JPS61265563A - Method for signal processing in eddy current flaw detection - Google Patents

Method for signal processing in eddy current flaw detection

Info

Publication number
JPS61265563A
JPS61265563A JP60109083A JP10908385A JPS61265563A JP S61265563 A JPS61265563 A JP S61265563A JP 60109083 A JP60109083 A JP 60109083A JP 10908385 A JP10908385 A JP 10908385A JP S61265563 A JPS61265563 A JP S61265563A
Authority
JP
Japan
Prior art keywords
sections
signal
eddy current
defect
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60109083A
Other languages
Japanese (ja)
Inventor
Toshinori Ooki
大木 聡紀
Hitoshi Uchiumi
仁 内海
Ikuo Tate
舘 郁夫
Mamoru Murahashi
村橋 守
Yasuyuki Kanesada
兼貞 靖行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60109083A priority Critical patent/JPS61265563A/en
Publication of JPS61265563A publication Critical patent/JPS61265563A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to detect a shallow flaw with high accuracy, by dividing the surface of a material to be inspected into minute sections and comparing the change quantities or continuities of the signals respectively taken from the sections between said sections. CONSTITUTION:For example, an object 1 to be inspected having a circular cross-section is divided into 10 sections in the circumferential direction and divided in the longitudinal direction at 2.5mm-pitches to form minute sections which are, in turn, subjected to eddy current flaw detection. Generally, because the flaw of along material having a circular cross-section is present in a relatively long length and a high peak signal due to other factor is generated singly and varied largely, judgement is performed as a unit sector at every unit to make it possible to detect a shallow flow with high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発8AFi=*線材、棒M等の円形断面を有する材料
にIf4ts探蕩を適用し、その信号から材料表面のm
t−浅い疵でも高精度でやj定することを可能にする@
!号処理の方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention 8AFi = *If4ts probing is applied to a material with a circular cross section such as a wire or rod M, and the m of the material surface is determined from the signal.
- Enables high precision determination of even shallow flaws@
! Regarding the method of issue processing.

(従来の技術) 金jl#料の表面疵の検出には、一般的に、*2mm、
浸透探*、趨音技探爆あるいは渦流探傷の方法が用いら
れるが、線材、棒鋼等の円形断面長尺材には#lii流
探傷か適している。
(Prior art) In general, for detecting surface flaws on gold jl# material, *2 mm,
Penetrant testing*, acoustic explosion testing, or eddy current testing methods are used, but #lii flow testing is suitable for long materials with circular cross sections such as wire rods and steel bars.

fI4流探l1は金属などの棒体く交流を流し迄コイ/
l/’ig近接させたと1!、欠陥が存在するとコイ/
I/KIW起される電圧、電流が変化することを利用し
て欠陥を検出する方法で6る。
fI4 style search l1 is a carp until the alternating current flows through a rod such as metal.
1 when l/'ig is brought close! , if there is a defect, carp/
This is a method of detecting defects by utilizing changes in voltage and current caused by I/KIW.

この場合、渦流[1器の探傷ヘッドから送られてくる電
圧あるいは電流の変化信号は、単に被検材の欠陥のみK
Lって変化するものではなく、他からの電気的1機械的
な変化装置によるもの、4)るいは材料自体OIl!i
l有持性5例えば電磁気的性質おるいは表面、内部性状
等による変化も同蒔く含み込んでおり、これらの信号か
ら欠陥のみを弁別する必要が6る◎ 第5図は探Wi機で得られ友アナログ信号の1例を示し
、横軸は被検材の深海位置、縦軸は信号の高さである。
In this case, the eddy current [voltage or current change signal sent from one flaw detection head only detects defects in the material being tested]
L does not change, but is caused by other electrical or mechanical change devices, 4) or the material itself OIl! i
◎ It is necessary to distinguish only the defects from these signals. ◎ Figure 5 shows the results obtained with the Wi-Fi detector. An example of an analog signal is shown, in which the horizontal axis is the deep sea position of the specimen and the vertical axis is the height of the signal.

