JPS61265833A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61265833A
JPS61265833A JP60106847A JP10684785A JPS61265833A JP S61265833 A JPS61265833 A JP S61265833A JP 60106847 A JP60106847 A JP 60106847A JP 10684785 A JP10684785 A JP 10684785A JP S61265833 A JPS61265833 A JP S61265833A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type semiconductor
type
layer
bonding pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60106847A
Other languages
Japanese (ja)
Inventor
Yoshitaka Sasaki
芳高 佐々木
Yoshitaka Oishi
好高 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP60106847A priority Critical patent/JPS61265833A/en
Publication of JPS61265833A publication Critical patent/JPS61265833A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7322Vertical transistors having emitter-base and base-collector junctions leaving at the same surface of the body, e.g. planar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]

Abstract

PURPOSE:To reduce the parasitic capacity of a semiconductor device and to improve switching speed, by constituting semiconductor regions directly beneath bonding pads as independent regions. CONSTITUTION:On an N-type epitaxial layer 22 on an N<+> type semiconductor substrate 21, a first P<+> type semiconductor layer 23a, a second P<+> type semiconductor layer 23b located around a cell assembly and a third P<+> type semiconductor layer 23c, which surrounds the layer 23b, are formed. A fourth P<+> type semiconductor layer 23d located directly beneath a bonding pad 29a and a fifth P<+> type semiconductor layer 23e located directly beneath a bonding pad 29b are formed in an independently isolated manner. Since the semiconductor layers 23d and 23e are isolated from the semiconductor layer 23b, the parasitic capacity between a source and a drain becomes extremely small, and the switching speed is strikingly improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一導電型の半導体基体に複数の半導体領域を形
成し、或る半導体領域に接続された電極取り出し金属膜
を半導体基体の主面上に絶縁膜を介して形成し、この電
極取り出し金属膜にワイヤ・導線をボンディングにより
接続するようにした半導体装置に関するものであり、と
くに寄生容量を減少せしるめることによってスイッチン
グスピードの向上を図った半導体装置に関するものであ
る。
Detailed Description of the Invention (Industrial Application Field) The present invention forms a plurality of semiconductor regions on a semiconductor substrate of one conductivity type, and connects an electrode lead-out metal film connected to a certain semiconductor region to a main surface of the semiconductor substrate. This relates to a semiconductor device in which an insulating film is formed on top of the metal film, and wires and conductive wires are connected to this metal film by bonding.In particular, it improves switching speed by reducing parasitic capacitance. The present invention relates to a semiconductor device that achieves the following.

(従来の技術) 近年において、微細加工の技術向上により、素子の限界
近くまで微細化が駆使され、そのため、素子の寄生容量
が減少され、高速で高性能な半導体装置あるいは半導体
集積回路が出現してきている。しかしながら全てにおい
て微細化ができるのではなく、微細化が可能である部分
と、そうでない部分とがある。
(Conventional technology) In recent years, improvements in microfabrication technology have allowed devices to be miniaturized to near their limits, resulting in the emergence of high-speed, high-performance semiconductor devices or semiconductor integrated circuits that reduce the parasitic capacitance of devices. ing. However, not everything can be miniaturized; there are some parts where miniaturization is possible and some parts where it is not.

特に大電力用トランジスタにおいては、電流容量が大き
いため1.電極取り出しワイヤ導線の太いものが使われ
、それにともなって、ワイヤ導線と接合されるボンディ
ング用パッドと呼ばれる広いAl膜パターンが存在し、
大電力用素子はど、このボンディング用パッドは面積の
大きな領域が必要とされていた。一般的にボンディング
用パッド直下の半導体領域はバイポーラ型トランジスタ
ではベース領域、MO3型トランジスタにおいてはソー
ス領域と同じバイアスが印加される領域となっている。
In particular, high-power transistors have a large current capacity, so 1. A thick electrode lead wire is used, and along with this, there is a wide Al film pattern called a bonding pad that is bonded to the wire conductor.
For high-power devices, this bonding pad requires a large area. Generally, the semiconductor region directly under the bonding pad is a region to which the same bias is applied as the base region in a bipolar transistor and the source region in an MO3 transistor.

第5図はバイポーラ型トランジスタを形成した従来の半
導体装置の構造を示すものであり、シリコンチップ上に
はベース領域とエミッタ領域に対する2つのボンディン
グ用バッドが形成されている。n++シリコン半導体基
板1上にn型シリコンエピタキシャル層2を成長させて
nオンn・構造のシリコン基体を構成している。エピタ
キシャル層2内にはベース領域として作用するp型半導
体層3を形成し、このp形半導体層内にエミッタ領域と
して作用するn゛型型厚導体層4形成している。エピタ
キシャル層2の主面上には絶縁膜5を形成し、この絶縁
膜にあけた開口5aを経てn゛型型厚導体層4オーミッ
ク接続されたエミッタ1M電極膜6を絶縁膜5上に延在
させ、大面積のボンディング用パッド6aを構成し、こ
こにワイヤ導線8をボンディングにより接続している。
FIG. 5 shows the structure of a conventional semiconductor device in which a bipolar transistor is formed, in which two bonding pads for a base region and an emitter region are formed on a silicon chip. An n-type silicon epitaxial layer 2 is grown on an n++ silicon semiconductor substrate 1 to form an n-on-n structure silicon substrate. A p-type semiconductor layer 3 serving as a base region is formed within the epitaxial layer 2, and an n-type thick conductor layer 4 serving as an emitter region is formed within this p-type semiconductor layer. An insulating film 5 is formed on the main surface of the epitaxial layer 2, and an emitter 1M electrode film 6 ohmically connected to the n-type thick conductor layer 4 is extended onto the insulating film 5 through an opening 5a formed in the insulating film. A large-area bonding pad 6a is formed, and a wire conducting wire 8 is connected thereto by bonding.

