JPS5892449A - Membrane for selective permeation of oxygen gas - Google Patents

Membrane for selective permeation of oxygen gas

Info

Publication number
JPS5892449A
JPS5892449A JP19068681A JP19068681A JPS5892449A JP S5892449 A JPS5892449 A JP S5892449A JP 19068681 A JP19068681 A JP 19068681A JP 19068681 A JP19068681 A JP 19068681A JP S5892449 A JPS5892449 A JP S5892449A
Authority
JP
Japan
Prior art keywords
membrane
oxygen
oxygen gas
film
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19068681A
Other languages
Japanese (ja)
Other versions
JPH0331493B2 (en
Inventor
Satoshi Takizawa
智 滝沢
Kazuhiro Suzuoki
一紘 鈴置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP19068681A priority Critical patent/JPS5892449A/en
Publication of JPS5892449A publication Critical patent/JPS5892449A/en
Publication of JPH0331493B2 publication Critical patent/JPH0331493B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the membrane through which oxygen gas can selectively permeate as compared with other gases, esp. nitrogen gas, by forming the selective oxygen gas-permeable membrane from a macromolecular derivative contg. a specified side-chain-substituted group. CONSTITUTION:The selective oxygen gas-permeable membrane is formed from a macromolecular derivative contg. a side chain-substituted group defined by the formulaI(where, Y=F, Cl, etc., m=0 or 1 and n=1-10) such as a cellulose or alcohol derivative. This permeable membrane is useful, since it makes oxygen gas permeate through it with a large ratio of oxygen permeation as compared with other gases, esp. nitrogen gas.

Description

【発明の詳細な説明】 本発明は、酸素ガスを他の気体、II#に窒素ブスと比
べて選択的に透過させることができ、しかも酸素透過率
の大きい選択性透過膜に関するものである0 混合気体から酸素を分離する技術、I!#に空気から酸
素を分離する技術社有用である。即ち、醗酵工学、汚水
処理のための曝気、魚養殖用曝気などに用いることがで
きるからである。tた、仁の技術を種々の燃焼器具や自
動車のエンジンなどに応用すると、省エネルギーや公害
防止に役立つからである。さらに、肺の機能が損なわれ
た患者や未熟児にとっては、30−40 %の酸素含有
空気が必要であり、この面に応用すると、医療用にも役
立つのである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a selectively permeable membrane that can selectively permeate oxygen gas to other gases, II#, compared to a nitrogen bus, and has a high oxygen permeability. Technology to separate oxygen from mixed gas, I! The technology to separate oxygen from air is useful. That is, it can be used in fermentation engineering, aeration for sewage treatment, aeration for fish culture, etc. Furthermore, if Jin's technology is applied to various combustion appliances and automobile engines, it will help save energy and prevent pollution. Furthermore, air containing 30-40% oxygen is necessary for patients with impaired lung function and premature infants, and its application in this area is also useful for medical purposes.

ところで、従来、数案O分離方法として、膜分離の他に
深冷分離法や1着法があるが、両者とも大きな装置が必
要であること、エネルギーコストが大きいことなどの欠
点がある。これに対して、少ないエネルギーで装置も操
作も比較的簡単な酸素分離方法として、膜分離を用いる
方法がある〇しかし、酸素ガスの膜分離は、はとんど実
用化されなかった。酸素分離膜として必要な条件は、酸
素と窒素の透過係数の比が大きいこと、酸素の透過率が
大きい仁と、機械的強度が充分あるとと、用途に応じた
耐薬品性が充分に:4ることなどが挙げられるのだが、
これらを同時に満足する高分子膜が実現されていないか
らである。
By the way, as conventional O separation methods, there are cryogenic separation methods and one-coat methods in addition to membrane separation, but both have disadvantages such as requiring large equipment and high energy costs. On the other hand, there is a method of oxygen separation that requires less energy and requires relatively simple equipment and operation, using membrane separation. However, membrane separation of oxygen gas has rarely been put to practical use. The necessary conditions for an oxygen separation membrane are a high ratio of oxygen and nitrogen permeability coefficients, a high oxygen permeability, sufficient mechanical strength, and sufficient chemical resistance depending on the application: There are four things that can be mentioned,
This is because a polymer membrane that satisfies these requirements simultaneously has not been realized.

