JPH02218423A - Gas separation membrane - Google Patents

Gas separation membrane

Info

Publication number
JPH02218423A
JPH02218423A JP3635889A JP3635889A JPH02218423A JP H02218423 A JPH02218423 A JP H02218423A JP 3635889 A JP3635889 A JP 3635889A JP 3635889 A JP3635889 A JP 3635889A JP H02218423 A JPH02218423 A JP H02218423A
Authority
JP
Japan
Prior art keywords
oxygen
weight
parts
groups
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3635889A
Other languages
Japanese (ja)
Inventor
Shigeru Tsurumaki
茂 弦巻
Masahito Shimomura
下村 雅人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3635889A priority Critical patent/JPH02218423A/en
Publication of JPH02218423A publication Critical patent/JPH02218423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

PURPOSE:To form a thin film and heighten oxygen permeation index and oxygen/nitrogen separation index by graft-copolymerizing a polymer of nitropoly(phenylene sulfide) of which a part of the nitro groups is reduced to amino group and siloxane oligomer having epoxy in both terminals. CONSTITUTION:A part of nitro-groups in a nitropolyphenylene sulfide having a large oxygen/nitrogen separation index and a high mechanical strength is reduced into amino group and then the resulting polyphenylene sulfide is graft- copolymerized with siloxane oligomer having epoxy groups in both terminals and expressed as a formula I [(n) stands for 1-20 integer]. By this, polydimethylsiloxane structure having a large oxygen permeating index is introduced into the graft-copolymer. The graft-copolymer is dissolved in an organic solvent of ketones of cyclohexanes and formed into a thin film. By this method, a membrane having large oxygen permeation index, oxygen/nitrogen separation index, and gas permeation speed is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸素を選択的に透過する気体分離膜に関し、特
に空気中から酸素の豊富な空気を得る方法及び装置に有
利に適用される気体分離膜に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a gas separation membrane that selectively permeates oxygen, and in particular to a gas separation membrane that is advantageously applied to a method and apparatus for obtaining oxygen-rich air from air. Regarding separation membranes.

〔従来の技術〕[Conventional technology]

空気中の酸素を選択的に透過する気体分離膜の膜材料と
して、これまでに多数の高分子材料が提案されている。
Many polymeric materials have been proposed as membrane materials for gas separation membranes that selectively permeate oxygen in the air.

実用的な気体分離膜としては、気体透過性が大きく、酸
素と窒素との分離性が優れていることが要求される。
A practical gas separation membrane is required to have high gas permeability and excellent ability to separate oxygen and nitrogen.

酸素透過速度(etlg”/as” ・aea −51
1g )  は、気体分離膜の単位面積G−)、単位時
間(sea L単位圧力(cmHg )  当りに膜を
透過する酸素の量(5つで、膜の厚さによp変化する値
である。
Oxygen permeation rate (etlg"/as" ・aea -51
1g) is the unit area G-) of the gas separation membrane, the amount of oxygen permeating through the membrane per unit time (sea L unit pressure (cmHg)) (5, and p is a value that changes depending on the membrane thickness) .

したがって、同じ素材の分離膜でも膜の厚さが違うと酸
素透過速度が異なる。一般に、気体透過速度は、膜厚に
反比例するので、膜厚が薄ければ薄いほど気体透過速度
が大きくなり、実用上有利である。
Therefore, even if the separation membrane is made of the same material, the oxygen permeation rate will be different if the membrane thickness is different. Generally, the gas permeation rate is inversely proportional to the film thickness, so the thinner the film thickness, the higher the gas permeation rate, which is practically advantageous.

これに対し、気体透過係数(aI?−1−・sea −
5+Bg)  は、気体透過速度に膜厚をかけた値であ
るので膜厚に関係なく、膜素材に固有の値となり、膜素
材による気体透過性を比較する指標となる。従って、気
体透過係数の大きな分離膜でも、機械的強度がなく、薄
い膜を形成することができない場合、気体透過速度が小
なくな)実用上不利になる。逆に気体透過係数が小さな
分離膜でも極端に薄い膜を形成することができれば、気
体透過速度が大きくなシ実用可能となる。
On the other hand, the gas permeability coefficient (aI?-1-・sea-
5+Bg) is a value obtained by multiplying the gas permeation rate by the membrane thickness, so it is a value specific to the membrane material regardless of the membrane thickness, and serves as an index for comparing the gas permeability of the membrane materials. Therefore, even if a separation membrane has a large gas permeation coefficient, if it lacks mechanical strength and cannot be formed into a thin membrane, it will be disadvantageous in practice (the gas permeation rate will be low). On the other hand, if an extremely thin separation membrane can be formed even with a small gas permeation coefficient, it becomes practical to achieve a high gas permeation rate.

