. Next, after degassing and introducing nitrogen gas, the porous body was taken out from the reaction vessel, washed with water, and dried to obtain a fluorinated polyolefin film-like porous body.

このフッ素化ポリオレフィン多孔体は、膜厚300μ、
平均孔後転15μ、最大孔径0.30μ、気孔率70%
で、網を構成する繊維の太さが0.12μの三次元網状
構造を有する均一な多孔体であり、フッ素化度96係で
あった。
This fluorinated polyolefin porous body has a film thickness of 300μ,
Average pore rotation 15μ, maximum pore diameter 0.30μ, porosity 70%
It was a uniform porous body having a three-dimensional network structure in which the thickness of the fibers constituting the network was 0.12 μm, and the degree of fluorination was 96.

このフッ素化ポリオレフィン多孔体を% 250℃で1
0時間熱暴露しても実質的な変化はなく、また、150
℃の98%濃硫酸に10日間浸せきしても実質的な変化
はなく、耐熱性、耐薬品性は良好であった。
% of this fluorinated polyolefin porous material at 250℃
There was no substantial change after 0 hours of heat exposure;
There was no substantial change even after 10 days of immersion in 98% concentrated sulfuric acid at °C, and the heat resistance and chemical resistance were good.

比較例 膜厚のみ100μと異なる他は実施例2と同じポリエチ
レンフィルム状多孔体を3枚密着して重ね(討300μ
厚さで実施例2の膜厚と同じ)反応容器に入れた。まず
1気圧の窒素ガスを流量40ccZ分で1時間反応容器
に流したのち、フッ素ガス分圧80顛Hg、窒素ガス分
圧6801111Hgから成る1気圧混合フッ素ガスを
流量43cc/分で2時間反応容器に流した。次いで、
1気圧窒素ガスを流量4Qcc/分で1時間反応容器に
流したのち、多孔体を反応容器よシとり出し、水洗、乾
燥してフッ素化ポリオレフィン多孔体を得た。
Comparative Example Three polyethylene film-like porous materials were stacked closely together as in Example 2, except that the film thickness was 100 μm.
The film thickness was the same as that of Example 2) and was placed in a reaction vessel. First, 1 atm nitrogen gas was flowed into the reaction vessel for 1 hour at a flow rate of 40 cc/min, and then a 1 atm mixed fluorine gas consisting of a fluorine gas partial pressure of 80 Hg and a nitrogen gas partial pressure of 6801111 Hg was flowed into the reaction vessel for 2 hours at a flow rate of 43 cc/min. It was passed to. Then,
After flowing 1 atm nitrogen gas into the reaction vessel at a flow rate of 4 Qcc/min for 1 hour, the porous body was taken out from the reaction vessel, washed with water, and dried to obtain a fluorinated polyolefin porous body.

このフッ素化ポリオレフィン多孔体のフッ素化度を測定
したところ、3枚のうち中心層のフィルム状多孔体は5
憾以下と低かった。
When the degree of fluorination of this fluorinated polyolefin porous material was measured, the film-like porous material in the center layer was 5.
It was very low.

この結果より、常圧のフッ素ガスを多孔体表面に流しな
がら接触させるフッ素化法(・ま、フッ素ガスの多孔体
内部への拡散に時間がかかっ、多孔体全体を十分フッ素
化するのに長時間を要して好ましくないことがわかる。
From these results, we found that the fluorination method, in which fluorine gas at normal pressure is brought into contact with the surface of the porous material while flowing it (-- however, it takes time for the fluorine gas to diffuse into the inside of the porous material, and it takes a long time to fully fluorinate the entire porous material. It takes time to find out what is undesirable.

Claims (1)