また、絶縁膜5にあけた別の開口5bを経てp型半導体
層3にオーミック接続されたベースA1電極膜7も絶縁
膜5上に延在させ、ボンディング用パッド7aを構成し
、ここにワイヤ導線9をボンディングにより接続してい
る。なお、第5図において、バイポーラトランジスタを
囲むようにp型のフィールドリミッティングリング10
が形成されている。
Further, the base A1 electrode film 7, which is ohmically connected to the p-type semiconductor layer 3 through another opening 5b made in the insulating film 5, is also extended on the insulating film 5 to form a bonding pad 7a, and a wire is connected to the base A1 electrode film 7. A conductive wire 9 is connected by bonding. In addition, in FIG. 5, a p-type field limiting ring 10 surrounds the bipolar transistor.
is formed.

従来の?lOS型トランジスタは低耐圧、低電力デバイ
スと考えられていたが、最近の半導体製造技術あるいは
回路設計技術等の発展に伴い、高耐圧、大電力設計が可
能となり、現在ではパワーデバイスとしてその地位を確
保するに至っている。
Traditional? The OS type transistor was thought to be a low-voltage, low-power device, but with recent developments in semiconductor manufacturing technology and circuit design technology, it has become possible to design high-voltage and high-power devices, and it has now taken its place as a power device. We have reached the point where it has been secured.

かかるパワーMO3)ランジスタの代表的なものとして
、DSA (Diffusion Self−Alig
nment)構造のものが有る。DSA−MOS  )
ランジスタは、二重拡散によりチャンネル領域を自己整
合的に形成するもので、格子形のゲート多結晶シリコン
電極に囲まれた同一の拡散窓によりチャンネル領域を形
成するためのp形不純物拡散とソース領域を形成するた
めのn°形不純物拡散とをおこなっているのが特徴であ
る。
A typical example of such a power MO3) transistor is DSA (Diffusion Self-Alig).
There are some with nment) structure. DSA-MOS)
A transistor has a channel region formed in a self-aligned manner through double diffusion, and the same diffusion window surrounded by a lattice-shaped gate polycrystalline silicon electrode is used to diffuse p-type impurities and source regions to form the channel region. The feature is that n° type impurity diffusion is performed to form .

第6図はDSA−MOS  )ランジスタを形成した従
来の半導体装置の構造を示すものであり、第7図(a)
はセル構造を、Al電極膜を除去して示す平面図であり
、第7図(b)は第7図(a)のA−A線に沿う断面図
である。n゛゛半導体基板11上に、これよりも低不純
物濃度のn形エピタキシャル層12を形成したnオンn
゛構造となっており、これらがドレイン領域を構成して
いる。ドレイン電極は図面に示していないが、半導体基
板11の裏面に形成されている。エピタキシャル層12
上にはゲート酸化膜13を介してケート多結晶シリコン
膜14が形成されており、この多結晶シリコン膜14に
は開口が形成されており、所謂セルを構成している。
Figure 6 shows the structure of a conventional semiconductor device in which a DSA-MOS transistor is formed, and Figure 7(a)
7 is a plan view showing the cell structure with the Al electrode film removed, and FIG. 7(b) is a sectional view taken along line A--A in FIG. 7(a). An n-on n-type epitaxial layer 12 with a lower impurity concentration than this is formed on an n-semiconductor substrate 11.
These structures form the drain region. Although the drain electrode is not shown in the drawing, it is formed on the back surface of the semiconductor substrate 11. epitaxial layer 12
A gate polycrystalline silicon film 14 is formed thereon via a gate oxide film 13, and an opening is formed in this polycrystalline silicon film 14 to form a so-called cell.

エピタキシャル層12内にはp゛型型環導体層15p型
半導体層16およびn゛型型温導体層17形成されてい
る。チャンネル長はp型半導体層16とn゛型型温導体
層17の拡散の深さの差で決まるので、チャンネル長が
数ミクロン以下と極めて短いチャンネル領域が形成でき
る。ソース金属電極膜18はn・型半導体層17と、p
型半導体層16に接しているp゛型型環導体層15の両
方にオーミック接続されている。またゲート電極金属膜
19は多結晶シリコン膜14に接続されている。これら
のソースおよびゲート電極金属膜1Bおよび19は絶縁
膜20上を延在させ、面積の広いボンディング用パッド
18aおよび19aを構成し、これらボンディング用パ
ッドにワイヤ導線21および22をそれぞれボンディン
グして接続している。
In the epitaxial layer 12, a p-type ring conductor layer 15, a p-type semiconductor layer 16, and an n-type hot conductor layer 17 are formed. Since the channel length is determined by the difference in diffusion depth between the p-type semiconductor layer 16 and the n-type hot conductor layer 17, an extremely short channel region with a channel length of several microns or less can be formed. The source metal electrode film 18 includes the n-type semiconductor layer 17 and the p-type semiconductor layer 17.
It is ohmically connected to both of the p-type ring conductor layer 15 that is in contact with the p-type semiconductor layer 16. Further, the gate electrode metal film 19 is connected to the polycrystalline silicon film 14. These source and gate electrode metal films 1B and 19 extend on the insulating film 20 and constitute large-area bonding pads 18a and 19a, to which wire conductors 21 and 22 are bonded and connected, respectively. are doing.

