JPS6126596A - Method and deivce for pulling up crystal - Google Patents

Method and deivce for pulling up crystal

Info

Publication number
JPS6126596A
JPS6126596A JP14677684A JP14677684A JPS6126596A JP S6126596 A JPS6126596 A JP S6126596A JP 14677684 A JP14677684 A JP 14677684A JP 14677684 A JP14677684 A JP 14677684A JP S6126596 A JPS6126596 A JP S6126596A
Authority
JP
Japan
Prior art keywords
crystal
crucible
amount
undoped
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14677684A
Other languages
Japanese (ja)
Inventor
Koji Tada
多田 紘二
Riyuusuke Nakai
龍資 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14677684A priority Critical patent/JPS6126596A/en
Publication of JPS6126596A publication Critical patent/JPS6126596A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/28Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using weight changes of the crystal or the melt, e.g. flotation methods

Abstract

PURPOSE:To make stable growth of single crystal possible, by melting undoped crystal while rotating it, regulating an amount of pulled crystal and an amount of molten undoped crystal in such a way that they are always the same amount. CONSTITUTION:A crystal pulling furnace has the layshafts 11 and 12 for setting a vertically movable undoped crystal at a position eccentric from the central shaft 8 for pulling up crystal which has the same shaft as the center of a double crucible, and is in a layer between the outer periphery of the inner crucible 31 and the outer crucible 32. Crystal is pulled up by the central shaft 8 while measuring weight of pulled crystal by the metering mechanism 13, and weight of the pillar-shaped undoped crystal 10 attached to the tips of the layshafts 11 and 12 is measured by the metering mechanisms 14 and 15. While the layshafts 11 and 12 are being rotated, the lowering speed is controlled by a computer in such a way that an amount of pulled crystal from the signal from the metering mechanisms 14 and 15 and an amount of the newly dissolved undoped crystal 10 are always equal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体等の結晶引上げ法およびその装置
に関する。本発明の方法および装置は、Gaムθ(In
、 Si、 Or等のドープ結晶およびアンドープ結・
晶)、工nP、 GaP等の化合物半導体の製造におい
て有利に用いられる。これ等化合物半導体等はIC用基
板、オプトエレクトロニクス用基板等として広く用いら
れる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for pulling crystals of compound semiconductors, etc., and an apparatus therefor. The method and apparatus of the present invention provide Ga m θ(In
, Si, Or etc. doped crystals and undoped crystals.
It is advantageously used in the production of compound semiconductors such as crystals), nP, and GaP. These compound semiconductors are widely used as IC substrates, optoelectronic substrates, and the like.

(従来の技術〕 従来の結晶引上げ法およびその装置の概略は、第5図に
その1例を示すように、るつは3に原料融液4(例えば
Gaム8)を収容し、必要によυセの表面をBtOa融
液5でおおい、融液4表面に引上軸8に取付けた種結晶
6を浸漬し、々じませた後、種結晶6を引上げて単結晶
7(例えばGaAe 等)を引上げるものである。なお
1は炉内加熱ヒーター、2はサセプター(カーボン)。
(Prior Art) The outline of the conventional crystal pulling method and its apparatus is as shown in FIG. 5, an example of which is shown in FIG. The surface of the cell is covered with a BtOa melt 5, and a seed crystal 6 attached to a pulling shaft 8 is immersed in the surface of the melt 4 to allow it to spread, and then the seed crystal 6 is pulled up and a single crystal 7 (e.g. GaAe etc.). Note that 1 is the furnace heater, and 2 is the susceptor (carbon).

9はるつぼ支持軸(下軸)である。9 is a crucible support shaft (lower shaft).