たとえば、従来の代表的表酸素分離膜としてシリコンゴ
ムが挙げられるが、酸素と窒素の透過比が2程度で小さ
いという欠点がある。
For example, silicone rubber is used as a typical conventional surface oxygen separation membrane, but it has the drawback of having a small oxygen to nitrogen permeation ratio of about 2.

また、高分子膜の中に昧、透過比がポリエチレンテレフ
タレート膜などのようKs程度と高いものもあるが、こ
れらO膜では酸素透過率が小さいという問題があった@ 酸素透過率、酸素と窒素の過膜此の両者を改良する方法
として、高分子膜中和弗素化合物を導入する方法は既に
存在する。即ち、血液酸素供給器用ガス透過性膜として
、フルオロアシル化エチルセルロース誘導体を含む高分
子膜を用いる方法゛(%開1昭51−98684 )が
提案されている。しかし、これも非弗素化エチルセルロ
ースと比較し九とき、その酸素ガス透過率は約1.9〜
3.0倍だけ増大するにすぎず、不充分である。
Additionally, some polymer membranes have a permeability ratio as high as Ks, such as polyethylene terephthalate membranes, but these O membranes have a problem of low oxygen permeability. As a method to improve both of these problems, a method of introducing a neutralizing fluorine compound into a polymer film already exists. That is, a method has been proposed in which a polymer membrane containing a fluoroacylated ethyl cellulose derivative is used as a gas-permeable membrane for a blood oxygen supply device. However, when compared with non-fluorinated ethyl cellulose, its oxygen gas permeability is about 1.9~
The increase is only 3.0 times, which is insufficient.

本発明者等は、酸素と窒素の透過比が大きく、酸素透過
率も大きいrI!素分離J[Kついて鋭意研究を重ねた
結果、特定の弗素を有する置換基を持った高分子膜が目
的に適合しうろことを見い出し、この知見に基づいて本
発明を完成するに至った。
The present inventors discovered that rI! has a large oxygen to nitrogen permeation ratio and a high oxygen permeability! As a result of extensive research into elemental separation J[K, we discovered that a polymer membrane with a specific fluorine-containing substituent was suitable for the purpose, and based on this knowledge, we completed the present invention.

即ち、本発明は、下記の一般式を側鎖置換基として含む
高分子誘導体から成ることを特徴とする酸素ガス選択性
透過膜を提供するものである。
That is, the present invention provides an oxygen gas selective permeable membrane characterized by being made of a polymer derivative containing the following general formula as a side chain substituent.

(Y:F、C2,BrまたaI mhoまたは1.  ms1〜10) パーフルオロエーテル着換基を導入するポリマーは、酸
フルオライドと反応する水酸基、アミノ基、アンド基な
どの官能基を持つポリマーであり、このようなものとし
ては、たとえば、セルロース系ポリマー、キトサン系ポ
リマー、ボリア建ド及びビニルアルコール系ポリ!−な
どを挙げる仁と゛ができる。セルロース系ポリマーとし
ては、九と工は、エチルセルp−ス、メチルセルロース
、ヒドロキシエチルセルロース、エチルヒドロキシエチ
ルセルロース、カルボキシメチル七ルp−ス及びその塩
、硝酸セルロース、酢酸セルロース及びセルロースの混
会エステルなどがある0キトナン系ポリマーとしては、
たとえば、エテルキトサン、メチルキトサン、酢酸キト
サン、カルボキシメチルキトサン及びその塩、ヒドロキ
シエチルキトサンなどがある。ポリアンドとしては、6
−6ナイロン、6ナイロン、ullイミン@−10ナイ
四ン、インフタル酸クロリドとm−フェニレンジアミン
共重合体、m−キシレンジアミンとアジピン酸共重合体
などがある。ビニルアルコール系ポリマーとしては、ポ
リビニルアルコール、工fVンービニルアルコール共重
合体、ポリ酢酸ビニル部分ケン化物などがある。
(Y:F, C2, Br or aI mho or 1.ms1-10) The polymer into which the perfluoroether substituent group is introduced is a polymer having functional groups such as hydroxyl group, amino group, and group that reacts with acid fluoride. Examples of such polymers include cellulose polymers, chitosan polymers, boria-based polymers, and vinyl alcohol polyesters. - I can say things like jin and ゛. Examples of cellulosic polymers include ethyl cellulose, methyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl heptose and its salts, cellulose nitrate, cellulose acetate, and mixed esters of cellulose. As a chitonan-based polymer,
Examples include ether chitosan, methyl chitosan, acetic acid chitosan, carboxymethyl chitosan and its salts, and hydroxyethyl chitosan. As polyand, 6
-6 nylon, 6 nylon, ull imine @ -10 nylon, inphthalic acid chloride and m-phenylenediamine copolymer, m-xylene diamine and adipic acid copolymer, etc. Examples of vinyl alcohol polymers include polyvinyl alcohol, vinyl alcohol copolymer, and partially saponified polyvinyl acetate.