ここでp+型型厚導体層15セル内に位置する第1p+
型半導体層15aと、セルが集合して或るセル集合領域
の周囲を囲むように位置する第2p゛型半導体層15b
と、ソース−ドレイン間耐圧(Vnsi)を大きくする
ために、第2p゛型半導体Jli15bをさらに囲むよ
うに設けた1本又は2木のフィールドリミッティングリ
ングと呼ばれているリング状の第3p゛型半導体層15
cと、ソース領域とゲート領域に対するボンディング用
パッド18aおよび19aの直下に位置し、前記セル集
合領域を囲むように位置する第2p゛型半導体層15b
と連続して形成されている第4p”型半導体層15dお
よび第5p+型半導体JW15eとそれぞれ同一のプロ
セス工程にて一緒に形成されている。
Here, the first p+ layer located within the p+ type thick conductor layer 15 cell
a second p type semiconductor layer 15a and a second p' type semiconductor layer 15b located so as to surround a certain cell gathering area where cells gather together.
In order to increase the source-drain breakdown voltage (Vnsi), a ring-shaped third pin called a field limiting ring of one or two trees is provided to further surround the second p type semiconductor Jli15b. type semiconductor layer 15
c, and a second p-type semiconductor layer 15b located directly below the bonding pads 18a and 19a for the source region and gate region and surrounding the cell gathering region.
The fourth p'' type semiconductor layer 15d and the fifth p+ type semiconductor JW15e are formed in the same process step.

ゲー・ト多結晶シリコン膜13のパターンは格子状のも
のやストライプ状のものがあるが第7図(a)では格子
状のパターンを示している。ゲートソース間に正の電圧
を加えてチャンネルをオンさせると、電流は半導体基板
11から縦方向に流れ、チャンネル領域を通ってソース
領域に流れ込む。したがって、この電流を取り出すため
、一般的には八2の広い面積を有するボンディング用パ
ッド18aが形成され、このボンディング用バッドかラ
ワイヤ導線21を引き出している。ソース電極18は、
セルと呼ばれるゲート多結晶シリコン膜14に形成した
開口内に位置する第1p”型半導体層15aと、セルが
集合されて或る集合体の周囲を取り囲んでいる第2p゛
型半導体層15bと、ボンディング用バッド18aの直
下の第4.第5半導体層15d、 15eとに電気的に
接続されている。したがってゲート電極のボンディング
用パッド19a直下の第5p°型半導体層15dもソー
ス領域と同じ電位を持つことになる。
The pattern of the gate polycrystalline silicon film 13 may be a lattice pattern or a stripe pattern, and FIG. 7(a) shows a lattice pattern. When a positive voltage is applied between the gate and the source to turn on the channel, current flows vertically from the semiconductor substrate 11, passes through the channel region, and flows into the source region. Therefore, in order to extract this current, a bonding pad 18a having a large area is generally formed, and the raw wire conductor 21 is drawn out from this bonding pad. The source electrode 18 is
A first p'' type semiconductor layer 15a located in an opening formed in the gate polycrystalline silicon film 14 called a cell, a second p'' type semiconductor layer 15b surrounding a certain aggregate of cells, It is electrically connected to the fourth and fifth semiconductor layers 15d and 15e directly under the bonding pad 18a. Therefore, the fifth p° type semiconductor layer 15d directly under the bonding pad 19a of the gate electrode is also at the same potential as the source region. will have.