しかしこの方法により結晶を成長させる時は、るつほへ
の原料の補給ができないので、1)融液高さの変化によ
り、融液中の対流の状態が変化し、また熱的条件も変化
する、2)融液中に分配係数が1でないドーパントが含
まれる場合、結晶成長に伴いドーパント濃度が変化して
いく、という欠点があった。
However, when growing crystals using this method, it is not possible to replenish raw materials to the melting hole, so 1) changes in the melt height change the state of convection in the melt and also change the thermal conditions. 2) When the melt contains a dopant whose distribution coefficient is not 1, the dopant concentration changes as the crystal grows.

そこで第4図に示すように、分配係数k(1なる不純物
に対しては、アンドープ結晶を適度に加える方法が考え
られている。第5図において、7は成長しつつある単結
晶、10は添加しつつある結晶、4は原料融液、3はる
つばを示す。しかしこの方法においても、融液量の微妙
なコントロールが困難であシ、また溶かしてゆくアンド
ープ結晶10が成長しつつある単結晶7に外乱を与える
のを防ぐことができないという欠点があった。
Therefore, as shown in Fig. 4, a method of adding an appropriate amount of undoped crystal to impurities with a distribution coefficient k (1) has been considered. In Fig. 5, 7 is a growing single crystal, and 10 is a growing single crystal. The crystal being added, 4 is the raw material melt, and 3 is the melting point. However, even with this method, it is difficult to delicately control the amount of the melt, and the undoped crystal 10 that is being melted is growing. There was a drawback in that it was not possible to prevent disturbance from being applied to the single crystal 7.

すなわち、第5図下部にこの場合のるつぼ径方向におけ
る固液界面上の温度分布を示しであるが、図示のごとく
温度分布は非対称となシ、成長しつつある単結晶7と、
添加される結晶10との間には充分な温度勾配がとれず
、単結晶7と添加結晶10が固着してしまうような事態
も生起する。これは成長しつつある結晶7と溶かしてゆ
く添加結晶10との間におおいがないためである。
That is, the lower part of FIG. 5 shows the temperature distribution on the solid-liquid interface in the radial direction of the crucible in this case, but as shown, the temperature distribution is asymmetric, and the growing single crystal 7 and
A sufficient temperature gradient cannot be established between the added crystal 10 and the single crystal 7 and the added crystal 10 may become stuck together. This is because there is no cover between the growing crystal 7 and the melting added crystal 10.

また第5図CO)に示すように、アンドープ結晶10は
、るつぼ5の壁に向いた部分だけが、るつは4からの矢
印のような開封により、溶けてしまうので、その断面積
が変化してしまう。なお図中4は融液、5は烏へをあら
れす。
Also, as shown in Figure 5 CO), only the part of the undoped crystal 10 facing the wall of the crucible 5 melts when the crucible is opened as shown by the arrow from 4, so its cross-sectional area changes. Resulting in. In the figure, 4 is the melt and 5 is the rain.

したがって溶かしてゆくアンドープ結晶の量を、このア
ンドープ結晶を取り付けた昇降可能な軸の降下量によっ
てはコントロールすることができない。
Therefore, the amount of undoped crystal being melted cannot be controlled by the amount of descent of the vertically movable shaft to which the undoped crystal is attached.

〔本発明の解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は以上に説明したような従来法による問題点を解
決して、安定した結晶引上げ方法及びその装置を提供す
ることを目的とする。
An object of the present invention is to solve the problems caused by the conventional methods as described above and to provide a stable crystal pulling method and apparatus.

〔問題点を解決する手段〕[Means to solve problems]

本発明は、上述の問題点を解決する手段として、結晶引
上げにおいて、底部で連通している同心に配置された二
重るつぼ中゛にて結晶材料を溶融し、該二重るつほの内
るつほよシ結晶を引上げながら、一方、該二重るつほの
外るつほと内るつほにより形成される環状部分において
、アンドープ結晶を回転しつつ溶融し、上記結晶引上げ
量と上記アンドープ結晶溶融量が常に同量となるよう調
整しつつ行うことを特徴とする結晶引上げ方法およびそ
の装置を提供するものである。
As a means of solving the above-mentioned problems, the present invention, in crystal pulling, melts a crystal material in a concentrically arranged double crucible communicating at the bottom, and melts the crystal material in the double crucible. While pulling the crystal, the undoped crystal is rotated and melted in the annular part formed by the outer and inner melt of the double melt, and the amount of crystal pulled is equal to the amount of crystal pulled up. The present invention provides a crystal pulling method and an apparatus thereof, characterized in that the amount of undoped crystal melted is always adjusted to be the same amount.