本発明に用いるポリ−r −11c @まれる@フルオ
ライドと反応する官能基には、前述の過動、水酸基、ア
ミノ基、または、アミド基がある。所期の目的を達成す
るためには、反応する核官能基(アンノ基、水酸基、ア
ばド基、等)の量がポリマーの平均10重量−以上であ
ることが必要である。平均10重量−未満であると含弗
素置換基の効果が充分出す、透過比や透過率の増大が小
さい。
The functional groups that react with the fluoride contained in the poly-r-11c used in the present invention include the above-mentioned hyperkinetic group, hydroxyl group, amino group, or amide group. In order to achieve the intended purpose, it is necessary that the amount of reacting nuclear functional groups (ano groups, hydroxyl groups, abado groups, etc.) is on average 10 - or more by weight of the polymer. When the average weight is less than 10%, the effect of the fluorine-containing substituent can be sufficiently exhibited, and the increase in transmittance ratio and transmittance is small.

本発明で用いるポリマーと反応させるもう一方の原料の
構造は、 (Y : F + CL + Br * tたUIm:
Oまたは1.  n:1−10 以下パーフルオロポリエーテルと記す0)。である。こ
の製造法は公知である。たとえに、tne’lのパーフ
ルオロポリエーテルの製造法は、1価の金属弗化物、第
3級アミン、又は第3級アミンのオΦサイド、又は第4
級アンモニウム塩等を触媒とし、有機希釈剤中でヘキサ
フルオログμピレンオキサイドを重合させればよい。(
特公昭40−10061号、同41−16798−号及
び同41−167Ii1号各公報) 本発明の目的物であるパーフルオロポリエーテル基を側
鎖に持つ高分子膜は、上記ポリマーをパーフルオロポリ
エーテルで処理することにより形hly、する。処理の
方法には2通#)ある。1つは、由来するポリマーを溶
解させてから、その溶液にパーフルオロポリエーテルを
添加し反応させるものであり、生成した高分子誘導体は
、良溶媒に溶解させ、平板上に流延し、加熱乾燥させて
製膜すればよい。もう1つの方法は、既に薄膜フィルム
や中空子に成形されたポリマーを直接原料に用いる方法
である。即ち、不活性気体雰囲気下で、パーフルオロポ
リエーテル中にフィルム、又は中空糸を浸漬し攪拌する
か、又はフィルム、もしくは中空糸を貧溶媒中でパーフ
ルオロポリニーテルト反応させると得られる。以上の2
過動の処理方法においては、酸受容体を用いることが好
ましい。
The structure of the other raw material to be reacted with the polymer used in the present invention is (Y: F + CL + Br*tUIm:
O or 1. n: 1-10 0) hereinafter referred to as perfluoropolyether. It is. This manufacturing method is known. For example, tne'l's method for producing perfluoropolyethers uses a monovalent metal fluoride, a tertiary amine, or an oxide of a tertiary amine, or a quaternary metal fluoride, or a tertiary amine.
The hexafluorolog μpyrene oxide may be polymerized in an organic diluent using a grade ammonium salt or the like as a catalyst. (
(Japanese Patent Publications No. 40-10061, No. 41-16798, and No. 41-167Ii1)) The polymer membrane having perfluoropolyether groups in the side chains, which is the object of the present invention, is made by combining the above polymer with perfluoropolyether groups. Form hly by treatment with ether. There are two methods of processing. One method is to dissolve the derived polymer and then add perfluoropolyether to the solution for reaction.The resulting polymer derivative is dissolved in a good solvent, cast on a flat plate, and heated. It may be dried to form a film. Another method is to directly use a polymer that has already been formed into a thin film or hollow core as a raw material. That is, it can be obtained by immersing a film or hollow fiber in perfluoropolyether and stirring in an inert gas atmosphere, or by subjecting the film or hollow fiber to a perfluoropolynitrate reaction in a poor solvent. Above 2
In the method of treating hyperactivity, it is preferable to use acid receptors.