(発明が解決しようとする問題点) 上述した構成の半導体装置において、MOSトランジス
タのスイッチングスピードを向上させる一要因として、
ソース−ドレイン間の寄生容量を減少させることがある
。このソース−ドレイン間の寄生容量はソース領域の不
純物濃度を低く抑え、さらにまた限られたシリコンチッ
プ内に占めるソース領域の容量を極力小さく抑えること
も重要なことである。一方、プレーナ型の大電力、高耐
圧用トランジスタにおいては、或る一定の深さに不純物
拡散(バイポーラトランジスタではベース領域3を形成
するための拡散であり、MOS  )ランジスタではp
゛型型厚導体層15形成するための拡散)を施さなけれ
ば高耐圧で安全動作領域の広いトランジスタは得られに
くい。当然のごと< 、DSA−MOSトランジスタに
おいては、p“型半導体層15を深く形成することはソ
ース領域の容積が大きくなることになる。しかも、ボン
ディング用パッド直下のp0型型半体層15d、 15
eは他の領域に比較して広大な面積を有している。例え
ば直径300μmのワイヤ導線を用いる場合、700 
X1500μm2の面積を有するものとなる。このよう
に、従来の半導体装置においては、ボンディング用バッ
ドの直下に大きな容積を有しているとともに広大な面積
を有している半導体層が存在しており、この部分のソー
ス−ドレイン間又はソースエミッタ間の寄生容量は著し
く大きなものとなり、スイッチングスピードが低下する
欠点がある。
(Problems to be Solved by the Invention) In the semiconductor device having the above-described configuration, one factor for improving the switching speed of the MOS transistor is as follows.
The parasitic capacitance between source and drain may be reduced. Regarding this parasitic capacitance between the source and drain, it is important to keep the impurity concentration of the source region low, and furthermore, to keep the capacitance of the source region occupying a limited silicon chip as small as possible. On the other hand, in planar type transistors for high power and high breakdown voltage, impurity is diffused to a certain depth (in bipolar transistors, this is diffusion to form the base region 3, and in MOS transistors, p
Unless diffusion (diffusion for forming the thick conductor layer 15) is performed, it is difficult to obtain a transistor with a high withstand voltage and a wide safe operating range. Naturally, in the DSA-MOS transistor, forming the p" type semiconductor layer 15 deeply increases the volume of the source region. Moreover, the p0 type half layer 15d directly under the bonding pad, 15
e has a large area compared to other regions. For example, when using a wire conductor with a diameter of 300 μm, 700 μm
It has an area of x1500 μm2. As described above, in conventional semiconductor devices, there is a semiconductor layer having a large volume and a vast area directly under the bonding pad, and the source-drain or source This has the disadvantage that the parasitic capacitance between emitters becomes significantly large, and the switching speed decreases.

本発明の目的は、ボンディング用パッド直下の半導体層
の寄生容量を減少せしめることによって高速で高性能の
半導体装置を提供しようとするものである。
An object of the present invention is to provide a high-speed, high-performance semiconductor device by reducing the parasitic capacitance of a semiconductor layer directly below a bonding pad.

(問題点を解決するための手段) 本発明は一導電型の半導基体に形成した複数の半導体領
域を有し、或る半導体領域に接続された、ワイヤ導線に
よる電極取り出し金属膜を半導体基体主面上に絶縁膜を
介して形成した半導体装置において、上記電極取り出し
金属膜直下の前記半導体基体の主面に前記絶縁膜を介し
て、半導体基体によって周囲を囲まれた少なくとも1つ
の島状の反対導電型の半導体層を設けたことを特徴とす
るものである。
(Means for Solving the Problems) The present invention has a plurality of semiconductor regions formed on a semiconductor substrate of one conductivity type, and an electrode lead-out metal film connected to a certain semiconductor region by a wire conductor is connected to the semiconductor substrate. In a semiconductor device formed on a main surface with an insulating film interposed therebetween, at least one island-like structure surrounded by the semiconductor substrate is formed on the main surface of the semiconductor substrate directly under the electrode lead-out metal film with the insulating film interposed therebetween. It is characterized in that semiconductor layers of opposite conductivity types are provided.

(作  用) 本発明においては、ボンディング用バットである電極取
り出し金属膜直下に、この金属膜と電気的に接続されて
いない島状の半導体層を設けたため、この島状半導体層
は最早や寄生容量を構成しなくなり、スイッチングスピ
ードを向上することができる。
(Function) In the present invention, an island-shaped semiconductor layer that is not electrically connected to the metal film is provided directly under the metal film for taking out the electrode, which is the bonding butt, so that the island-shaped semiconductor layer no longer becomes parasitic. This eliminates the need for capacitance and improves switching speed.

(実施例) 第1図(a)および(b)は本発明の半導体装置の第1
実施例を示すものであり、DSA−MOS  )ランジ
スタを形成したものである。n゛゛半導体基板21上に
n型エピタキシャル層22を形成してnオンn゛構造の
シリコン基体を構成する。エピタキシャル層22には、
選択的にセル内に位置し、ソースAl電極とのオーミッ
クコンタクト抵抗を改善するための第1p”型半導体層
23aと、セル集合体の周囲に位置する第2p”型半導
体層23bと、この第2p゛型半導体層の周囲をリング
状に囲む第3p。
(Example) FIGS. 1(a) and (b) show the first example of the semiconductor device of the present invention.
This shows an example in which a DSA-MOS transistor is formed. An n-type epitaxial layer 22 is formed on an n-type semiconductor substrate 21 to form a silicon substrate having an n-on n-type structure. The epitaxial layer 22 includes:
A first p'' type semiconductor layer 23a selectively located within the cell to improve the ohmic contact resistance with the source Al electrode, a second p'' type semiconductor layer 23b located around the cell assembly, and this second p'' type semiconductor layer 23b located around the cell assembly. A 3rd p layer surrounds the 2p type semiconductor layer in a ring shape.