以上のことから、実用的な気体分離膜としては、気体透
過係数が大きくかつ薄膜化が可能であること、つtb気
体透過速度が大きいことが必要となる。
From the above, a practical gas separation membrane must have a large gas permeability coefficient, be able to be made thin, and have a high tb gas permeation rate.

気体透過性の大きい膜材料としては、酸素透過係数が、
P□、 : 五5 X 10−・am” (8T?) 
・m/al・−eo−amHgであるポリジメチルシロ
キサンが知られているが、ポリジメチルシロキサンだけ
では酸素/窒素分離係数がao、/M!:=:1.94
とl)tシ大きくなく、また機械的強度が小さく薄膜形
成が困難であるため気体透過速度を大きくすることがで
きないという欠点がある。これらの欠点を改善するため
に、機械的強度があシ、かつ酸素/窒素分離性の大きい
高分子とポリジメチルシロキサンとの共重合体が試みら
れている。
For membrane materials with high gas permeability, the oxygen permeability coefficient is
P□, : 55 x 10-・am” (8T?)
・m/al・-eo-amHg Polydimethylsiloxane is known, but polydimethylsiloxane alone has an oxygen/nitrogen separation coefficient of ao, /M! :=:1.94
and l) t is not large, and its mechanical strength is low and it is difficult to form a thin film, so it has the disadvantage that it is not possible to increase the gas permeation rate. In order to improve these drawbacks, attempts have been made to create copolymers of polydimethylsiloxane and polymers that have high mechanical strength and high oxygen/nitrogen separability.

例えば、ポリカーボネー)(米国特許第5980456
号明細書、同第3674986号明細書、特開昭54−
40868号公報)やポリビニルフェノ−1&I(特開
昭60−71006号公報)、ポリビニ〃トリオルガノ
vラン(特開昭54−56985号公報)、ポリカルボ
ジイミド(特開昭52−91100号公報)、スチVン
誘導体(特開昭56−26506号公報)などと、ポリ
ジメチルシロキサンとの共重合体を薄膜化した気体分離
膜が開示されている。
For example, polycarbonate) (U.S. Pat. No. 5,980,456)
specification, specification No. 3674986, JP-A-1988-
40868), polyvinylpheno-1 & I (JP 60-71006), polyvinyl triorgano vlan (JP 54-56985), polycarbodiimide (JP 52-91100), steel. A gas separation membrane made of a thin film of a copolymer of polydimethylsiloxane and a V derivative (Japanese Unexamined Patent Publication No. 56-26506) has been disclosed.

これらの共重合体の気体分離膜は、酸素/窒素分離係数
を’0JH2”2〜3、酸素透過係数を?□、 = 1
. OX 10−・〜2.0X10−易51’(8T?
)・aI/−・sea−mugに、または酸素/窒素分
離係数を’OB7M2 = 3〜5、酸素透過係数をP
Q、=1、 OX 10−1・〜aox1 o−’i(
sτP)ea+/−・5Lea*a+111g  に改
善できたが、酸素/窒素分離係数がα=3以上であり、
かつ酸素透過係数がP□、 = 1. o X 1「”
 err? (IITF) ・am/a+l@sea 
鳴am11g  以上である酸素/窒素分離性と酸素透
過性の両方に優れた気体分離膜は得られていない。
Gas separation membranes made of these copolymers have an oxygen/nitrogen separation coefficient of '0JH2'2~3 and an oxygen permeability coefficient of ?□, = 1
.. OX 10-・~2.0X10-easy 51' (8T?
)・aI/−・sea-mug, or oxygen/nitrogen separation coefficient 'OB7M2 = 3~5, oxygen permeability coefficient P
Q, = 1, OX 10-1・~aox1 o-'i(
sτP)ea+/-・5Lea*a+111g However, the oxygen/nitrogen separation coefficient was α=3 or more,
and the oxygen permeability coefficient is P□, = 1. o X 1 ""
Err? (IITF) ・am/a+l@sea
A gas separation membrane having excellent oxygen/nitrogen separation properties and oxygen permeability of 11 g or more has not yet been obtained.

