JPH06135791A - Semiconductor single crystal growth equipment - Google Patents

Semiconductor single crystal growth equipment

Info

Publication number
JPH06135791A
JPH06135791A JP28883792A JP28883792A JPH06135791A JP H06135791 A JPH06135791 A JP H06135791A JP 28883792 A JP28883792 A JP 28883792A JP 28883792 A JP28883792 A JP 28883792A JP H06135791 A JPH06135791 A JP H06135791A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
semiconductor single
raw material
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28883792A
Other languages
Japanese (ja)
Inventor
Jun Kono
純 河野
Masami Tatsumi
雅美 龍見
Shinichi Sawada
真一 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28883792A priority Critical patent/JPH06135791A/en
Publication of JPH06135791A publication Critical patent/JPH06135791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

(57)【要約】 【目的】 育成単結晶の径方向のドーパント濃度を均一
にすることのできる半導体単結晶の育成装置を提供しよ
うとするものである。 【構成】 チョクラルスキー法により半導体単結晶を育
成する装置において、ルツボ内に半径の異なる2つ以上
の内ルツボを同軸上に配置し、最も外側の内ルツボの側
面に径方向に等間隔に2つの流通孔を設け、内側の内ル
ツボになるにしたがって流通孔の数を2倍づつ増やし、
隣接する内ルツボの流通孔を相互に最も離れた位置に配
置し、最も外側のルツボに原料供給手段を配置し、ルツ
ボの中央より半導体単結晶を引き上げることを特徴とす
る半導体単結晶の育成装置である。
(57) [Abstract] [Purpose] An object of the present invention is to provide a semiconductor single crystal growth apparatus capable of making the dopant concentration in the radial direction of the grown single crystal uniform. [Structure] In a device for growing a semiconductor single crystal by the Czochralski method, two or more inner crucibles having different radii are coaxially arranged in the crucible, and the inner crucible on the outermost side is radially equidistant. Two circulation holes are provided, and the number of circulation holes is doubled as the inner crucible becomes,
A device for growing a semiconductor single crystal, characterized in that the flow holes of the inner crucibles adjacent to each other are arranged at positions most distant from each other, the raw material supply means is arranged in the outermost crucible, and the semiconductor single crystal is pulled up from the center of the crucible. Is.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原料を連続的に供給し
ながらチョクラルスキー法により半導体単結晶を育成す
る装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for growing a semiconductor single crystal by the Czochralski method while continuously supplying raw materials.

【0002】[0002]

【従来の技術】育成する単結晶は、目的に応じてP型あ
るいはN型の半導体にするために、原料融液中に微量の
不純物元素(ドーパント元素)を混入させるが、これら
の不純物元素の育成単結晶中への混入の程度を示す偏析
係数は、シリコン単結晶にホウ素、アンチモン、リンを
ドープする場合を例にすると、それぞれ0.8、0.0
23、0.35といずれも1より低い。その結果、育成
結晶の上部と下部では不純物濃度が変化し、電気的性質
も変動するため、半導体素子を製造するためには好まし
くない。それ故、育成結晶のうち不純物濃度が一定の範
囲内に入っていない部分は不良品となってしまう。
2. Description of the Related Art A single crystal to be grown has a small amount of impurity element (dopant element) mixed in a raw material melt in order to be a P-type or N-type semiconductor according to the purpose. The segregation coefficients indicating the degree of inclusion in the grown single crystal are 0.8 and 0.0, respectively, in the case where the silicon single crystal is doped with boron, antimony, or phosphorus.
23 and 0.35 are both lower than 1. As a result, the impurity concentration changes in the upper part and the lower part of the grown crystal, and the electrical properties also change, which is not preferable for manufacturing a semiconductor element. Therefore, a portion of the grown crystal where the impurity concentration does not fall within a certain range becomes a defective product.