本発明で得られたパーフルオロポリエーテル基を側鎖に
持つ高分子膜の酸素と窒素の透過比は、原料の非弗素化
高分子膜の透過比に比べ、大幅に増大する。他方、酸素
の透過率も、セロノーンやキトサンのような透過率の小
さいポリマーを出発原料に用いた場合は、数百〜数万倍
、エチルセルロースのような透過率の比較的大きなポリ
マーを出発原料に用いた場合でも約10倍と大幅に由来
するポリマーより増大する。また、出発原料ポリマーが
、フィルム、又は中空糸であり、その形状を保ったまま
パーフルオロポリエーテル基を導入した場合には、由来
するフィルムもしくは中空糸を薄膜化しておくことによ
って、分離膜の薄膜化が容易であるという長所がある。
The oxygen and nitrogen permeability ratio of the polymer membrane having perfluoropolyether groups in the side chains obtained in the present invention is significantly increased compared to the permeation ratio of the non-fluorinated polymer membrane as a raw material. On the other hand, the oxygen permeability is hundreds to tens of thousands of times higher when using polymers with low permeability such as celone or chitosan as the starting material, and when using polymers with relatively high permeability such as ethyl cellulose as the starting material. Even when used, the increase is approximately 10 times greater than that of the original polymer. In addition, if the starting material polymer is a film or hollow fiber and a perfluoropolyether group is introduced while maintaining its shape, the separation membrane can be formed by thinning the original film or hollow fiber. It has the advantage of being easy to make into a thin film.

こうして得た高分子膜を用いると、酸素の分離が飛躍的
に向上するので、前述の燃焼装置や医療への応用などに
使える可能性が出てきた。
Using the polymer membrane obtained in this way dramatically improves oxygen separation, opening the possibility of its use in the aforementioned combustion devices and medical applications.

なお、本発明において、ガス透過率の測定は、三元理化
学工業■製通気度測定装置5K−32!!!を用いて行
った。
In the present invention, gas permeability is measured using an air permeability measuring device 5K-32 manufactured by Sangen Rikagaku Kogyo ■. ! ! This was done using

実施例1 エチルセルロース(4・−のエトキシ化率)aspを、
400wItの乾燥メチレンクロライドに室温で溶解し
、次に乾燥ピリジンufを添加した0さらに1CF、 
CF、 CF、 OCF (CF、 ) COF @7
 tを攪拌しながら添加した。5時間攪拌を続けた溶液
をメタノールと水O70: 36の混合溶媒中へ注ぎ、
ポリマーを沈殿させた。上澄溶液を完全にデカントシ、
かつポリマー會ILのアセトンに再溶解させ良。このポ
リ!−を次にメタノール−水(To:M)中で、再沈殿
させ、濾過し、空気乾燥し、次に真空中軸℃で乾燥した
。赤外吸収スペクトルによると、トレース量の水酸基し
か認められなかった。
Example 1 Ethyl cellulose (ethoxylation rate of 4.-) asp,
0 further 1 CF dissolved in 400 wIt of dry methylene chloride at room temperature and then added with dry pyridine uf,
CF, CF, OCF (CF, ) COF @7
t was added with stirring. The solution that had been stirred for 5 hours was poured into a mixed solvent of methanol and water O70:36.
The polymer was precipitated. Decant the supernatant solution completely;
It is also possible to redissolve the polymer in acetone. This poly! - was then reprecipitated in methanol-water (To:M), filtered, air-dried, and then dried in vacuo at 100°C. Infrared absorption spectra showed only trace amounts of hydroxyl groups.