酸素濃度が404以上の酸素富化空気を得るためKJd
、気体分離膜の酸素/窒素分離係数が3以上必要であシ
、また深冷分離法やPBA法による酸素富化空気を得る
方法と比較した場合、気体分離膜による方法が有利とな
るためには、酸素透過係数が1’0. = 1.0 X
 10−” d (8?!’) ・5I/4−1Il・
8ec−cm11Ig以上であることが望ましい。
KJd to obtain oxygen-enriched air with an oxygen concentration of 404 or higher
, the oxygen/nitrogen separation coefficient of the gas separation membrane is required to be 3 or more, and the method using the gas separation membrane is advantageous when compared with the method of obtaining oxygen-enriched air using the cryogenic separation method or the PBA method. has an oxygen permeability coefficient of 1'0. = 1.0X
10-" d (8?!') ・5I/4-1Il・
It is desirable that it is 8ec-cm11Ig or more.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ポリジメチルシロキサンと他の高分子材料との共重合体
膜は、機械的強度と酸素/窒素分離性を向上させるが、
同時に著しく気体透過性を低下させる傾向にある。その
ため、酸素透過係が大色く、かつ酸素/N素の分離係数
が大金i高透過性、高選択性気体分離膜を得ることは困
難であった。
Copolymer membranes of polydimethylsiloxane and other polymeric materials improve mechanical strength and oxygen/nitrogen separation, but
At the same time, it tends to significantly reduce gas permeability. Therefore, it has been difficult to obtain a highly permeable, highly selective gas separation membrane with a large oxygen permeability ratio and a large oxygen/N separation coefficient.

上記技術水準に鑑み、本発明は薄膜化が可能であシ、酸
素透過係数が大きく、かつ酸素/窒素分離係数が高い気
体透過膜を提供しようとするものである。
In view of the above state of the art, the present invention aims to provide a gas permeable membrane that can be made thin, has a large oxygen permeability coefficient, and has a high oxygen/nitrogen separation coefficient.

〔課題を解決するための手段〕[Means to solve the problem]

本a明はニトロ化ポリ7エエレンサルフアイドのニトロ
基を一部還元アミノ化したポリマーと両末端にエポキシ
基を有するシロキサンオリゴマーとのグラフト共重合体
からなる気体分離膜である。
The present invention is a gas separation membrane made of a graft copolymer of a polymer obtained by partially reductively aminating the nitro groups of nitrated poly7-ethylene sulfide and a siloxane oligomer having epoxy groups at both ends.

すなわち、本発明は、酸素/’11素分離係数が大きく
、機械的強度が大きいニトロ化$9フェニレンサ〃ファ
イドのニトロ基を一部11元アミノ化した後、両末端に
エポキシ基を有するシロキサンオリゴマーとをゲラフシ
共重合体化してなる気体分離膜であって、酸素透過性が
著しく向上し、かつ酸素/窒素分離性の優れた薄膜化可
能な気体分離膜である。
That is, the present invention produces a siloxane oligomer having epoxy groups at both ends after partially aminating the nitro groups of nitrated $9 phenylene sulfide, which has a large oxygen/'11 elemental separation coefficient and high mechanical strength. This is a gas separation membrane formed by copolymerizing the above and the like, which has significantly improved oxygen permeability, excellent oxygen/nitrogen separation properties, and can be made into a thin film.

ニトロ化ホリフェニレン4F−ルファイ)ハ、発煙硝!
Non重量部にボリフェニレンサA/7アイド10重量
部を10℃以下に冷却しながら加え、反応後、反応溶液
を3000重量部の水中に徐々に加えてニトロ化ポリフ
ェニレンサルファイドを沈殿させ、沈殿したニトロ化ポ
リフェニレンサルファイドを乾燥後粉砕して大量の水で
洗浄して酸を除いてから再び乾燥させることによって得
られる。
Nitrated polyphenylene 4F-rufai) Ha, smoking glass!
10 parts by weight of polyphenylene sulfide A/7 ide was added to the part by weight of Non while cooling to below 10°C, and after the reaction, the reaction solution was gradually added to 3000 parts by weight of water to precipitate the nitrated polyphenylene sulfide. It is obtained by drying nitrated polyphenylene sulfide, pulverizing it, washing it with a large amount of water to remove the acid, and drying it again.