型半導体層23cと、ボンディング用パッド直下の第4
および第5のp゛型型厚導体層23dよび23eとを形
成する。従来の半導体装置においては、第4および第5
のp゛型型厚導体層23dよび23eを、セル集合体の
周囲に位置する第2p・型半導体層23bと連続して形
成していたが本発明では第2p”型半導体層23bとは
独立して形成する。勿論、製造工程上は、第4および第
5p”型半導体層23dおよび23eは第2p°型半導
体層23bと同一工程で形成することができる。すなわ
ち、本発明においては、ゲートボンディング用パッドの
直下に位置する第4p”型半導体層23dと、ソースボ
ンディング用バット直下に位置する第5p”型半導体層
23eは、n型エピタキシャル層22によって島状に独
立分離して形成されている。
type semiconductor layer 23c and the fourth layer directly under the bonding pad.
Then, fifth p-type thick conductor layers 23d and 23e are formed. In conventional semiconductor devices, the fourth and fifth
The p'' type thick conductor layers 23d and 23e were formed continuously with the second p'' type semiconductor layer 23b located around the cell assembly, but in the present invention, they are formed independently of the second p'' type semiconductor layer 23b. Of course, in terms of the manufacturing process, the fourth and fifth p'' type semiconductor layers 23d and 23e can be formed in the same process as the second p° type semiconductor layer 23b. That is, in the present invention, the fourth p'' type semiconductor layer 23d located directly under the gate bonding pad and the fifth p'' type semiconductor layer 23e located directly under the source bonding pad are island-shaped by the n type epitaxial layer 22. It is formed independently and separately.

次にゲート用絶縁膜24を約1000人の厚さに形成し
た後、ゲート電極材料となる多結晶シリコン膜25を約
6000人の厚さに選択的に形成する。続いてゲート多
結晶シリコン膜25をマスクとしてボロンイオン注入を
行い、チャンネル領域を構成するp型半導体層26を形
成する。次にリンイオン注入を行い、ソース領域を構成
するn゛型型厚導体層27形成した後、CVD法にてシ
リコン酸化膜28を形成する。続いてシリコン酸化膜2
日に電極取り出し用開口を形成した後^l電極膜29を
約4μmの厚さに選択的に形成する。この際、Al@極
膜29をシリコン酸化膜28上に選択的に形成するとと
もにボンディング用パッド29aおよび29bを形成す
る。
Next, after forming the gate insulating film 24 to a thickness of about 1,000 wafers, a polycrystalline silicon film 25 serving as a gate electrode material is selectively formed to a thickness of about 6,000 wafers. Subsequently, boron ions are implanted using the gate polycrystalline silicon film 25 as a mask to form a p-type semiconductor layer 26 constituting a channel region. Next, phosphorus ions are implanted to form an n-type thick conductor layer 27 constituting a source region, and then a silicon oxide film 28 is formed by CVD. Next, silicon oxide film 2
After forming an opening for taking out the electrode, an electrode film 29 is selectively formed to a thickness of about 4 μm. At this time, an Al@ electrode film 29 is selectively formed on the silicon oxide film 28, and bonding pads 29a and 29b are formed.

ボンディング用パッド29aはゲート多結晶シリコン膜
25に接続されており、ここにはゲートワイヤ導線30
をボンディングする。また、ボンディング用パッド29
bはn゛型型厚導体層27よびp型半導体層26の双方
に接続されており、ここにはソースワイヤ導線31がボ
ンディングされている。
The bonding pad 29a is connected to the gate polycrystalline silicon film 25, and a gate wire conducting wire 30 is connected thereto.
Bonding. In addition, the bonding pad 29
b is connected to both the n-type thick conductor layer 27 and the p-type semiconductor layer 26, and a source wire conductor 31 is bonded thereto.

上述した本発明の半導体装置においては、ボンディング
用バッド29aおよび29bの直下に位置する第4およ
び第5のp11型半導層23dおよび23eは第2p”
型半導体層23bから分離して島状に形成されているの
で、ソースドレイン間の寄生容量はきわめて小さくなり
、スイッチングスピードは著しく向上する。
In the semiconductor device of the present invention described above, the fourth and fifth p11 type semiconductor layers 23d and 23e located directly under the bonding pads 29a and 29b are the second p''
Since it is separated from the type semiconductor layer 23b and formed into an island shape, the parasitic capacitance between the source and drain becomes extremely small, and the switching speed is significantly improved.

第2図(a)および(b)は本発明の半導体装置の第2
実施例を示すものである。本例でも前例と同様にシリコ
ンチップ内にDSA−MOS  )ランジスタを構成し
たものであり、前例と同じ部分には同一符号を付けて示
し、その説明は省略する。本例ではゲートボンディング
用パッド29aの直下の第4p+型半導体層を複数個の
独立した島状の半導体層23d + 。
FIGS. 2(a) and 2(b) show the second structure of the semiconductor device of the present invention.
This shows an example. In this example as well, a DSA-MOS (MOS) transistor is constructed in a silicon chip as in the previous example, and the same parts as in the previous example are denoted by the same reference numerals, and the explanation thereof will be omitted. In this example, the fourth p+ type semiconductor layer directly under the gate bonding pad 29a is formed into a plurality of independent island-shaped semiconductor layers 23d + .