このポリマーの1・チアセトン溶液をテア四ン平板上に
流延し、50℃にて11時間加熱し、厚さ19声の膜を
得た0 得られた膜の気体透過性を測定し良・この膜の酸素と窒
素の透過比はl意であり、エチルセルロース膜の透過比
の3.1倍であった。また、酸素ガス透過率fl、 3
00 X 1@−’ aias・am−” ・5ee−
” ・txBf−”と10、エチルセルロース膜の1霊
倍となった。
A solution of this polymer in 1-thiacetone was cast on a TEA plate and heated at 50°C for 11 hours to obtain a film with a thickness of 19 mm.The gas permeability of the resulting film was measured. The oxygen to nitrogen permeation ratio of this membrane was significant, 3.1 times that of the ethyl cellulose membrane. In addition, the oxygen gas permeability fl, 3
00 X 1@-'aias・am-"・5ee-
"・txBf-" was 10, which was 1 times as much as the ethyl cellulose membrane.

実施例2 充分乾燥した厚さt8fiの6ナイロンフイルムo、z
o rを、CF、CF、CF、0CF(CF、)COF
  L、S tのテトラクロ羨エタン溶液100 vt
 (ピリジン7fを含む。)K浸漬し、5時間Zoo℃
で攪拌した0その後フィルムを取抄出し、ナト2クロル
エタン、次いでメタノールで充分洗浄した。こうして得
たフィルムをgo℃で真空乾燥した。
Example 2 Thoroughly dried 6 nylon film o, z with thickness t8fi
o r, CF, CF, CF, 0CF(CF,)COF
L, S t tetrachloroethane solution 100 vt
(Contains 7F of pyridine.) Soaked in K, Zoo℃ for 5 hours
The film was then taken out and thoroughly washed with dichloroethane and then methanol. The film thus obtained was vacuum dried at goC.

得られたフィルムの気体透過度を一1定した0この膜の
酸素と窒素の透過比祉1丁であシ、6ナイ田ンフイルム
の透過比の4.8倍である0また、酸素ガス透過率は、
2.0 X 10−”°aits・az−” ・5ee
−” ・exlly−”とな9.6ナイロンフイルムの
59倍となった0実施例3 充分乾燥した厚さ鋳μOキトナン膜o、is tを、F
+CF(CF、)CF、O+ICF(OF、)COF 
 6.4 Fの乾燥ジメチルアセトアミド溶液100 
II/ (乾燥ビリジy5tを含む。)に浸漬し、5時
間室温で攪拌し良Oその後、フィルムを取り出し、ジメ
チルアセトアミドで充分洗浄した0ζうして得たフィル
ムをH℃で真空乾燥した。
The gas permeability of the obtained film was kept constant at 0. The permeation ratio of oxygen and nitrogen of this membrane was 4.8 times that of the 6-day film. The rate is
2.0 X 10-”°aits・az-”・5ee
Example 3 A fully dried thick cast μO chitonan film o, is t, which was 59 times that of a 9.6 nylon film, was
+CF(CF,)CF,O+ICF(OF,)COF
6.4 F dry dimethylacetamide solution 100
II/ (containing dry viridiy5t), stirred at room temperature for 5 hours, then removed, washed thoroughly with dimethylacetamide, and vacuum-dried at H°C.

得られたフィルムの気体透過度を測定した。この膜の酸
素と窒素の透過比は16であり、キトサン膜の透過比の
3.0倍であった。また酸素ガス透過率は9.4 X 
10−” d−cs・cm−’ ・5ea−’ ・an
Hy−”となり、キトサン膜の約34000倍となった
The gas permeability of the obtained film was measured. The oxygen to nitrogen permeability ratio of this membrane was 16, which was 3.0 times that of the chitosan membrane. Also, the oxygen gas permeability is 9.4
10-"d-cs・cm-'・5ea-' ・an
Hy-'', which was about 34,000 times that of the chitosan film.