ポリフェニレンサルファイドのニトロ化ハ、硫硝混酸を
用いても可能である。この場合、67憾硝酸34重量部
と96憾硫酸85重量部の混酸中ニボリフエニVンサル
ファイド12重量部を冷却しながら加え、次に徐々に温
度を上げ、85〜90℃で2.5時間反応させて行えば
よい。
Nitration of polyphenylene sulfide is also possible using a sulfur/nitric acid mixed acid. In this case, 12 parts by weight of nibolifeni V sulfide in a mixed acid of 34 parts by weight of 67 nitric acid and 85 parts by weight of 96 sulfuric acid was added while cooling, and then the temperature was gradually raised and the reaction was carried out at 85 to 90°C for 2.5 hours. Just let it go.

反応後は、発煙硝酸を用いた場合と同様に大量の水で洗
浄して酸を除いてから乾燥することによって得られる。
After the reaction, the product is obtained by washing with a large amount of water to remove the acid and drying, as in the case of using fuming nitric acid.

上記方法によシ、ポリフェニレンサルファイドの芳香核
1個当たり約1個のニトロ基が導入される。この時、同
時にスルフィドが酸化されスルホキシド及びスルホンと
なる。
By the above method, about one nitro group is introduced per aromatic nucleus of polyphenylene sulfide. At this time, sulfide is simultaneously oxidized to sulfoxide and sulfone.

ニトロ化ポリフェニレンサルファイドの還元アミノ化は
、54パラジウム付活性炭を触媒として水素添加反応す
ることによって行われる。
Reductive amination of nitrated polyphenylene sulfide is carried out by a hydrogenation reaction using 54 palladium-attached activated carbon as a catalyst.

ニトロ化ポリフェニレンサルファイド20重量部をジメ
チ〜ホμムアミド400重量部に溶解させ、54パラジ
ウム付活性炭1重量部を添加した後、室温で水素に接触
させることによって行われる。このとき、水素吸収量を
調節することによj9、二)四基からアミノ基への転化
率を調節する。その転化率はニトロ基の30〜80憾程
度がアミノ基になるようにするのが好ましい。504以
下ではシロキサン成分の末端のエポキシ基による高分子
鎖間の架橋が形成され難く、80嘔以上ではニトロ基の
効果が生じ難くなるからである。
This is carried out by dissolving 20 parts by weight of nitrated polyphenylene sulfide in 400 parts by weight of dimethyl-homamide, adding 1 part by weight of activated carbon with 54 palladium, and then bringing the mixture into contact with hydrogen at room temperature. At this time, the conversion rate from j9, 2) four groups to amino groups is adjusted by adjusting the amount of hydrogen absorption. The conversion rate is preferably such that about 30 to 80 nitro groups become amino groups. This is because if it is less than 504, it is difficult to form crosslinks between polymer chains due to the terminal epoxy group of the siloxane component, and if it is more than 80, it is difficult to produce the effect of the nitro group.

ニトロ化ポリフェニレンサルファイドのニトロ基を30
〜80憾還元アミノ化したポリマーと両末端にエポキシ
基を有するシロキサンオリゴマーとのグフフト共重合は
、一般的には還元アミノ化したポリマーをシクロヘキサ
ノンに溶解させ、s wt4溶液とした後、両末端にエ
ポキシ基を有するシロキサンオリゴマーをポリマー中に
存在するアミノ基のα5〜1.0モル量添加し、60〜
100℃で3〜6時間攪拌加熱して行えばよい。反応後
は、生成物を水中に沈殿させ乾燥させた後、未反応シロ
キサンオリゴマーを除去するために石油エーテルで洗浄
後再び乾燥させてグラフト共重合体を得ればよい。この
際、両末端にエポキシ基を有するシロキサンオリゴマー
としては、下記構造 イソブチルケトン、メチ/%/Vクロヘキサノン、アセ
トフェノン等のケトン類の有機溶媒に[1させ製膜する
ことによって気体分離膜が得られる。
The nitro group of nitrated polyphenylene sulfide is 30
~ 80 Ghuft copolymerization of a reductively aminated polymer with a siloxane oligomer having epoxy groups at both ends is generally carried out by dissolving the reductively aminated polymer in cyclohexanone to form a swt4 solution, and then A siloxane oligomer having an epoxy group is added in an amount of α5 to 1.0 moles of amino groups present in the polymer, and
This may be carried out by stirring and heating at 100° C. for 3 to 6 hours. After the reaction, the product is precipitated in water, dried, washed with petroleum ether to remove unreacted siloxane oligomers, and dried again to obtain a graft copolymer. At this time, the siloxane oligomer having an epoxy group at both ends can be prepared by forming a film by forming a film in an organic solvent of ketones such as isobutyl ketone, methyl/%/V chlorohexanone, and acetophenone. It will be done.