以下に本発明の結晶引き上げ方法およびその装置につき
、図を参照しながら説明する◇本発明の方法においては
、第1図にその実施態様を例示するような二重るつぼを
用いる。第1図において51は内るつは、32は外るつ
ぼであって、内るつは31中の原料融液4の高さよシ充
分低い位置に設けられた穴33により、内るつぼ31と
外るつぼ32は連通しておシ、内るつぼ31は外るつは
32と同心状に固定されている。4は原料融液、5は馬
へ、7は単結晶、a、b、cは各部分の長さく径)をあ
られす。
The crystal pulling method and apparatus thereof of the present invention will be explained below with reference to the drawings. In the method of the present invention, a double crucible as illustrated in FIG. 1 is used. In FIG. 1, 51 is an inner crucible, and 32 is an outer crucible. The crucibles 32 are in communication with each other, and the inner crucible 31 and the outer crucible 32 are fixed concentrically. 4 is the raw material melt, 5 is the horse, 7 is the single crystal, a, b, c is the length and diameter of each part).

さて本発明の方法に用いる引上炉は、第2図にその実施
態様を例示するよう外二重るつぼの中心とその軸を同じ
くする結晶引き上げ用中心軸8から偏心した位置でかつ
内るつは31の外周と外るつぼ320間の層内に上下移
動可能なアンドープ結晶取付は用副軸11.12を有し
ている。中心軸8は計量機構(ロードセル等)15およ
び回転昇降機構14を備えておシ、また副軸11.12
も同様に計量機構(ロードセル等)14、15と回転昇
降機構17.18をそれぞれ備えている。計量機構13
〜15からの重量測定信号はコンピューター機構に入力
され該コンピューターはこの信号によ多回転昇降機構1
6〜18を制御できる。
Now, the pulling furnace used in the method of the present invention is located at a position eccentric from the crystal pulling central axis 8 whose axis is the same as the center of the outer double crucible, and whose axis is the same as the center of the outer double crucible, as shown in FIG. The undoped crystal mount has a vertically movable countershaft 11, 12 in the layer between the outer periphery of the crucible 31 and the outer crucible 320. The central shaft 8 is equipped with a measuring mechanism (such as a load cell) 15 and a rotating lifting mechanism 14, and also has sub-shafts 11 and 12.
Similarly, it is equipped with measuring mechanisms (load cells, etc.) 14 and 15 and rotary lifting and lowering mechanisms 17 and 18, respectively. Measuring mechanism 13
The weight measurement signals from ~15 are input to the computer mechanism, and the computer uses this signal to control the multi-rotation lifting mechanism 1.
6 to 18 can be controlled.

本発明の方法では、結晶引上げは中心軸8により、計量
機構1Sで引き上げ結晶の重量を測定しつつ行い、回転
する副軸11.12の軸先に取シ付けた柱状アンドープ
結晶10の重量も計量機構14.15で測定しながら行
う。副軸11゜12は回転しながら、計量機構14.1
5からの信号による引き上げ量と、新たにとかすアンド
ープ結晶10の量が常に等しくなるように、コンピュー
ターにより、その下降速度を制御される。なお図中第1
図と共通符番は同一部分を意味し、9はるつば下軸、1
9は炉本体を意味する。
In the method of the present invention, the crystal is pulled by the central shaft 8 while the weight of the pulled crystal is measured by the measuring mechanism 1S, and the weight of the columnar undoped crystal 10 attached to the tip of the rotating sub-shaft 11. This is done while measuring with the weighing mechanism 14.15. The countershaft 11°12 rotates while the measuring mechanism 14.1
The rate of descent is controlled by the computer so that the amount of undoped crystal 10 to be newly melted is always equal to the amount of undoped crystal 10 that is pulled up according to the signal from 5. In addition, the first
Numbers common to the figures refer to the same parts; 9 is the bottom axis of the collar, 1 is
9 means the furnace body.