23a tを以て構成するとともにソースボンディング
用パッド29b直下に位置する第5p”半導体層も複数
の独立した半導体層23e、、23e=を以て構成する
。すなわち、第2図(b)に示すように、一方の半導体
層23d + 、23e +をリング状に形成し、その
内部に他方の半導体WA23dt、23etを形成する
23a to 23t, and the fifth p'' semiconductor layer located directly under the source bonding pad 29b is also composed of a plurality of independent semiconductor layers 23e, 23e=. That is, as shown in FIG. 2(b), one The semiconductor layers 23d + and 23e + are formed in a ring shape, and the other semiconductors WA 23dt and 23et are formed inside the rings.

ソース電極に正、ドレイン電極に負の電圧を印加すると
、第2p+型半導体層23bがら空乏層が伸びフィール
ドリミッティングリングと呼ばれるp゛゛半導体層へ到
達する。同時に第2および第3p“型半導体層23bお
よび23cからボンディング用バッド29a 、 29
b直下の半導体123d、、23e+へ空乏層が到達す
る。さらに電圧を高(して行くと、p゛型型厚導体層2
3a+および23e、からその内側のp゛型型温導体層
23d2よび23e2へと次々に空乏層が伸びて行く。
When a positive voltage is applied to the source electrode and a negative voltage is applied to the drain electrode, the depletion layer extends from the second p+ type semiconductor layer 23b and reaches a p゛゛ semiconductor layer called a field limiting ring. At the same time, bonding pads 29a, 29 are formed from the second and third p" type semiconductor layers 23b and 23c.
The depletion layer reaches the semiconductors 123d, , 23e+ directly below b. When the voltage is further increased (as the voltage increases, the p-type thick conductor layer 2
Depletion layers extend one after another from 3a+ and 23e to the inner p' type hot conductor layers 23d2 and 23e2.

このようにして、ボンディング用パッド29a、 29
b直下のp°型型厚導体層23dl、23d tおよび
23el、23ezはフィールドリミッティングリング
と同じように作用して空乏層を広げ、ソース〜 ドレイ
ン間の耐圧を大きくし得るように構成されている。勿論
、本実施例においても、ボンディング用バッド29aお
よび29b直下のp゛型型半体体層23d+23dtお
よび23e 、 、 23e、は第2p”型半導体1i
23bとは独立して形成されているため、ソース−ドレ
イン間の寄生容量は小さく、スイッチングスピードは向
上している。
In this way, the bonding pads 29a, 29
The p° type thick conductor layers 23dl, 23dt, 23el, and 23ez directly under b are configured to act in the same way as a field limiting ring to widen the depletion layer and increase the withstand voltage between the source and drain. There is. Of course, in this embodiment as well, the p'' type half body layers 23d+23dt and 23e, 23e directly under the bonding pads 29a and 29b are the second p'' type semiconductor 1i.
23b, the parasitic capacitance between the source and drain is small and the switching speed is improved.

第3図は本発明の半導体装置の第3の実施例を示すもの
であり、本例ではバイ゛ポーラトランジスタをシリコン
チップに形成したものである。n4型半導体基板41上
にn型エピキタシャルN42を成長させ、このエピタキ
シャル層にはベース領域を構成するp型半導体層43お
よびエミ・ツタ領域を構成するn°型型厚導体層44形
成するとともにフィールドリミッティングリング50を
形成する。エピタキシャル層42の表面には絶縁膜45
を形成し、この絶縁膜上にエミッタ電極金属膜46と、
ベース電極金属膜47とを形成し、これら金属膜を絶縁
膜45にあけた開口45aおよび45bを経てそれぞれ
p型半導体層43およびn゛型型厚導体層44オーミッ
ク接続する。またこれら金属電極膜46および47は絶
縁膜45上を延在させエミンタボンディング用パッド4
6aおよびベースボンディング用パッド47aを形成し
、これらボンディング用パッドにワイヤ導線48および
49をボンディングする。本発明においては、ボンディ
ング用バンド46aおよび47a直下に位置するp型半
導体層51および52をp型半導体層43から独立した
島領域として構成する。したがってこれらのp型半導体
1i51および52はボンディング用バット46aおよ
び47aに電気的に接続されないので、寄生容量は小さ
くなり、スイッチングスピードが高速となる。
FIG. 3 shows a third embodiment of the semiconductor device of the present invention, in which a bipolar transistor is formed on a silicon chip. An n-type epitaxial N42 is grown on an n4-type semiconductor substrate 41, and in this epitaxial layer, a p-type semiconductor layer 43 constituting a base region and an n°-type thick conductor layer 44 constituting an emitter/vine region are formed. A limiting ring 50 is formed. An insulating film 45 is formed on the surface of the epitaxial layer 42.
is formed, and an emitter electrode metal film 46 is formed on this insulating film,
A base electrode metal film 47 is formed, and these metal films are ohmically connected to the p-type semiconductor layer 43 and the n-type thick conductor layer 44 through openings 45a and 45b formed in the insulating film 45, respectively. Further, these metal electrode films 46 and 47 are extended on the insulating film 45 to form the emitter bonding pad 4.
6a and a base bonding pad 47a are formed, and wire conductors 48 and 49 are bonded to these bonding pads. In the present invention, p-type semiconductor layers 51 and 52 located directly under bonding bands 46a and 47a are configured as island regions independent from p-type semiconductor layer 43. Therefore, since these p-type semiconductors 1i51 and 52 are not electrically connected to the bonding bats 46a and 47a, the parasitic capacitance is reduced and the switching speed is increased.