〔作用〕[Effect]

硝酸によるポリフェニレンサルファイドのニトロ化は、
芳香核にニド−基を導入するが、同時にスルフィドが酸
化されてスルホキシド及びスルホンとなる。その構造は
、例えば次のように表わされるものである。
Nitration of polyphenylene sulfide with nitric acid is
A nido group is introduced into the aromatic nucleus, but at the same time the sulfide is oxidized to become a sulfoxide and a sulfone. Its structure is expressed, for example, as follows.

(但し、nは1から20までの整数を表わす)を有する
ものを用いるのが好ましい。
(However, n represents an integer from 1 to 20) is preferably used.

上記方法によって得られたグラフト共重合体をシクロヘ
キサノン、2−ペンタノ?、3−ペンタノン、2−ヘキ
サノン、メチルイソブチルケトン、2−ヘプタノン、4
−ヘプタノン、ジここで(n+m)は、ポリフェニレン
サルファイドの重合度と同じであシ、140〜200程
度である。
The graft copolymer obtained by the above method was mixed with cyclohexanone, 2-pentano? , 3-pentanone, 2-hexanone, methyl isobutyl ketone, 2-heptanone, 4
-Heptanone, diHeptanone (n+m) is the same as the degree of polymerization of polyphenylene sulfide, and is about 140 to 200.

5憾バフジウム付活性炭を触媒とした接触水素添加反応
は、ニトロ化ポリフェニレンサルファイドのニトロ基を
選択的に還元し、次のような構造とする。
The catalytic hydrogenation reaction using activated carbon with buffidium as a catalyst selectively reduces the nitro groups of nitrated polyphenylene sulfide to form the following structure.

ニトロ化ポリフェニレンサルファイドのニトロ基を一部
還元アミノ化したポリマーと両末端にエボキV基を有す
るVロキサンオリプマーとのグラフト共重合体は、ニト
ロ化ポリフェニレンサルファイドの還元されたアミノ基
とりロキサンオリゴマーの末端エボキV基との反応によ
)結合した構造となる。その構造は例えば次のように表
わされる。
A graft copolymer of a polymer in which the nitro groups of nitrated polyphenylene sulfide are partially reduced and aminated and a V-loxane oligomer having epoxy V groups at both ends is a (by reaction with the terminal eboxy V group of the san oligomer) becomes a bonded structure. Its structure is expressed, for example, as follows.

−(0〜「0−c焉−on−cIII ■ 上記グラフト共重合体は、ンロキサン成分の末端にエポ
キV基が残存するため、更に反応温度を上げ長時間加熱
した場合、高分子鎖間で結合し、架橋構造となる。
-(0~'0-c-on-cIII) In the above graft copolymer, since the epoxy V group remains at the end of the chloroxane component, when the reaction temperature is further raised and heated for a long time, the They combine to form a cross-linked structure.

上記グラフト共重合体のシロキサン含有率は、50〜8
54となシ、シロキサン含有率が少ない場合、酸素透過
係数が小さくなる傾向にある。
The siloxane content of the graft copolymer is 50 to 8
54, when the siloxane content is low, the oxygen permeability coefficient tends to be low.

実施例1 発煙硝酸100重量部にボリフエニVンサルファイド1
0重量部を10℃以下に冷却しながら徐々に加え、完全
に溶解させた後、溶液を4000重量部の水中に徐々に
加え、沈殿を生成させた。沈殿したニトロ化ポリフェニ
レンサルファイドを乾燥させた後、粉砕して大量の水で
洗浄し、酸を除去してから再び乾燥させた。
Example 1 Borifueni V sulfide 1 in 100 parts by weight of fuming nitric acid
0 parts by weight was gradually added while cooling to 10° C. or lower to completely dissolve the solution, and then the solution was gradually added to 4000 parts by weight of water to form a precipitate. After drying the precipitated nitrated polyphenylene sulfide, it was ground, washed with a large amount of water to remove the acid, and then dried again.

次ニ二トロ化ポリフェニレンサルファイド10重量部を
ジメチルホルムアミド200重量部に溶解させ、5嗟パ
ラジウム付活性炭15重量部を添加した後、室温で水素
Kit!触させた。
After dissolving 10 parts by weight of polyphenylene sulfide dinitrate in 200 parts by weight of dimethylformamide and adding 15 parts by weight of activated carbon with 5 moss palladium, hydrogen was added at room temperature. I let him touch me.