本発明の方法の利点は次のとおりである。The advantages of the method of the invention are as follows.

■ 第5図(5)に示すように、本発明方法ではアンド
ープ結晶10を支える副軸が回転するために、アンドー
プ結晶10は対称的に安定に融けるので、従来法のよう
な断面積の変化がない。なお図中の符番は第6図中)の
場合と同じを意味する。
■ As shown in FIG. 5 (5), in the method of the present invention, the minor axis supporting the undoped crystal 10 rotates, so the undoped crystal 10 melts symmetrically and stably, so that the cross-sectional area does not change as in the conventional method. There is no. Note that the reference numbers in the figure have the same meanings as in the case (in FIG. 6).

■ 中心軸、副軸共に計量機構を備えるので、引き上げ
結晶量およびアンドープ結晶の融けた量が正確にわかシ
、これに基いて各軸の移動速度を正確に精密にコントロ
ールできるので、常にるつは内の原料融液量を一定に保
てる。または、融液中のある不純物濃度を一定にし、融
液量をほぼ一定に保てる。
■ Since both the center axis and sub-axis are equipped with measuring mechanisms, the amount of pulled crystal and the amount of melted undoped crystal can be measured accurately. Based on this, the moving speed of each axis can be accurately and precisely controlled, so that the melting rate is always high. The amount of raw material melt inside can be kept constant. Alternatively, the concentration of a certain impurity in the melt can be made constant, and the amount of the melt can be kept almost constant.

■ 2重るつほを用い、引き上げ結晶と、アンドープ結
晶を隔てたことにより、温度分布が対称的になシ、結晶
成長がアンドープ結晶によって乱されることがガい。
■ By using a double layer to separate the pulled crystal from the undoped crystal, the temperature distribution is symmetrical and crystal growth is not disturbed by the undoped crystal.

ここで融液量を一定に保つ方法を説明する。Here, a method for keeping the amount of melt constant will be explained.

例えば単位時間当シの結晶の重量(W)の増分(÷につ
いて次の(1)式が成立するように、アンドープ結晶の
ついた副軸の速度Vを決める。ただし為へ、浮力等によ
る影響については、コンピューター演算等によって除き
、真の重量増加を求める。
For example, the velocity V of the minor axis with the undoped crystal is determined so that the following equation (1) holds for the increment (÷) of the weight (W) of the crystal per unit time. However, due to the influence of buoyancy etc. , the true weight increase is determined by removing it by computer calculation etc.

W ”’ p、Sv  ae++ (1) at ここでP8はアンドープ結晶の比重、Sはその断面積で
ある。
W ''' p, Sv ae++ (1) at Here, P8 is the specific gravity of the undoped crystal, and S is its cross-sectional area.

また融液中のある不純物(たとえばIn)を一定濃度に
したい時には、分配係数をに1融液中工n濃度をC1融
液量w4アンドープ結晶の重量を”sub  とすると
、 ”Pub=ρ8SvIdt W aw  =  −at at W よってρB Sv =(1k ) a 、  ” ’ 
” (3)ここでk(1なので融液量のさがシは通常の
に倍となって少くなる。
Furthermore, when you want to maintain a constant concentration of a certain impurity (for example, In) in the melt, the distribution coefficient is 1. The concentration in the melt is C1. The amount of melt w4. The weight of the undoped crystal is "sub", then "Pub=ρ8SvIdt W aw = −at at W Therefore, ρB Sv = (1k) a, ” '
” (3) Here, since k(1), the amount of melted liquid is twice as small as normal.