【0003】そこで、育成結晶の歩留りを向上させるた
めに、原料を連続的に供給しながら単結晶を育成する連
続チョクラルスキー法が開発された。特開昭52─58080
号公報には、原料の供給方法が示されており、特開昭59
─79000 号公報には、追加供給する多結晶原料に穴また
は溝を設け、その中にドーパント素材を封入する方法が
記載されている。この方法は、不純物濃度の精密な制御
に適さない。因みに、ここで必要とされる不純物原子の
濃度は、通常0.1〜10ppma程度であり、濃度範
囲の許容値も±10〜20%と比較的狭い範囲である。
したがって、十分に計量された微量の不純物元素を定量
的に融液中に混入しなければならない。
Therefore, in order to improve the yield of grown crystals, a continuous Czochralski method has been developed in which a single crystal is grown while continuously supplying a raw material. JP-A-52-58080
Japanese Unexamined Patent Publication (Kokai) No. Sho 59-59 discloses a method of supplying raw materials.
No. 79000 discloses a method in which a polycrystalline material to be additionally supplied is provided with holes or grooves, and a dopant material is enclosed therein. This method is not suitable for precise control of impurity concentration. Incidentally, the concentration of the impurity atom required here is usually about 0.1 to 10 ppma, and the allowable value of the concentration range is also a relatively narrow range of ± 10 to 20%.
Therefore, a well-measured trace amount of impurity elements must be quantitatively mixed in the melt.

【0004】そこで、予め育成する単結晶に比して2〜
3桁高い不純物濃度を有する半導体単結晶を製造し、こ
の半導体単結晶から棒状又は板状のものを切り出した単
結晶母合金を用いる方法が提案された。この単結晶母合
金中には粒界がないため、不純物の粒界への偏析がな
く、また、ほぼ均一とみなせる程度の単結晶母合金を得
ることができ、不純物濃度も電気伝導度測定法により十
分に精度よく測定することができる。この単結晶母合金
を原料融液中に追加供給することにより、融液中の不純
物濃度を一定に保持することができ、その結果、引き上
げ育成される単結晶の不純物濃度を均一に保つことがで
きる。
Therefore, in comparison with a single crystal grown in advance,
A method has been proposed in which a semiconductor single crystal having an impurity concentration that is three orders of magnitude higher is manufactured and a single crystal master alloy obtained by cutting a rod-shaped or plate-shaped semiconductor single crystal out of the semiconductor single crystal is used. Since there are no grain boundaries in this single crystal master alloy, there is no segregation of impurities to the grain boundaries, and it is possible to obtain a single crystal master alloy that can be considered to be almost uniform. The measurement can be performed with sufficient accuracy. By additionally supplying this single crystal master alloy into the raw material melt, the impurity concentration in the melt can be held constant, and as a result, the impurity concentration of the pulled single crystal can be kept uniform. it can.

【0005】図4は、上記の単結晶母合金を用いる単結
晶製造装置の概念図である。グラファイトサセプタ11
に支持された石英ルツボ12には、同軸に配置された内
ルツボ13が配置されており、ルツボ12の環状部分の
原料融液にドーピング用の単結晶母合金14を供給する
ために該合金14の把持用チャック15を下端に備えた
昇降自在な支持部材16と、粒状の原料17を供給する
ための供給管18を設け、ルツボ12の環状部分で調整
された原料融液19を内ルツボ13の1つの連通孔20
を介して内ルツボ13内に移行し、回転軸21で回転攪
拌された原料融液19に種結晶を浸漬し、単結晶22を
回転させながら引き上げるようにしたものである。
FIG. 4 is a conceptual diagram of a single crystal manufacturing apparatus using the above single crystal master alloy. Graphite susceptor 11
A quartz crucible 12 supported by an inner crucible 13 arranged coaxially with the quartz crucible 12 is provided to feed a single crystal master alloy 14 for doping to a raw material melt of an annular portion of the crucible 12. A support member 16 having a gripping chuck 15 at its lower end and capable of moving up and down, and a supply pipe 18 for supplying a granular raw material 17 are provided, and a raw material melt 19 adjusted by an annular portion of the crucible 12 is supplied to the inner crucible 13. One communication hole 20
The seed crystal is immersed in the raw material melt 19 which has been moved into the inner crucible 13 via the and is rotated and stirred by the rotary shaft 21, and the single crystal 22 is pulled while being rotated.