このとき、25℃、1気圧の水素を1100CC吸収し
たところで水素の供給を止めた。反応後54パラジウム
付活性炭を除去し、約4000重量部の水に加えて沈殿
を生成させ吸引−過後乾燥させた。
At this time, the supply of hydrogen was stopped when 1100 cc of hydrogen at 25° C. and 1 atm had been absorbed. After the reaction, the 54 palladium-attached activated carbon was removed, added to about 4,000 parts by weight of water to form a precipitate, and dried after suction-filtering.

ニトロ化ポリフェニレンサルファイドのニトロ基を約8
04還元アミノ化した上記ポリマー10重量部をシクロ
ヘキサノン190重量部に溶廃させた後、下記構造を有
する両末端エポキV基vclキサンオリゴマーsz重量
gと混合し、80℃で5時間攪拌加熱した。反応後、約
4000重量部の水に加えて沈殿を生成させ、吸引V過
後乾燥し、石油エーテルで洗浄後再び乾燥させた。
About 8 nitro groups of nitrated polyphenylene sulfide
After dissolving 10 parts by weight of the above-mentioned polymer subjected to 04 reductive amination in 190 parts by weight of cyclohexanone, it was mixed with sz weight g of a VCL xane oligomer sz having epoxy V groups at both terminals having the following structure, and stirred and heated at 80° C. for 5 hours. After the reaction, about 4000 parts by weight of water was added to form a precipitate, which was dried after passing through suction V, washed with petroleum ether and dried again.

上記方法によって得たグラフト共重合体5重量部を3−
ペンタノン95重量部に溶解させ、ガラス・板上に50
0μmの厚さで流延し、80℃で1時間乾燥した。得ら
れたグラフト共重合体膜の厚さは、1lL4μmでl)
、酸素透過速度は4.8 X 1 G−’ cm”/e
ym”−seo−mHg(酸素透過係数p□、 = 1
.9 X 1 G−・−−儒151I!ae・C−aI
■g)、酸素/窒素分離係数は”ox/*、=”であっ
た。
5 parts by weight of the graft copolymer obtained by the above method was added to 3-
Dissolve in 95 parts by weight of pentanone and apply 50 parts by weight on a glass plate.
It was cast to a thickness of 0 μm and dried at 80° C. for 1 hour. The thickness of the obtained graft copolymer film was 1 liter and 4 μm.
, the oxygen permeation rate is 4.8 X 1 G-'cm"/e
ym"-seo-mHg (oxygen permeability coefficient p□, = 1
.. 9 X 1 G---Confucian 151I! ae・C-aI
(g) The oxygen/nitrogen separation coefficient was "ox/*,=".

実施例2 実施例1で合成したニトロ化ポリフェニレンサルファイ
ドを実施例1と同様に接触水素化し、ポリマー中に存在
するニトロ基を約50憾アミノ基に転化した。このポリ
マー10重量部をシクロヘキサノン190重量部に溶解
させた後、実施例1と同じ両末端エポキシ基シロキサン
オリプマ−31重量部と混合し、80℃で5時間攪拌加
熱した。反応後は、反応溶液を約4.OOd重量部の水
に加えて沈殿を生成させ、吸引p過後乾燥し、石油エー
テルで洗浄後再び乾燥させた。
Example 2 The nitrated polyphenylene sulfide synthesized in Example 1 was catalytically hydrogenated in the same manner as in Example 1 to convert the nitro groups present in the polymer into about 50 amino groups. After 10 parts by weight of this polymer was dissolved in 190 parts by weight of cyclohexanone, it was mixed with 31 parts by weight of the same siloxane oligomer with epoxy groups at both ends as in Example 1, and stirred and heated at 80 DEG C. for 5 hours. After the reaction, the reaction solution was heated to about 4. A precipitate was formed by adding OOd parts by weight of water, dried after filtration with suction, washed with petroleum ether and dried again.

上記方法によって得たグラフト共重合体3重量部を3−
ペンタノン97重量部に溶解させ、ガラス板上に300
μmの厚さで流延し、80℃で1時間乾燥した。得られ
たグラフト共重合体膜の厚さは、α1μmであり、酸素
透過速度t5 X j O−” csl/d * s+
eo・c++IT1g  (酸素透過係1、5 X i
 G−畠ml −as/d ・sea ・naHg )
 、酸素/窒素分離係数はα0JNz  = 5−5 
fあった。
3 parts by weight of the graft copolymer obtained by the above method was added to 3-
Dissolved in 97 parts by weight of pentanone and placed 300 parts by weight on a glass plate.
It was cast to a thickness of μm and dried at 80° C. for 1 hour. The thickness of the obtained graft copolymer membrane was α1 μm, and the oxygen permeation rate was t5 X j O−” csl/d * s+
eo・c++IT1g (oxygen permeability 1, 5 X i
G-Hatakeml-as/d・sea・naHg)
, the oxygen/nitrogen separation coefficient is α0JNz = 5-5
There was f.