実施例4 充分乾燥した厚さ21μのエチレン−ビニルアル:f 
−ル共重合体のフィルム(ビニルアルコール45iit
%)021FをI−+CF(CF、)CF、0−)4C
F(CFs)COF 16.8 fのナト2ヒドロフ9
ン溶液140 sd(ピリジ72’lfを含む。)K浸
漬し、5時間室温で攪拌した。次いで、フィルムを取抄
出し、テトラヒドロフランで充分洗浄した。こうして得
たフィルムを50℃で真空乾燥した。
Example 4 Thoroughly dried ethylene-vinyl aluminum with a thickness of 21 μm: f
-L copolymer film (vinyl alcohol 45iit
%)021F I-+CF(CF,)CF,0-)4C
F(CFs)COF 16.8 f nato2hydrof9
The mixture was immersed in a solution of 140 sd (containing 72'lf of pyridine) K and stirred at room temperature for 5 hours. Next, the film was taken out and thoroughly washed with tetrahydrofuran. The film thus obtained was vacuum dried at 50°C.

得られたフィルムの気体透過度を測定した。このフィル
ムの酸素と窒素の透過比は17であり、エチレン−ビニ
ルアルコール共I合体のフィルムの透過比の4.3倍で
あった。また、酸素ガス透過率は41 X 1G−” 
aLcs・m−L 5ee−’ ・erIIHy−重で
あった。
The gas permeability of the obtained film was measured. The oxygen to nitrogen permeation ratio of this film was 17, which was 4.3 times the permeation ratio of the ethylene-vinyl alcohol co-I composite film. Also, the oxygen gas permeability is 41 x 1G-”
aLcs・m−L 5ee−′・erIIHy−heavy.

実施例5 充分乾燥した内径200 J S膜厚20μのキエプ2
アンモニアレーヨンの中空糸0.24 t ヲ、F+C
FtCF、5cF10)1CF(CF3)cOF  s
、z tのテトラヒトI:+7テン溶液zso w (
ピリジン5.91を含む。)に浸漬し、5時間室温で攪
拌した。次いで中空糸を取抄出し、テ)ラヒドロ7ラン
で充分洗浄した。こうして得た中空糸を50℃で真空乾
燥した0 得られた膜の気体透過度を測定した。この膜の酸素と窒
素の透過比は、74であり、キエプ2アンモニアレーヨ
/の膜の透過比の11倍であった0また。酸素ガス透過
率は、58 X 10” d・an cs−”・@ee
−”・anHy−’となり、キエプラアンモニアレーヨ
ンの膜の約2900Q倍となった。
Example 5 Sufficiently dried Kiep 2 with an inner diameter of 200 JS and a film thickness of 20μ
Ammonia rayon hollow fiber 0.24 t wo, F+C
FtCF, 5cF10)1CF(CF3)cOF s
, z t of tetrahuman I:+7 ten solution zso w (
Contains 5.91 pyridine. ) and stirred at room temperature for 5 hours. Then, the hollow fibers were taken out and thoroughly washed with Tetrahydro 7ran. The hollow fiber thus obtained was vacuum dried at 50° C. The gas permeability of the obtained membrane was measured. The permeation ratio of oxygen and nitrogen of this membrane was 74, which was 11 times the permeation ratio of the membrane of Kiep 2 Ammonia Rayo/0. Oxygen gas permeability is 58 x 10" d・an cs-"@ee
-"・anHy-', which was about 2900Q times that of the KIEPL ammonia rayon film.