【0006】以下、シリコン単結晶の育成を例にして説
明する。石英ルツボ12内に所定割合の不純物元素を混
入した初期原料を充填するとともに、炉内の空気をアル
ゴンガスで置換した後、抵抗加熱ヒータで炉内を加熱す
る。初期原料が完全に溶解した後、上記ヒータの発熱量
を落としてシリコン融液19の温度を単結晶育成に適し
た温度まで下げる。この状態で回転軸21を回転させ、
上方より種結晶を下降させてシリコン融液19に浸漬し
て単結晶22を引き上げる。引き上げ中は、供給管18
から粉状の原料17を供給することにより単結晶22の
育成損に対応させると共に、チャック15に支持された
単結晶母合金14を所定速度で下降させてルツボ12の
環状部分のシリコン融液中に供給する。
Hereinafter, the growth of a silicon single crystal will be described as an example. The quartz crucible 12 is filled with an initial raw material in which a predetermined proportion of an impurity element is mixed, and after the air in the furnace is replaced with argon gas, the inside of the furnace is heated by a resistance heater. After the initial raw material is completely melted, the calorific value of the heater is reduced to lower the temperature of the silicon melt 19 to a temperature suitable for single crystal growth. In this state, rotate the rotary shaft 21,
The seed crystal is lowered from above and immersed in the silicon melt 19 to pull up the single crystal 22. Supply pipe 18 during pulling up
In order to deal with the growth loss of the single crystal 22 by supplying the powdery raw material 17 from the single crystal master alloy 14 supported by the chuck 15, the single crystal master alloy 14 is lowered at a predetermined speed in the silicon melt of the annular portion of the crucible 12. Supply to.

【0007】因みに、不純物濃度1ppmaで直径80
mm、長さ1mのシリコン単結晶棒を引き上げ速度1m
m/minで引き上げ育成すると共に、不純物濃度56
0ppmaで10mm角、長さ120mmの直方体状の
単結晶母合金を下降させる場合には、単結晶母合金の下
降速度は次のようになる。 4×4×3.14×1/(560×1×1)=0.09
(mm/min) ルツボ12の環状部分のシリコン融液は、内ルツボ13
の貫通孔20を介して中央部に移行し、育成単結晶22
の回転により引き起こされる対流で攪拌され、不純物濃
度は均一化される。
Incidentally, when the impurity concentration is 1 ppma, the diameter is 80
mm pulling speed of 1m silicon single crystal rod 1m
It is pulled up and grown at m / min and has an impurity concentration of 56.
When a rectangular parallelepiped single crystal master alloy of 10 mm square and 120 mm in length is lowered at 0 ppma, the descending speed of the single crystal master alloy is as follows. 4 × 4 × 3.14 × 1 / (560 × 1 × 1) = 0.09
(Mm / min) The silicon melt in the annular portion of the crucible 12 is
Of the grown single crystal 22 through the through hole 20 of
Is stirred by convection caused by the rotation of, and the impurity concentration is made uniform.

【0008】[0008]

【発明が解決しようとする課題】しかし、図4の従来装
置では、ただ1つの内ルツボ13を用い、かつ該ルツボ
に設けた貫通孔20が1つであるため、育成単結晶22
を回転させても、実際には、図5に示すように、内ルツ
ボ内の原料融液中のドーパント濃度は、貫通孔20の近
くでは高く、離れるにしたがって低くなる。それ故、得
られる単結晶22の径方向のドーパント濃度も決して均
一とは言えるものではなかった。そこで、本発明では、
上記の欠点を解消し、育成単結晶の径方向のドーパント
濃度を均一にすることのできる半導体単結晶の育成装置
を提供しようとするものである。
However, in the conventional apparatus shown in FIG. 4, since only one inner crucible 13 is used and one through hole 20 is provided in the crucible, the grown single crystal 22
Even if is rotated, as shown in FIG. 5, the dopant concentration in the raw material melt in the inner crucible is actually high near the through hole 20 and becomes lower as it goes away. Therefore, the dopant concentration in the radial direction of the obtained single crystal 22 could not be said to be uniform at all. Therefore, in the present invention,
An object of the present invention is to provide a device for growing a semiconductor single crystal, which can solve the above-mentioned drawbacks and make the dopant concentration in the radial direction of the grown single crystal uniform.