このような信−号技形からの従来の弁別方法は、受信し
九信号の大@さのうちある高さ以上に違し九場合を欠陥
として扱うのが一般的で、この場合欠陥でないもot大
欠陥見誤る晩成をなくし弁別の精度を良くするには。
Conventional discrimination methods based on such signal techniques generally treat cases where the size of the received signal exceeds a certain height as a defect, and in this case, even if it is not a defect, To improve the accuracy of discrimination by eliminating late bloomers that are mistaken for major defects.

無欠陥部分で得られるベースノイズの信号高さよりも数
倍以上に判定レベルを設定しなければならない。一般的
には3倍以上とする場合が多く、この場合8/N北5以
上という。
The determination level must be set several times higher than the base noise signal height obtained in the defect-free portion. Generally, it is often 3 times or more, and in this case it is 8/N north 5 or more.

この関係により1通常の#i流探fIi機を使用し表面
状態の良い鋼製品を探傷する場合、欠陥が表面から0.
07−以上の深さがないと精度よくやJ定することがで
きないとされている。
Due to this relationship, when testing steel products with good surface condition using a normal #i flow detector fIi machine, defects are detected from the surface to zero.
It is said that unless the depth is 0.7- or more, it is not possible to determine J with high accuracy.

(発明が解決しようとする問題点) 従来、棒鋼、線材等の製品は、最も厳しい規格でも5表
面欠陥の深さ#:tO,10all!で許容され、前記
従来技術はこの条件には適合可能であつt・ しかし、これよりも厳しい条件1例えば0.05−以下
の深さの欠陥の検出が加工技術の進歩6るいは漱終製品
の苛#tな便用条件から41才される場合には、より低
い信号高さくおいても欠陥と欠陥以外のものとの弁別上
可能くし、深さのさらに浅い欠陥の検出を行なうことが
要求されるLうになりて米九。
(Problem to be solved by the invention) Conventionally, products such as steel bars and wire rods have a depth of 5 surface defects #: tO, 10all! even under the strictest standards! However, conditions that are stricter than these 1. For example, the detection of defects with a depth of 0.05 or less has improved due to advancements in processing technology 6 or waste products. If you are 41 years old due to the harsh operating conditions, it is possible to distinguish between defects and non-defects even at a lower signal height, and to detect defects with a shallower depth. The requested L sea urchin and rice nine.

本発明はこれを可能とする改善信号処理方法を提供する
ことを目的とする。
An object of the present invention is to provide an improved signal processing method that makes this possible.

(問題点を解決するための手段1作用、実施例)#J記
目的は、円形断面の被検材の門流探傷において、被検材
の表面を微小区画に分割し、それぞれの区−でとらft
次信号を区画相互間での変化1あるいは連続性等を比較
することにより。
(Means for Solving Problems 1 Effects, Examples) #J The purpose is to divide the surface of the test material into minute sections and conduct a test in each section in gate flow flaw detection of the test material with a circular cross section. ft.
Next, by comparing the signal for changes or continuity between sections.

信号が欠陥に、、Cるものか否か七判別することを特徴
とする本発明のセクタ一方式の信号処理方法化よって達
成される・ 以下1本発Ijit−添付因を参照し具体的に説明する
This is achieved by the sector-based signal processing method of the present invention, which is characterized by determining whether a signal is defective or not. explain.

第1mG()は本発明のセクタ一方式の渦流探傷t1円
形断面の被検材(1) を例えは周方向に10等分し長
手方向に2.5alのピッチで分割しt−8微小区画に
ついて行なうことを示す。図中、(5)は波高値6を示
すと仮定し友欠陥であるとする。
The 1st mG () is the sector-one-type eddy current testing method of the present invention.For example, the test material (1) with a circular cross section of t1 is divided into 10 equal parts in the circumferential direction and divided into t-8 minute sections in the longitudinal direction at a pitch of 2.5al. Indicates what to do about In the figure, it is assumed that (5) shows a peak value of 6 and is a friend defect.