したがって(3)式が成立するようにVを決めればよい
Therefore, V may be determined so that equation (3) holds true.

本発明の結晶引上げ方法に用いる2重るつぼの内るつほ
は結晶の径の30〜100チ大きい径とし、また外るつ
ほは内るつほの径よシさらに30〜60チ大きい径を持
つものを用いる。
The inner crucible of the double crucible used in the crystal pulling method of the present invention has a diameter that is 30 to 100 inches larger than the crystal diameter, and the outer crucible has a diameter that is 30 to 60 inches larger than the inner crucible. Use one with .

二重るりほの材料は例えば石英、ボロンナイトライド、
シリコンナイトライド、アルミナイドライド等通常結晶
用に用いられるもののいずれによってもよい。
Materials for double ruriho include quartz, boron nitride,
Any of those commonly used for crystals such as silicon nitride and aluminide may be used.

また引上げ炉の副軸は、前述の説明では2本の場合を例
示したが、これに限定されるものではなく、1本または
2本以上のいずれでもよいO副軸に設け、られる計量機
構としては例えばロードセル、歪ゲージ等である。
In addition, although the case in which the pulling furnace has two subshafts is illustrated in the above explanation, it is not limited to this, and the O subshaft may have either one or two or more. are, for example, load cells, strain gauges, etc.

(実施例) 第1図に示したような、100インテφalの石英るつ
ぼ(外るつぼ)中に、6インテφ(b)の石英るつぼ(
内るつぼ)を融着した2重るりほを用いた。内るつほは
その底部近くで4インテφ(C)の穴により外るつほと
連通している。該2重るつほを用いGaAs  結晶を
引き上げた。引上げ炉の構成は第2図のものを用いた。
(Example) In a quartz crucible (outer crucible) with 100 inte φal as shown in Fig. 1, a quartz crucible with 6 inteφ(b) (
A double layered Ruriho with an inner crucible fused together was used. The inner tube communicates with the outer tube through a 4-inch φ (C) hole near its bottom. A GaAs crystal was pulled up using the double rutsuho. The configuration of the pulling furnace used was that shown in Figure 2.

G&AI!4ky及びIn6 Of ’e該2重るつは
内にチャージし、%016001Fを内るつぼに、また
%011200fを外るりほに入れた。GaA3 とI
nの融液量は約1インチ、馬へ層は約1インチ厚さであ
った。中心軸から約113はなれた2本の副軸に、直径
1.5インチ、長さ約30crnのGaAs  アンド
ープ多結晶を取シ付は副軸を回転させ、ロードセルによ
り重量を測定しながら、は工nではOll、をコンピュ
ーター制御した。
G&AI! 4ky and In6 Of 'eThe double crucible was charged inside, and %016001F was put into the inner crucible and %011200f was put into the outer crucible. GaA3 and I
The melt volume of n was about 1 inch and the layer was about 1 inch thick. GaAs undoped polycrystals with a diameter of 1.5 inches and a length of about 30 crn are attached to two sub-shafts separated by about 113 cm from the central axis. At n, Oll was controlled by computer.

その結果、約4k17の6インチ結晶(GaAs、工n
ドーグ)を得ることができた。この結晶のフロントから
バックまでの結晶転位密度は、すべて1000/、1以
下であった。
As a result, a 6-inch crystal of approximately 4k17 (GaAs, engineering
Dawg). The crystal dislocation density from the front to the back of this crystal was all 1000/1 or less.

〔発明の効果〕〔Effect of the invention〕

一般引き上げでは結晶の成長にともない融液深さがかわ
ってしまい、結晶の性質(転位密度等)に大きく影響す
る。固液界面の熱環境が大きく変化してしまう。(1c
tn固液界面が違うと、6インチるつぼの場合10°/
cm〜50°/ctn軸方向の温度勾配が変化する)ま
た融液深さが変化すると、融液中の対流も大きくかわる
In general pulling, the melt depth changes as the crystal grows, which greatly affects the crystal properties (dislocation density, etc.). The thermal environment at the solid-liquid interface changes significantly. (1c
If the tn solid-liquid interface is different, in the case of a 6-inch crucible, 10°/
cm - 50°/ctn The temperature gradient in the axial direction changes) Furthermore, when the melt depth changes, the convection in the melt also changes significantly.