【0009】[0009]

【課題を解決するための手段】本発明は、チョクラルス
キー法により半導体単結晶を育成する装置において、ル
ツボ内に半径の異なる2つ以上の内ルツボを同軸上に配
置し、最も外側の内ルツボの側面に径方向に等間隔に2
つの流通孔を設け、内側の内ルツボになるにしたがって
流通孔の数を2倍づつ増やし、隣接する内ルツボの流通
孔を相互に最も離れた位置に配置し、最も外側のルツボ
に原料供給手段を配置し、ルツボの中央より半導体単結
晶を引き上げることを特徴とする半導体単結晶の育成装
置である。
According to the present invention, in an apparatus for growing a semiconductor single crystal by the Czochralski method, two or more inner crucibles having different radii are coaxially arranged in the crucible and the outermost inner crucible is arranged. 2 at equal intervals in the radial direction on the side of the crucible
One circulation hole is provided, the number of circulation holes is doubled as the inner crucible becomes inner, and the circulation holes of the adjacent inner crucibles are arranged at the farthest positions from each other, and the raw material supply means is provided to the outermost crucible. Is arranged and the semiconductor single crystal is pulled from the center of the crucible.

【0010】[0010]

【作用】図1は、本発明の1具体例である半導体単結晶
の育成装置の正面断面図であり、図2は、図1の平面図
である。図1の装置は、サセプタ10に支持される外ル
ツボ1内には、同軸上に第1の内ルツボ2、第2の内ル
ツボ3、第3の内ルツボ4からなる3重の内ルツボを配
置し、回転軸5で回転可能に支持されている。そして、
図2に示すように、第1の内ルツボ2には2つの連通孔
を、第2の内ルツボ3には4つの連通孔を、第3の内ル
ツボ4には8つの連通孔を等間隔に設け、隣接する内ル
ツボの連通孔の位置は図のように相互に最も離れた位置
に配置した。原料粉末7は原料供給管6より外ルツボ1
と第1の内ルツボ2との間の環状部分に供給し、原料粉
末7から溶けだすドーパントは、図3の矢印のように、
拡散し、順次内側のルツボ内に移行するので、中央の内
ルツボ内にはほぼ均一なドーパント元素が流入すること
になる。そして、均一なドーパント元素を有する原料融
液8から単結晶9を引き上げ育成するので、育成単結晶
9の径方向のドーパント濃度を均一にすることができ
る。
FIG. 1 is a front sectional view of a semiconductor single crystal growing apparatus which is one embodiment of the present invention, and FIG. 2 is a plan view of FIG. The apparatus shown in FIG. 1 has a triple inner crucible consisting of a first inner crucible 2, a second inner crucible 3 and a third inner crucible 4 coaxially in the outer crucible 1 supported by the susceptor 10. It is arranged and rotatably supported by the rotating shaft 5. And
As shown in FIG. 2, the first inner crucible 2 has two communication holes, the second inner crucible 3 has four communication holes, and the third inner crucible 4 has eight communication holes at equal intervals. The positions of the communication holes of the inner crucibles adjacent to each other were arranged at positions most distant from each other as shown in the figure. The raw material powder 7 is fed from the raw material supply pipe 6 to the outer crucible 1.
The dopant that is supplied to the annular portion between the first inner crucible 2 and the first raw crucible 2 and begins to melt from the raw material powder 7 is
Since it diffuses and sequentially migrates into the inner crucible, a substantially uniform dopant element flows into the central inner crucible. Since the single crystal 9 is pulled up and grown from the raw material melt 8 having a uniform dopant element, it is possible to make the dopant concentration in the radial direction of the grown single crystal 9 uniform.