特許出願人 旭化成工業株式会社 手続補正書(自発) 昭和i1年意月io日 特許庁長官 島 1)春 樹 殿 1、事件の表示   昭和56年特許願第 tso@s
i  号2 発明の名称 酸素ガス選択性遁遥属 a 補正をする者 事件との関係   特許出願人 大阪府大阪市北区堂島浜1丁目2番6号屯 補正の対象 h 補正の内容 (1)  #4細書第3jjlIIs行「過膜比」を「
透過比」と訂正する。
Patent Applicant Asahi Kasei Kogyo Co., Ltd. Procedural Amendment (Voluntary) Date of 1975, Month io, Commissioner of the Japan Patent Office Shima 1) Haruki Tono1, Indication of Case Patent Application No. 1988 tso@s
i No. 2 Title of the invention Oxygen gas selectivity Toyo Gen a Relationship with the case of the person making the amendment Patent applicant 1-2-6-Tun Dojimahama, Kita-ku, Osaka-shi, Osaka Target of the amendment h Contents of the amendment (1) # 4 Specification No. 3 jjlIIs line “Transmembrane ratio” is changed to “
Transmission ratio” is corrected.

(2)同第6頁第4行「アミド基1等)」を「アミド基
等)」と訂正する。
(2) On page 6, line 4, "amide group 1, etc.)" is corrected to "amide group, etc.)."

(3)  同第1頁第13行「中空子」を「中空糸」と
訂正する。
(3) On page 1, line 13, "hollow child" is corrected to "hollow fiber."

(4)同第11頁第5行[9,4X1G”Jを「9.4
 X 1(1″′″町と訂正する。
(4) Page 11, line 5 [9,4X1G”J is replaced by “9.4
X 1 (corrected as 1″′″ town.

(5)  11i1第11頁第6行「約840(1(I
倍J t r 5aoo債」と訂正する。
(5) 11i1, page 11, line 6 “about 840 (1(I
Double J tr 5aoo bond” is corrected.

(6)同第12頁第1s行「約zseoo倍」を「zs
ooolと訂正する。
(6) On page 12, line 1s, change “approximately zseoo times” to “zs
Correct it as oool.

以上that's all

Claims (3)

【特許請求の範囲】[Claims] (1)  下記の一般式を側鎖置換基として含む高分子
誘導体から成ることを特徴とする酸素メス選択性透過膜 (Y : F、Ct、1rt7tは! m:O1えは1、 n:x−10)
(1) An oxygen-selective permeable membrane (Y: F, Ct, 1rt7t! m: O1, n: x -10)
(2)高分子誘導体が、竜ル讐−ス誘導体、キトナン誘
導体、ポリビニルアルコール誘導体、ボリアオド誇導禄
から虞ゐ群から選ばれる1つであることを特徴とする特
許請求01111第1項記載の酸素ガス選択性透過膜
(2) The polymer derivative is one selected from the group consisting of a rhinoceros derivative, a chitonan derivative, a polyvinyl alcohol derivative, and a polyvinyl alcohol derivative. Oxygen gas selective permeable membrane
(3)m=1である特許請求の範囲第1項記載の酸素ガ
ス選択性透過膜
(3) The oxygen gas selective permeable membrane according to claim 1, where m=1.
JP19068681A 1981-11-30 1981-11-30 Membrane for selective permeation of oxygen gas Granted JPS5892449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19068681A JPS5892449A (en) 1981-11-30 1981-11-30 Membrane for selective permeation of oxygen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19068681A JPS5892449A (en) 1981-11-30 1981-11-30 Membrane for selective permeation of oxygen gas

Publications (2)

Publication Number Publication Date
JPS5892449A true JPS5892449A (en) 1983-06-01
JPH0331493B2 JPH0331493B2 (en) 1991-05-07

Family

ID=16262181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19068681A Granted JPS5892449A (en) 1981-11-30 1981-11-30 Membrane for selective permeation of oxygen gas

Country Status (1)

Country Link
JP (1) JPS5892449A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118217A (en) * 1983-11-29 1985-06-25 Daikin Ind Ltd Gas separation membrane
US4749414A (en) * 1985-03-25 1988-06-07 The Dow Chemical Company Composition for modifying polymeric surfaces and articles produced thereby
US4832712A (en) * 1986-11-05 1989-05-23 Daikin Industries, Ltd. Gas separating membrane
WO1998058418A1 (en) * 1997-06-17 1998-12-23 Aer Energy Resources, Inc. Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane
JP2016510346A (en) * 2012-12-12 2016-04-07 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Fluorinated chitosan derivatives