田)および(CIは同じく波高値5を示すと仮定し之I
!面荒fLおLび外米ノイズであるとする。被検材のそ
の他oi*な微小区画は波高値1t7tは2を示すもQ
と仮定する。
Assuming that both I
! It is assumed that the surface roughness fL and the outside noise are noise. Other oi* minute sections of the test material show a wave height of 1t7t, but Q
Assume that

講1図(ロ)はその信!波高値の展開図であり。Lecture 1 (b) is that belief! This is a development diagram of wave height values.

それぞfLo微小区画の信号波高値が1.2.5の款値
で記入されているが、そのうち波高値6が兼さ5−以上
、すなυち2ピッチ区−以上長手方向に連続する部分(
2)を以・つて欠陥と!PJ定する。
The signal wave height value of each fLo minute section is entered as the standard value of 1.2.5, of which the wave height value 6 is continuous in the longitudinal direction with a pitch of 5- or more, that is, υ, 2 pitch sections- or more. part(
2) is now considered a defect! Set up a project.

第2図イ)は1本@明方法と比較のため、同じ被検材(
1)につ′Ii艮手方回に同じ< 2.5 mのピッチ
で分割しm円w4面区画にり11渦流探傷を行なうこと
を示し、波高値6を示すと仮定した欠陥(A)、表面荒
れ田)、外米ノイズ(Qは第1図(イ)と同じでるるも
のとする。そして第2図(ロ)はその円周一回転におけ
る最高波高値’に1.2.5WK値で表示した4oであ
る。波高値6の遅絖部分(2〕は欠陥以外の荒印荒n、
外米ノイズに起因するものも欠陥によるものとや1定し
てしまう誤りが発生することを示す・ 上記の本発明の欠陥やJ定、方法の根拠を論理的に詳し
く説明すると次のとおりである。すなわち、従来の弁別
方法化おいては、パックグクンドとして出てくるベース
ノイズを基準にしてこれ1り高く出tものを欠陥として
認知している。
Figure 2 A) is the same test material (1 piece @ bright method) for comparison.
1) The defect (A) is assumed to show a wave height value of 6, indicating that 11 eddy current flaws are to be carried out on 4 plane sections of an m circle divided at the same pitch of < 2.5 m. , surface roughness), foreign rice noise (Q is assumed to be the same as in Figure 1 (a). And in Figure 2 (b), the highest wave height value in one revolution of the circumference is 1.2.5WK value. It is 4o expressed as 4o.The slow thread part (2) with wave height value 6 is a rough mark other than a defect, n,
This shows that errors caused by foreign noise are also caused by defects and are determined to be constant.The following is a detailed logical explanation of the defects, J-determination, and method of the present invention described above. be. That is, in the conventional discrimination method, based on the base noise that appears as a puck, anything that appears higher than this is recognized as a defect.

一般的忙ベースノイズの構成1素としては1機器本体が
有する固有ノイズ、電源が有するノイズ、周辺機器から
の外米系ノイズ、操!a等による機械的振動のノイズが
含まれ、これに被検材の表面、内部性状による信号およ
びノイズが加味畜れる。当然、精度よくR晦するくは、
こ九らのノイズ条件をそれぞfi影響が小さくなるよう
Ml設定してamするが、それでもこれらのミ索が個々
に変化し、ベースノイズの高さが被検材令it探傷する
とかなり上下しかつば゛らつく結果となり、精度良く弁
別するtめには欠陥としてm頻する8号高ざを高く設定
し、すなわち欠陥深さが深くなる方向に設定しなければ
ならない。
The components of general busy base noise are inherent noise of the device itself, noise of the power supply, foreign-American noise from peripheral devices, and operation! This includes noise due to mechanical vibration caused by a, etc., and signals and noise due to the surface and internal properties of the material being tested are added to this. Of course, if you want to accurately adjust the radius,
Although each of these noise conditions is set to Ml so that the influence of fi is small, these noises still change individually, and the height of the base noise rises and falls considerably when the test material is inspected. As a result, the height of No. 8, which is frequently used as a defect, must be set high, that is, the height of the defect must be set in a direction that increases the depth of the defect, in order to accurately discriminate the defect.