【0011】[0011]

【実施例】図1〜2の本発明の装置、及び、図4の従来
装置を用いて以下の条件の下で直径80mm:長さ20
0mmのリンをドープしたシリコン単結晶を育成した。 引き上げ速度 1mm/hr 結晶回転速度 5rpm ルツボ回転速度 5rpm ルツボ材質 石英 ルツボ内径 従来装置 12cm,20cm(2重ルツ
ボ) 本発明の装置 12cm,16cm,20cm
(3重ルツボ) ルツボの肉厚 3mm 内ルツボの貫通孔の径 5mm
EXAMPLE Using the apparatus of the present invention shown in FIGS. 1 and 2 and the conventional apparatus shown in FIG. 4, a diameter of 80 mm and a length of 20 under the following conditions.
A silicon single crystal doped with 0 mm of phosphorus was grown. Pulling speed 1 mm / hr Crystal rotation speed 5 rpm Crucible rotation speed 5 rpm Crucible material Quartz crucible inner diameter Conventional device 12 cm, 20 cm (double crucible) Device of the present invention 12 cm, 16 cm, 20 cm
(Triple crucible) Crucible wall thickness 3mm Inner crucible through hole diameter 5mm

【0012】両方の装置で1ランづつ単結晶を育成し
た。得られた単結晶の径方向の比抵抗のバラツキを調べ
たところ、従来装置で得た単結晶は10〜20%である
のに対し、本発明の装置で得た単結晶は3〜7%と極め
て低い値を示した。なお、バラツキの程度を示す式とし
て下式を用いた。 K=〔(Cmax −Cmin )/Cav〕×100(%) Cmax :ある径方向での比抵抗の最大値 Cmin :ある径方向での比抵抗の最小値 Cav :ある径方向での比抵抗の平均値
A single crystal was grown for each run on both devices. When the variation in the specific resistance in the radial direction of the obtained single crystal was investigated, the single crystal obtained by the conventional apparatus was 10 to 20%, whereas the single crystal obtained by the apparatus of the present invention was 3 to 7%. And showed an extremely low value. The following equation was used as an equation indicating the degree of variation. K = [(C max −C min ) / C av ] × 100 (%) C max : maximum value of specific resistance in a certain radial direction C min : minimum value of specific resistance in a certain radial direction C av : certain diameter Mean value of resistivity in the direction

【0013】[0013]

【発明の効果】本発明は、上記の構成を採用することに
より、径方向の均一なドーパント濃度を有する半導体単
結晶の育成を可能にし、半導体素子の生産において歩留
りの向上を可能にした。
According to the present invention, by adopting the above structure, it is possible to grow a semiconductor single crystal having a uniform dopant concentration in the radial direction and to improve the yield in the production of semiconductor devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1具体例である半導体単結晶の育成装
置の正面断面図である。
FIG. 1 is a front cross-sectional view of a semiconductor single crystal growth device that is one specific example of the present invention.

【図2】図1の平面図である。FIG. 2 is a plan view of FIG.

【図3】図1の装置おけるドーパントの拡散経路を説明
するための図である。
FIG. 3 is a diagram for explaining a diffusion path of a dopant in the device of FIG.

【図4】従来の半導体単結晶の育成装置の正面断面図で
ある。
FIG. 4 is a front sectional view of a conventional semiconductor single crystal growing device.

【図5】図4の装置における内ルツボ内の原料融液のド
ーパント濃度勾配を示した図である。
5 is a diagram showing a dopant concentration gradient of a raw material melt in an inner crucible in the apparatus of FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法により半導体単結晶
を育成する装置において、ルツボ内に半径の異なる2つ
以上の内ルツボを同軸上に配置し、最も外側の内ルツボ
の側面に径方向に等間隔に2つの流通孔を設け、内側の
内ルツボになるにしたがって流通孔の数を2倍づつ増や
し、隣接する内ルツボの流通孔を相互に最も離れた位置
に配置し、最も外側のルツボに原料供給手段を配置し、
ルツボの中央より半導体単結晶を引き上げることを特徴
とする半導体単結晶の育成装置。
1. An apparatus for growing a semiconductor single crystal by the Czochralski method, in which two or more inner crucibles having different radii are coaxially arranged in the crucible, and the inner crucible on the outermost side is radially aligned. Two circulation holes are provided at intervals, the number of circulation holes is doubled as the inner crucible becomes inner, and the circulation holes of adjacent inner crucibles are arranged at the farthest positions from each other, and the outer crucible is arranged at the outermost crucible. Arrange the raw material supply means,
An apparatus for growing a semiconductor single crystal, wherein the semiconductor single crystal is pulled from the center of the crucible.
JP28883792A 1992-10-27 1992-10-27 Semiconductor single crystal growth equipment Pending JPH06135791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28883792A JPH06135791A (en) 1992-10-27 1992-10-27 Semiconductor single crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28883792A JPH06135791A (en) 1992-10-27 1992-10-27 Semiconductor single crystal growth equipment