第4図は本発明の半導体装置の第4の実施例を示すもの
であり、第3図に示した部分と同じ部分には同一符号を
付けて示し、その説明は省略する。
FIG. 4 shows a fourth embodiment of the semiconductor device of the present invention, and the same parts as those shown in FIG. 3 are denoted by the same reference numerals, and the explanation thereof will be omitted.

本例においてはエミッタボンディング用パッド46a直
下にそれぞれ2個の独立したp型半導体層 51 a。
In this example, two independent p-type semiconductor layers 51a are provided directly below the emitter bonding pad 46a.

51bおよび52a 、 52bを形成する。すなわち
、一方のp型半導体層51a、52aをリング状に構成
し、その内部に他方のp型半導体層51b、52bを構
成する。
51b and 52a, 52b are formed. That is, one p-type semiconductor layer 51a, 52a is formed into a ring shape, and the other p-type semiconductor layer 51b, 52b is formed inside the ring-shape.

本例でも、寄生容量を小さくすることができるとともに
ベース−コレクタ間の耐圧を高くすることができる。
In this example as well, the parasitic capacitance can be reduced and the withstand voltage between the base and the collector can be increased.

本発明は上述した実施例に限定されるものではなく、幾
多の変更や変形が可能である。本発明は上述したMIS
半導体装置およびバイポーラ型半導体装置に限定される
ものではなく、例えば静電誘導型半導体装置等のボンデ
ィング用パッドを有する半導体装置にも適用することが
できる。また、個別半導体装置は勿論のこと、高周波数
トランジスタ、大電力トランジスタ、高耐圧トランジス
タ、低耐圧トランジスタ等を共存させた複合集積回路に
も適用可能である。さらに、上述した実施例において、
p型とn型とを逆とすることもできる。
The present invention is not limited to the embodiments described above, and numerous changes and modifications are possible. The present invention is based on the MIS described above.
The present invention is not limited to semiconductor devices and bipolar type semiconductor devices, but can also be applied to semiconductor devices having bonding pads, such as electrostatic induction type semiconductor devices. Furthermore, it is applicable not only to individual semiconductor devices but also to composite integrated circuits in which high-frequency transistors, high-power transistors, high-voltage transistors, low-voltage transistors, etc. coexist. Furthermore, in the embodiments described above,
The p-type and n-type can also be reversed.

さらにまた、n型エピタキシャル層は引き上げ法によっ
て形成されたn型半導体層でもよい。
Furthermore, the n-type epitaxial layer may be an n-type semiconductor layer formed by a pulling method.

(発明の効果) 本発明によれば、ボンディング用パッド直下の広大な容
積を持つ半導体領域をソース領域又はベース領域から独
立分離した島状の領域として構成したため、寄生容量を
小さくすることができ、したがってスイッチングスピー
ドを向上することができる。また、島状の領域を複数個
設け、これらの間を空乏層が拡がり易くすることによっ
てソース−ドレイン間またはベース−コレクタ間の耐圧
を大きくすることができる。
(Effects of the Invention) According to the present invention, since the semiconductor region having a vast volume directly under the bonding pad is configured as an island-like region independently separated from the source region or the base region, parasitic capacitance can be reduced. Therefore, switching speed can be improved. Further, by providing a plurality of island-shaped regions and making it easier for the depletion layer to spread between these regions, the withstand voltage between the source and the drain or between the base and the collector can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は本発明の半導体装置の第1
実施例の構成を示す断面図および平面図、第2図(a)
および(b)は本発明の半導体装置の第2実施例の構成
を示す断面図および平面図、゛第3図は本発明の半導体
装置の第3実施例の構成を示す断面図、 第4図は本発明の半導体装置の第4実施例の構成を示す
断面図、 第5図は従来の半導体装置の一例の構成を示す断面図、 第6図は従来の半導体装置の他の例の構成を示す断面図
、 第7図(a)および(b)は同じくその一部分の構成を
示す平面図および断面図である。 21−n”型半導体基板、 22−n型エピキシャル層
23a −第1p+型半導体層 23b −・第29”型半導体層 23cm・第3p9型半導体層 23d −第4p+型半導体層 23e−・・第5p゛型半導体層 24−・ゲート絶縁膜   25−多結晶シリコン膜2
6・−p型半導体層   27−・n°型型半体体層2
8・絶縁膜      2!1−電極金属膜29a、2
9b・−・ボンディング用パッド30.31− ワイヤ
導線 23d+、23dt −第4p”型半導体層23e+、
23ez −第5p”型半導体層4t−n+型半導体基
板 42−・n型エピキシャル層43・−・p型ベース
領域  44−・n゛型エミッタ領域45−絶縁膜 46a、47a −ボンディング用パッド48.49−
m−・ワイヤ導線  51.52−島状半導体層51a
、51b、52a、52b −島状半導体層特許出願人
  ティーディーケイ株式会社代理人弁理士  杉  
村  暁  秀同   弁理士  杉   村   興
   作第1図 (b) 23d 、 23e
FIGS. 1(a) and 1(b) show the first part of the semiconductor device of the present invention.
Cross-sectional view and plan view showing the configuration of the embodiment, FIG. 2(a)
and (b) are a cross-sectional view and a plan view showing the structure of a second embodiment of the semiconductor device of the present invention, ゛FIG. 3 is a cross-sectional view showing the structure of a third embodiment of the semiconductor device of the present invention, and FIG. 5 is a cross-sectional view showing the structure of an example of a conventional semiconductor device; FIG. 6 is a cross-sectional view showing the structure of another example of the conventional semiconductor device. FIGS. 7(a) and 7(b) are a plan view and a sectional view showing the structure of a portion thereof. 21 - n" type semiconductor substrate, 22 - n type epitaxial layer 23a - first p+ type semiconductor layer 23b - 29" type semiconductor layer 23cm, third p9 type semiconductor layer 23d - fourth p + type semiconductor layer 23e -... fifth p゛-type semiconductor layer 24--gate insulating film 25-polycrystalline silicon film 2
6.-p type semiconductor layer 27-.n° type half body layer 2
8. Insulating film 2!1- Electrode metal film 29a, 2
9b - Bonding pad 30.31- Wire conductor 23d+, 23dt - Fourth p'' type semiconductor layer 23e+,
23ez - fifth p'' type semiconductor layer 4t - n+ type semiconductor substrate 42 - n type epitaxial layer 43 - p type base region 44 - n' type emitter region 45 - insulating film 46a, 47a - bonding pad 48. 49-
m--wire conductor 51.52-island semiconductor layer 51a
, 51b, 52a, 52b - Island-shaped semiconductor layer patent applicant TDC Co., Ltd. Representative Patent Attorney Sugi
Illustration 1 (b) 23d, 23e by Hidetoshi Mura, Patent Attorney, and Oki Sugimura