こflK対して本発明は、各種原因に=9発生するノイ
ズと欠陥部を高さレベ〃以外の手段により識別可能とす
ることを意図しtもので、第1図のように、被検材の円
周断面を複数個の区画に等分し、それぞれ分割された区
画の表面嬌長よを単位セクターとしてこの単位毎に判定
してゆく。一般的忙円断面長尺材の欠陥は比較的長い長
さを以って存在し、他の要因による高波高の信号は単発
的に発生し変動が大暑いものであるので、第1図と第2
図との比較からも知られるように、本発明の信号処理の
方法が合理的でTo’)、高い精度で深さの浅い欠陥を
誤認なしに検出することが可能であることが判る・前例
では本発明を10分割のセクタ一方式を例として説明し
友が2分割歌を多くすればするほど弁別の精度が向上す
ることkなり、その場合の信号IIJt埋はコンピュー
タで解析すれば審鳥に取扱える〇 本発明の信号処理方法は、さらに、欠陥信号は被検材の
長手方向に比較的長く他の要因に↓るものは短かいとい
う事実に基づいて、被検材長手方向延長上の歌区−〇信
号高さを加算し平均化するという加算平均の手法を用い
て実施することができる。
In contrast, the present invention is intended to make it possible to identify noise and defective parts that occur due to various causes by means other than the height level. The circumferential cross section of is equally divided into a plurality of sections, and the surface elongation of each divided section is determined as a unit sector. Defects in general circular cross-section long materials exist over a relatively long length, and signals of high wave height due to other factors occur sporadically and have large fluctuations, so Figure 1 and Second
As can be seen from the comparison with the figure, it can be seen that the signal processing method of the present invention is reasonable and can detect shallow defects with high accuracy and without misidentification. Now, the present invention will be explained using a 10-sector one-way system as an example, and the more the song is divided into 2 parts, the better the discrimination accuracy will be. Furthermore, the signal processing method of the present invention is based on the fact that the defect signal is relatively long in the longitudinal direction of the specimen and is shorter due to other factors. This can be carried out using an averaging method that adds and averages the signal heights of the song section-〇 signal.

第3図(イ)は被検材(1)の欠陥部は5のti、高値
を示すものとし、他は1t)tは20波高値を示すもの
とし、誦流探at行なりt場合、第5図(ロ)の結果が
1次的に得られるが、2個区1111M号の加算平均を
実施するとag3図e→に示すようになり、その結果欠
陥と欠陥でないものとの差が一層@確となり、同時にベ
ースノイズで示す最大値が小さくなるので欠陥弁別のた
め波高値を低い力、すなわち欠陥深さの浅いllK設定
することが可能となり、微小欠陥の検出が′@鳥となる
In Fig. 3 (a), the defective part of the material to be inspected (1) shows a high value of ti of 5, the other parts show a high value of 1t), and t shows a high value of 20. The result shown in Fig. 5 (b) is obtained primarily, but when the averaging of the two sections No. 1111M is carried out, it becomes as shown in Fig. ag3 e →, and as a result, the difference between defects and non-defects becomes even more At the same time, since the maximum value indicated by the base noise becomes small, it becomes possible to set the wave height value to a low force for defect discrimination, that is, llK with a shallow defect depth, and the detection of minute defects becomes '@bird'.

ベースノイズが発生する傾向は低い波高に行くほど発生
原波が多くなることから、加算平均を行なう場合の加算
個数を多くする#象どこの効果は大きい。
Since the tendency for base noise to occur is that the number of generated original waves increases as the wave height decreases, the effect of increasing the number of waves to be added when performing averaging is significant.