実施例3 実施例1で合成したニトロ化ポリフェニレンサルファイ
ドを実施例1と同様に接触水素化し、ポリマー中に存在
するニド−基を約8041ミノ基に転化した。このポリ
マー10重量部をVクロヘキサノン190重量部に溶解
させた後、下記構造を有する両末端エポキシ基シロキサ
ンオリゴマー 35重量部と混合し、80℃で5時間攪拌加熱した。反
応後は、反応溶液を約4.000重量部の水に沈殿させ
、吸引濾過後乾燥し、石油エーテ〃で洗浄後、再び乾燥
させた。
Example 3 The nitrated polyphenylene sulfide synthesized in Example 1 was catalytically hydrogenated in the same manner as in Example 1 to convert the nido groups present in the polymer into about 8041 mino groups. After dissolving 10 parts by weight of this polymer in 190 parts by weight of V-clohexanone, it was mixed with 35 parts by weight of a siloxane oligomer with epoxy groups at both ends having the following structure, and the mixture was stirred and heated at 80° C. for 5 hours. After the reaction, the reaction solution was precipitated in about 4,000 parts by weight of water, filtered with suction, dried, washed with petroleum ether, and dried again.

上記方法によって得たグラフト共重合体3重量部を3−
ペンタノン97重量部に溶解させ、ガフス板上に′50
0μmの厚さで流延し、80℃で1時間乾燥した。得ら
れたグラフト共重合体膜の厚さは、11μmであり、酸
素透過速度1、7 X 1 G−” al/d・see
 −311g  (酸素透過係1、7 X 10−・−
・ays/al ・sea ・cstHg )、酸素/
窒素分離係数は、”Os/Nx =五1であった。
3 parts by weight of the graft copolymer obtained by the above method was added to 3-
Dissolve in 97 parts by weight of pentanone and place on a gaff plate.
It was cast to a thickness of 0 μm and dried at 80° C. for 1 hour. The thickness of the obtained graft copolymer membrane was 11 μm, and the oxygen permeation rate was 1.7 × 1 G-” al/d・see
-311g (Oxygen permeability factor 1,7 x 10-・-
・ays/al ・sea ・cstHg), oxygen/
The nitrogen separation factor was "Os/Nx = 51.

〔発明の効果〕〔Effect of the invention〕

本発明では、酸素/窒素分離係数が’C)s/Hz =
11である高選択性のニトロ化ポリフェニレンサルファ
イドに、酸素透過係数がp□、 =五5×10−$−・
5I/−・sea・国111gである高透過性のポリジ
メチルシロキサン構造をグラフト共重合することにより
導入し、酸素/窒素分離係数が’On/Hs=IO以上
であシ、かつ酸素透過係数がtOXlo−畠一昏一/−
・−ecΦ国Hg以上である高選択性、高透過性の気体
分離膜の搗供を可能にした。更に上記グラフト共重合体
の機櫨的強度があることから、薄膜化を可能とし、実用
上問題となる酸素透過速度を1. y x t o−”
 d15Il・θθO−ersHg  としたもので、
優れた気体分離膜である。
In the present invention, the oxygen/nitrogen separation coefficient is 'C)s/Hz =
11, the highly selective nitrated polyphenylene sulfide has an oxygen permeability coefficient of p□, =55×10−$−・
A highly permeable polydimethylsiloxane structure with a weight of 5I/-・sea・country 111g is introduced by graft copolymerization, and the oxygen/nitrogen separation coefficient is 'On/Hs=IO or more, and the oxygen permeability coefficient is tOXlo-Koichi Hatake/-
・It has become possible to produce a gas separation membrane with high selectivity and high permeability that is more than -ecΦHg. Furthermore, since the graft copolymer has mechanical strength, it can be made into a thin film, and the oxygen permeation rate, which is a practical problem, can be reduced to 1. y x t o-”
d15Il・θθO−ersHg,
It is an excellent gas separation membrane.