本発明では、このようなことがなく、フロントからバッ
クまで均一な性質の結晶が得られる。
In the present invention, this does not occur and a crystal with uniform properties from the front to the back can be obtained.

また不純物をドープする場合、固化率をXとすると、分
配係数に初期融液濃度へに対して結晶の不純物濃度06
は、次の(4)式のごとく、Os = ko@ (1−
x)k−s  ””(4)となF>、xに従って大きく
変化してしまうが、本発明によればk<1では、OBを
フロントからバックまではぼ一定にできる。
In addition, when doping with impurities, if the solidification rate is
As shown in the following equation (4), Os = ko@ (1-
x)k-s ``''(4) F>, which varies greatly depending on x, but according to the present invention, when k<1, OB can be approximately constant from the front to the back.

以上詳説の如く、本発明方法および装置は安定した単結
晶成長を可能とするもので、結晶製造分野において大い
に利用できる。
As described in detail above, the method and apparatus of the present invention enable stable single crystal growth, and can be widely used in the field of crystal manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の結晶引上げ方法に用いる2重るつぼの
説明図。 第2図は本発明の結晶引上げ方法およびその装置を概略
説明する図。 第3図は従来法による結晶引上げを説明する図。 第4図は従来法によるアンドープ結晶の非対称彦融は方
を説明する図で、図の下部はその場合のるつは径方向に
おける固液界面上温度分布を示す。 第5図(6)は本発明方法、同031tli従来方法で
あって、両者におけるアンドープ結晶の溶は方を比較し
た図である。
FIG. 1 is an explanatory diagram of a double crucible used in the crystal pulling method of the present invention. FIG. 2 is a diagram schematically explaining the crystal pulling method and apparatus of the present invention. FIG. 3 is a diagram illustrating crystal pulling by a conventional method. FIG. 4 is a diagram illustrating an asymmetric melting curve of an undoped crystal according to a conventional method, and the lower part of the diagram shows the temperature distribution on the solid-liquid interface in the radial direction of the melt in that case. FIG. 5(6) is a diagram comparing the method of the present invention and the conventional 031tli method in terms of how undoped crystals dissolve.

Claims (2)

【特許請求の範囲】[Claims] (1)結晶引上げにおいて、底部で連通している同心に
配置された二重るつぼ中にて結晶材料を溶融し、該二重
るつぼの内るつぼより結晶を引上げながら、一方、該二
重るつぼの外るつぼと内るつぼにより形成される環状部
分において、アンドープ結晶を回転しつつ溶融し、上記
結晶引上げ量と上記アンドープ結晶溶融量が常に同量と
なるよう調整しつつ行うことを特徴とする結晶引上げ方
法。
(1) In crystal pulling, the crystal material is melted in double crucibles arranged concentrically and communicating at the bottom, and while pulling the crystal from the inner crucible of the double crucible, Crystal pulling is performed by rotating and melting an undoped crystal in an annular portion formed by an outer crucible and an inner crucible, and adjusting the amount of the crystal pulled and the amount of the undoped crystal melted so that the amount is always the same. Method.
(2)少くともa)底部で連通している同心に配置され
た二重るつぼ、b)該二重るつぼの内るつぼに配置され
る回転昇降手段を有する中心軸、c)中心軸から偏心し
た位置で、かつ上記二重るつぼの外るつぼと内るつぼに
より形成される環状部分に位置する、単数もしくは複数
の回転昇降手段を有する副軸、d)上記中心軸および副
軸に設置された計量手段を有する引上げ装置であって、
上記計量手段による測定データにより上記回転昇降手段
を制御する手段を有する結晶引上げ用装置。
(2) at least a) a concentrically arranged double crucible communicating at the bottom; b) a central axis having a rotary lifting means disposed in the inner crucible of the double crucible; c) eccentric from the central axis. d) a subshaft having one or more rotating lifting means located at the position and in the annular part formed by the outer crucible and the inner crucible of the double crucible; d) metering means installed on the central axis and the subshaft; A lifting device having:
A crystal pulling device comprising means for controlling the rotary elevating means based on data measured by the measuring means.
JP14677684A 1984-07-17 1984-07-17 Method and deivce for pulling up crystal Pending JPS6126596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14677684A JPS6126596A (en) 1984-07-17 1984-07-17 Method and deivce for pulling up crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14677684A JPS6126596A (en) 1984-07-17 1984-07-17 Method and deivce for pulling up crystal