【特許請求の範囲】 1 平均太さ1μ以下の繊維で構成された、平均孔径0
.01〜1μの三次元網状構造を有し、かつフッ素化度
40%以上にフッ素化されていることを特徴とするフッ
素化ポリオレフィン多孔体。 2 平均太さ1μ以下の繊維で構成された平均孔径0.
01〜1μの三次元網状構造を有するポリオレフィン多
孔体を減圧脱気したのち、該多孔体中へ減圧下にフッ素
ガスを導入してフッ素化度40%以上になるまでフッ素
化することを特徴とするフッ素化ポリオレフィン多孔体
の製造方法。
[Claims] 1. An average pore size of 0, composed of fibers with an average thickness of 1μ or less.
.. A porous fluorinated polyolefin material having a three-dimensional network structure of 0.01 to 1 μm and fluorinated to a degree of fluorination of 40% or more. 2 An average pore diameter of 0.2 made up of fibers with an average thickness of 1μ or less.
A polyolefin porous body having a three-dimensional network structure of 0.01 to 1 μm is degassed under reduced pressure, and then fluorine gas is introduced into the porous body under reduced pressure to fluorinate the porous body until the degree of fluorination reaches 40% or more. A method for producing a porous fluorinated polyolefin material.
JP10794085A 1985-05-20 1985-05-20 Production of porous fluorinated polyolefin article Pending JPS61266442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10794085A JPS61266442A (en) 1985-05-20 1985-05-20 Production of porous fluorinated polyolefin article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10794085A JPS61266442A (en) 1985-05-20 1985-05-20 Production of porous fluorinated polyolefin article

Publications (1)

Publication Number Publication Date
JPS61266442A true JPS61266442A (en) 1986-11-26

Family

ID=14471904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10794085A Pending JPS61266442A (en) 1985-05-20 1985-05-20 Production of porous fluorinated polyolefin article

Country Status (1)

Country Link
JP (1) JPS61266442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451406A (en) * 1987-08-20 1989-02-27 Nippon Oil Co Ltd Fluorinated ethylene-alpha-olefin copolymer
JP2007327047A (en) * 2006-05-18 2007-12-20 Air Products & Chemicals Inc Surface fluorination of plastic material
JP2021514297A (en) * 2018-02-20 2021-06-10 ジルソン エスアーエス Methods for Fluorinating Pipette Tip Filters, Pipette Tips, Related Manufacturing Methods, and Pipettes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451406A (en) * 1987-08-20 1989-02-27 Nippon Oil Co Ltd Fluorinated ethylene-alpha-olefin copolymer
JP2007327047A (en) * 2006-05-18 2007-12-20 Air Products & Chemicals Inc Surface fluorination of plastic material
JP2021514297A (en) * 2018-02-20 2021-06-10 ジルソン エスアーエス Methods for Fluorinating Pipette Tip Filters, Pipette Tips, Related Manufacturing Methods, and Pipettes

Similar Documents

Publication Publication Date Title
JP2749094B2 (en) Method for producing multifunctional filtration membrane having iminodiacetic acid group
CN1705505B (en) Microporous hydrophilic membrane
JPS62155919A (en) Membrane for separating components of gaseous mixture, its production and separation method
JP3312634B2 (en) Chelate-type ion-adsorbing membrane and manufacturing method
US10040033B2 (en) Multilayer separation membrane
JP2007077323A (en) Ethylene tetrafluoride resin formed article, stretched ethylene tetrafluoride resin formed article, methods for producing them, and composite material, filter, impact deformation-absorbing material and seal material
JPH02169017A (en) Semi-permeable polymeric membrance
JPS63171619A (en) Polymer film separating gas mixture, manufacture thereof and method of gas mixture separation thereof
JPS61266442A (en) Production of porous fluorinated polyolefin article
CN108097054A (en) It is a kind of can ultraviolet light cross-linking sulfonated polyphenyl ether sulfone ketone membrane for water treatment material preparation method
JPH01224004A (en) Permselective microfilter and its production
JPS59225703A (en) Porous membrane and preparation thereof
JPH0136841B2 (en)
EP0408052A1 (en) Porous membrane and production process thereof
JPS61157344A (en) Manufacture of metal absorbing material
JPS5892449A (en) Membrane for selective permeation of oxygen gas
JPH01224005A (en) Double-layered hollow yarn microfilter with polyvinylidene fluoride as skeleton
CN108610494B (en) Preparation method of polyether sulfone/functional sugar-containing polymer hybrid membrane
JP2004035582A (en) Method for producing surface-treated polymeric microporous membrane
JPH0551701B2 (en)
JPS63230172A (en) Production of porous hollow yarn for artificial lung
JPS63260938A (en) Porous membrane having heat resistance imparted thereto and its production
JPH03193123A (en) Manufacture of gas selective separation membrane
CN112426889A (en) Modified PVC hollow fiber ultrafiltration membrane and preparation method thereof
CN117323844A (en) High-toughness chlorine-containing copolymer-based filtering membrane and preparation method thereof