Claims (2)

【特許請求の範囲】[Claims] (1)ニトロ化ポリフエニレンサルフアイドのニトロ基
を一部還元アミノ化したポリマーと両末端にエポキシ基
を有するシロキサンオリゴマーとのグラフト共重合体か
らなる気体分離膜。
(1) A gas separation membrane made of a graft copolymer of a polymer obtained by partially reductively aminating the nitro groups of nitrated polyphenylene sulfide and a siloxane oligomer having epoxy groups at both ends.
(2)両末端にエポキシ基を有するシロキサンオリゴマ
ーが、下記構造を有する特許請求範囲第一項記載の気体
分離膜。 ▲数式、化学式、表等があります▼ (但し、nは1から20までの整数を表わす。)
(2) The gas separation membrane according to claim 1, wherein the siloxane oligomer having epoxy groups at both ends has the following structure. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, n represents an integer from 1 to 20.)
JP3635889A 1989-02-17 1989-02-17 Gas separation membrane Pending JPH02218423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3635889A JPH02218423A (en) 1989-02-17 1989-02-17 Gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3635889A JPH02218423A (en) 1989-02-17 1989-02-17 Gas separation membrane

Publications (1)

Publication Number Publication Date
JPH02218423A true JPH02218423A (en) 1990-08-31

Family

ID=12467606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3635889A Pending JPH02218423A (en) 1989-02-17 1989-02-17 Gas separation membrane

Country Status (1)

Country Link
JP (1) JPH02218423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523334A (en) * 2011-04-08 2014-09-11 アン ドンチャン Method for preparing gas selective membranes using epoxy functional siloxanes
WO2015151921A1 (en) * 2014-03-31 2015-10-08 東レ株式会社 Polyphenylene sulphide block copolymer and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523334A (en) * 2011-04-08 2014-09-11 アン ドンチャン Method for preparing gas selective membranes using epoxy functional siloxanes
WO2015151921A1 (en) * 2014-03-31 2015-10-08 東レ株式会社 Polyphenylene sulphide block copolymer and manufacturing method therefor
CN106164138A (en) * 2014-03-31 2016-11-23 东丽株式会社 Polyphenylene sulfide block copolymer and manufacture method thereof
JPWO2015151921A1 (en) * 2014-03-31 2017-04-13 東レ株式会社 Polyphenylene sulfide block copolymer and method for producing the same
EP3127941A4 (en) * 2014-03-31 2017-09-20 Toray Industries, Inc. Polyphenylene sulphide block copolymer and manufacturing method therefor
US9840596B2 (en) 2014-03-31 2017-12-12 Toray Industries Inc. Polyphenylene sulfide block copolymer and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US6946015B2 (en) Cross-linked polybenzimidazole membrane for gas separation
Alaslai et al. Synthesis and Characterization of a Novel Microporous Dihydroxyl‐Functionalized Triptycene‐Diamine‐Based Polyimide for Natural Gas Membrane Separation
EP0410793A1 (en) Method of gas separation and membranes therefor
JPH06500263A (en) Membrane with selective permeability
JPS6153103B2 (en)
CN104829853A (en) Polyimide gas separation membrane as well as preparation method and applications thereof
JPH06269648A (en) Polyimide gas separation membrane for carbon dioxide thickening
JPH03106426A (en) Semipermeable diaphragm formed of polyimide resin and method of separating one component from gas mixture
EP0426118A2 (en) Sulfonated hexafluoro bis-A polysulfone membranes and process for fluid separations
Xie et al. Low fouling polysulfone ultrafiltration membrane via click chemistry
JP2509962B2 (en) Polyimide separation membrane
Bhavsar et al. Polybenzimidazoles based on 3, 3′‐diaminobenzidine and aliphatic dicarboxylic acids: synthesis and evaluation of physicochemical properties toward their applicability as proton exchange and gas separation membrane material
US9889412B2 (en) Composite gas separation membrane, gas separation module, gas separation apparatus and gas separation method
JPH07114935B2 (en) Polyarylate separation membrane
JPS62102815A (en) Gas permselective membrane
JPH0331093B2 (en)
JPH02218423A (en) Gas separation membrane
EP0418883A1 (en) Separation of fluids using polyimidesiloxane membrane
JPH0531341A (en) Polyimide gas separation membrane
CN115055066B (en) Microporous polymer particle/polymer mixed matrix membrane and preparation method and application thereof
Zhang Facilitated oxygen transport in a novel silicone polymer membrane containing carboxylic cobalt groups
JPS61125424A (en) Separating membrane of mixed gas
JPH0679151A (en) Polyimide separation film
JPS5892449A (en) Membrane for selective permeation of oxygen gas
JPH01119324A (en) Preparation of gas separation membrane