Claims (1)

【特許請求の範囲】[Claims] 1、一導電型の半導体基体に形成した複数の半導体領域
を有し、或る半導体領域に接続された、ワイヤ導線によ
る電極取り出し金属膜を半導体基体主面上に絶縁膜を介
して形成した半導体装置において、上記電極取り出し金
属膜直下の前記半導体基体の主面に、前記絶縁膜を介し
て、半導体基体によって周囲を囲まれた少なくとも1つ
の島状の反対導電型の半導体層を設けたことを特徴とす
る半導体装置。
1. A semiconductor having a plurality of semiconductor regions formed on a semiconductor substrate of one conductivity type, with a metal film connected to a certain semiconductor region and an electrode taken out by a wire conductor formed on the main surface of the semiconductor substrate via an insulating film. In the device, at least one island-shaped semiconductor layer of an opposite conductivity type surrounded by the semiconductor substrate is provided on the main surface of the semiconductor substrate directly under the electrode extraction metal film, with the insulating film interposed therebetween. Characteristic semiconductor devices.
JP60106847A 1985-05-21 1985-05-21 Semiconductor device Pending JPS61265833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60106847A JPS61265833A (en) 1985-05-21 1985-05-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60106847A JPS61265833A (en) 1985-05-21 1985-05-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61265833A true JPS61265833A (en) 1986-11-25

Family

ID=14444032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60106847A Pending JPS61265833A (en) 1985-05-21 1985-05-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61265833A (en)

Similar Documents

Publication Publication Date Title
JP2643095B2 (en) MOSFET element
US5404040A (en) Structure and fabrication of power MOSFETs, including termination structures
US4344081A (en) Combined DMOS and a vertical bipolar transistor device and fabrication method therefor
JP2585331B2 (en) High breakdown voltage planar element
US5589405A (en) Method for fabricating VDMOS transistor with improved breakdown characteristics
JP2766240B2 (en) High voltage semiconductor device
US5574301A (en) Vertical switched-emitter structure with improved lateral isolation
US5895249A (en) Integrated edge structure for high voltage semiconductor devices and related manufacturing process
JP2004072077A (en) Bicdmos structure and its manufacturing method
US20030057478A1 (en) Mos-gated power semiconductor device
JPS5825264A (en) Insulated gate type semiconductor device and manufacture thereof
US4652895A (en) Zener structures with connections to buried layer
KR100351042B1 (en) Insulated gate bipolar transistor having high breakdown voltage in reverse blocking mode and method for fabricating the same
JPS63141375A (en) Insulated gate field effect transistor
JPS58175872A (en) Insulated gate field effect transistor
US5831318A (en) Radhard mosfet with thick gate oxide and deep channel region
JP3413050B2 (en) Semiconductor device and manufacturing method thereof
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JPS61278161A (en) High withstand voltage semiconductor device
JPS61265833A (en) Semiconductor device
JPS61285764A (en) Semiconductor device characterized by high withstand voltage
JPH0815183B2 (en) Semiconductor device including electrically isolated semiconductor element
JP3904725B2 (en) Semiconductor device and manufacturing method thereof
JPH0818041A (en) High-withstand-voltage semiconductor device and its manufacture
US6180981B1 (en) Termination structure for semiconductor devices and process for manufacture thereof