Publications (1)

Publication Number Publication Date
JPH06135791A true JPH06135791A (en) 1994-05-17

Family

ID=17735393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28883792A Pending JPH06135791A (en) 1992-10-27 1992-10-27 Semiconductor single crystal growth equipment

Country Status (1)

Country Link
JP (1) JPH06135791A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793725A (en) * 1993-06-21 1998-08-11 Fujitsu Limited Optical information recording/reproducing apparatus having a composite prism with a plurality of emission surfaces
DE19700516B4 (en) * 1996-01-12 2014-03-13 Mitsubishi Materials Silicon Corp. Single crystal pulling apparatus
WO2014159879A1 (en) * 2013-03-14 2014-10-02 Sunedison, Inc. Czochralski crucible for controlling oxygen and related methods
CN113981526A (en) * 2021-10-29 2022-01-28 安徽中科未来技术有限公司 Device and method for realizing crystal growth of Czochralski method with doping or component adjustment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793725A (en) * 1993-06-21 1998-08-11 Fujitsu Limited Optical information recording/reproducing apparatus having a composite prism with a plurality of emission surfaces
DE19700516B4 (en) * 1996-01-12 2014-03-13 Mitsubishi Materials Silicon Corp. Single crystal pulling apparatus
WO2014159879A1 (en) * 2013-03-14 2014-10-02 Sunedison, Inc. Czochralski crucible for controlling oxygen and related methods
CN105247114A (en) * 2013-03-14 2016-01-13 爱迪生太阳能公司 Czochralski crucible for controlling oxygen and related methods
US9863062B2 (en) 2013-03-14 2018-01-09 Corner Star Limited Czochralski crucible for controlling oxygen and related methods
US10450670B2 (en) 2013-03-14 2019-10-22 Corner Star Limited Methods for growing a crystal ingot with reduced dislocations from a crucible
CN113981526A (en) * 2021-10-29 2022-01-28 安徽中科未来技术有限公司 Device and method for realizing crystal growth of Czochralski method with doping or component adjustment

Similar Documents

Publication Publication Date Title
EP0170856B1 (en) Process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique
US4659421A (en) System for growth of single crystal materials with extreme uniformity in their structural and electrical properties
TWI588303B (en) Growing a uniformly doped bismuth ingot by doping only the initial charge
EP0098471B1 (en) Method of growing silicon crystals by the czochralski method
US4936949A (en) Czochraski process for growing crystals using double wall crucible
JPH0416435B2 (en)
JP5399212B2 (en) Method for producing silicon single crystal
TW202231942A (en) Use of buffer members during growth of single crystal silicon ingots
JPH06135791A (en) Semiconductor single crystal growth equipment
JP2567539B2 (en) FZ method silicon single crystal ingot growth method and apparatus
JP2560418B2 (en) Single crystal growing equipment
JPS63303894A (en) Silicon single crystal growth method
KR101425933B1 (en) Apparatus of continuous czochralski single crystal silicon ingot grower
JPS598695A (en) Crystal growth apparatus
KR101193692B1 (en) Resistivity control method of Single Crystal and Single Crystal Manufactured by the method
JPH07277875A (en) Crystal growth method
WO2024024155A1 (en) Silicon single crystal
JPH061688A (en) Method and device for feeding granular dopant
JPH03174390A (en) Production device for single crystal
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JPH0259494A (en) Production of silicon single crystal and apparatus
JPH0699217B2 (en) Single crystal growth equipment
JPH08259371A (en) Single crystal growth method with excellent SR uniformity
JP2004203634A (en) Method of producing semiconductor single crystal
JPH01294588A (en) Production of silicon single crystal and unit therefor