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118217A (en) * 1983-11-29 1985-06-25 Daikin Ind Ltd Gas separation membrane
EP0146020A2 (en) * 1983-11-29 1985-06-26 Daikin Kogyo Co., Ltd. Gas separating membrane
EP0146020A3 (en) * 1983-11-29 1985-08-21 Daikin Kogyo Co., Ltd. Material for gas separating membrane
JPH0250769B2 (en) * 1983-11-29 1990-11-05 Daikin Ind Ltd
US4749414A (en) * 1985-03-25 1988-06-07 The Dow Chemical Company Composition for modifying polymeric surfaces and articles produced thereby
US4832712A (en) * 1986-11-05 1989-05-23 Daikin Industries, Ltd. Gas separating membrane
WO1998058418A1 (en) * 1997-06-17 1998-12-23 Aer Energy Resources, Inc. Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane
US5985475A (en) * 1997-06-17 1999-11-16 Aer Energy Resources, Inc. Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane
JP2002503151A (en) * 1997-06-17 2002-01-29 エア エナジー リソースィズ インコーポレイテッド A membrane for selectively transporting oxygen in preference to water vapor and a metal-air electrochemical cell provided with the membrane
JP2016510346A (en) * 2012-12-12 2016-04-07 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Fluorinated chitosan derivatives
US9828444B2 (en) 2012-12-12 2017-11-28 Solvay Specialty Polymers Italy S.P.A. Fluorinated chitosan derivatives

Also Published As

Publication number Publication date
JPH0331493B2 (en) 1991-05-07

Similar Documents

Publication Publication Date Title
CA1146711A (en) Process for preparing a selective permeable membrane and membranes prepared thereby
US4657564A (en) Fluorinated polymeric membranes for gas separation processes
CN109232953B (en) Polyvinimidyl chloramine type antibacterial cellulose membrane, preparation method and application
JPH0568859A (en) Gas separation hollow-fiber membrane and its production
Xie et al. Low fouling polysulfone ultrafiltration membrane via click chemistry
JPS6127086B2 (en)
CN103055711A (en) Method for preparing amphiphilic block copolymer modified polyvinylidene fluoride hollow fiber membrane
JPS63171619A (en) Polymer film separating gas mixture, manufacture thereof and method of gas mixture separation thereof
CN111617645A (en) Preparation method of low-resistance high-selectivity mixed matrix membrane based on hollow MOFs (metal-organic frameworks) material
JPS5892449A (en) Membrane for selective permeation of oxygen gas
CN110052187A (en) A kind of modified poly (ether-sulfone) and its preparation method and application
CN115260504B (en) Zwitterionic-containing polyarylethersulfone block copolymer, anti-pollution ultrafiltration membrane, preparation method and application
EP3275527B1 (en) Gas-permeable membrane, use of a composition for forming such membrane and process for producing it
CN111992055B (en) Preparation method of organic-inorganic composite ultrafiltration membrane based on carboxyl-containing polyaryletherketone and graphene oxide
JPS61249523A (en) Molded material for fluid separation
CN108610494B (en) Preparation method of polyether sulfone/functional sugar-containing polymer hybrid membrane
CN116622217B (en) Blending modified composite emulsion, preparation method thereof, MOFs composite membrane material and application thereof
JPH0431730B2 (en)
JPS6127085B2 (en)
CN114159987B (en) Pervaporation gasoline desulfurization membrane and preparation method thereof
JP2525038B2 (en) Selective permeable membrane and method for producing the same
CN117339407A (en) Anticoagulation hemodialysis device and preparation method and application thereof
EP0508539A2 (en) Preparation of poly-(2,6-dimethyl-P-oxyphenylene) functionalized with trialkyl-silyl and hydroxy-ethyl groups
JPH02218423A (en) Gas separation membrane
JPH02140234A (en) Aromatic polymer and its production