Publications (1)

Publication Number Publication Date
JPS6126596A true JPS6126596A (en) 1986-02-05

Family

ID=15415275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14677684A Pending JPS6126596A (en) 1984-07-17 1984-07-17 Method and deivce for pulling up crystal

Country Status (1)

Country Link
JP (1) JPS6126596A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379790A (en) * 1986-09-22 1988-04-09 Toshiba Corp Crystal pulling up device
US5972086A (en) * 1995-08-28 1999-10-26 Seiko Epson Corporation Ink jet printer and ink for ink jet recording
WO2017087817A1 (en) * 2015-11-18 2017-05-26 Sunedison, Inc. Methods for recycling monocrystalline segments cut from a monocrystalline ingot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379790A (en) * 1986-09-22 1988-04-09 Toshiba Corp Crystal pulling up device
US5972086A (en) * 1995-08-28 1999-10-26 Seiko Epson Corporation Ink jet printer and ink for ink jet recording
US6176912B1 (en) 1995-08-28 2001-01-23 Seiko Epson Corporation Ink jet printer and ink for ink jet recording
WO2017087817A1 (en) * 2015-11-18 2017-05-26 Sunedison, Inc. Methods for recycling monocrystalline segments cut from a monocrystalline ingot

Similar Documents

Publication Publication Date Title
US4659421A (en) System for growth of single crystal materials with extreme uniformity in their structural and electrical properties
JPH0676273B2 (en) A method of continuously adding liquid silicon during pulling operation of the Czochralski crucible.
Leverton Floating crucible technique for growing uniformly doped crystals
JPH01215788A (en) Method for pulling up crystal
JPS6126596A (en) Method and deivce for pulling up crystal
Wilcox et al. Growth of KTaO3‐KNbO3 Mixed Crystals
US4187139A (en) Growth of single crystal bismuth silicon oxide
JPS6018634B2 (en) Crystal pulling device
JP2579761B2 (en) Control method of single crystal diameter
EP0619387B1 (en) Pull method for growth of Si single crystal using density detector and apparatus therefor
JPH0416588A (en) Method and apparatus for producing single crystal
JPS5836997A (en) Producing device for single crystal
JPS62171987A (en) Cz single crystal production apparatus and production method
JP2006213554A (en) Crystal growth method and its apparatus
EP0174672A1 (en) Method of manufacturing bismuth germanate crystals
JP2717175B2 (en) Single crystal growing method and apparatus
JPH06135791A (en) Device for growing semiconductor single crystal
JP2006248808A (en) Crystal growth apparatus
JP2012036015A (en) Crystal growth method
Robertson A study of the growth and growth mechanism of potassium dihydrogen orthophosphate crystals from aqueous solution
JPH10101468A (en) Method for growing compound semiconductor crystal and apparatus therefor
JP2004203634A (en) Method of producing semiconductor single crystal
JPH01286994A (en) Production of silicon single crystal and apparatus therefor
JPS62278190A (en) Production of single crystal
JP2005075688A (en) Growing method for garnet-type single crystal