友だし加算値&をあまり多くすると、欠陥位置のずれが
大きくなるので利用方法と併せて検討する必要がある・ 第4図は本発明方法を実施した場合のコンビ二−タOア
クト1ットの疵信号の近傍部分を示し、第4図k)はコ
ンピュータからのアナログ信号で、パックグランドノイ
ズ波高を1096とし塵検出の低しベ、LL/150%
に、高しベ/I/を100%に設定している。84図(
ロ)は本発明方法による信号処理を行なつtコンピュー
タよりの*m知イベント信fを示す・ (発明の幼果ン 本発明によると、#I#、##lを回転グローブ型桶流
探傷機を使用して!1面欠陥を検出する場合に、弁別m
度を従来技術によるシ9も同上させることができh 1
alpro*取り装置に組込んだ場合に最低0.050
の欠陥Rさでも検出可能であった・尚これらの判定はイ
ンクインで使用するため、iイコンにより木兄f14Q
:)8号処理を行なうようにすることができる。
If the addition value & is too large, the deviation of the defect position will become large, so it must be considered in conjunction with the method of use. Figure 4 shows one combinator O act when the method of the present invention is implemented. Fig. 4k) shows the vicinity of the flaw signal, and Fig. 4k) is an analog signal from the computer, and the pack ground noise wave height is 1096 and the dust detection is low, LL/150%.
In this case, the height /I/ is set to 100%. Figure 84 (
b) shows the *m knowledge event signal f from the t computer which performs signal processing according to the method of the present invention. When using a machine to detect defects on one side, the discrimination m
The degree can also be increased by the prior art.
Minimum 0.050 when installed in alpro* removal device
It was possible to detect even the defect R of
:) No. 8 processing can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明の信号処理を実施するtめの被検
材のセクター区画方式を示す斜視図、第1図(噂はその
信号波高値を示す展開図、第2図k)は比較のための同
じ被検材の内周面区画を示す斜視図、第2園(噂はその
円周一回転における最高波高値を示す図、第5図(4)
は本発明方法くおいて加算平均を付加する場合の被検材
の斜視図&第5図(+2)はその信号波高値の図、第5
図上・)は加算平均上行なつ九場合の値會示す図、第4
図に)は本発明の実権にLるフンビニータアクトプント
の疵近傍部分のアナログ信号波形図、第4図(#は本発
明による信号処理を行なつt場合のコンピュータエ9の
疵11知イベント信号の図、M5#Aは従来tIL術に
よる員流探爆のアナログ信号0図でおる。 (υ−・被検剃、<2E−・最高波高値60連続部分、
(A)・・欠陥部分、@・・i11面荒1部分。 (Q−拳外米ノイズ。
Fig. 1 (a) is a perspective view showing the sector division method of the t-th test material to which the signal processing of the present invention is applied; Figure 5 (4) is a perspective view showing the inner circumferential surface section of the same material to be tested for comparison;
is a perspective view of the test material when adding averaging in the method of the present invention & Figure 5 (+2) is a diagram of the signal peak value, Figure 5
Figure 4 shows the value table for nine cases in which the additive average increases.
Figure 4) is an analog signal waveform diagram of the vicinity of the flaw in the fubinita actupunto according to the present invention. The event signal diagram, M5#A, is an analog signal 0 diagram of the flow detection using conventional tIL technique.
(A)...Defect part, @...i11 rough surface 1 part. (Q - Noise outside the fist.

Claims (2)

【特許請求の範囲】[Claims] (1)被検材の表面を微小区画に分割し、それぞれの区
画でとらえた信号を区画相互間での変化量あるいは連続
性等を比較することにより、信号が欠陥によるものか否
かを判別することを特徴とする渦流探傷における信号処
理の方法。
(1) Divide the surface of the material to be inspected into micro sections and compare the amount of change or continuity between the sections of the signal captured in each section to determine whether the signal is due to a defect or not. A method of signal processing in eddy current flaw detection.
(2)被検材の長手方向延長上の数区画の信号高さを加
算し平均化することにより微小欠陥より発生する低い信
号を強調することを可能にする特許請求の範囲1項に記
載の渦流探傷 における信号処理の方法。
(2) The invention according to claim 1, which makes it possible to emphasize low signals generated from minute defects by adding and averaging the signal heights of several sections on the longitudinal extension of the test material. Signal processing method in eddy current flaw detection.
JP60109083A 1985-05-20 1985-05-20 Method for signal processing in eddy current flaw detection Pending JPS61265563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60109083A JPS61265563A (en) 1985-05-20 1985-05-20 Method for signal processing in eddy current flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60109083A JPS61265563A (en) 1985-05-20 1985-05-20 Method for signal processing in eddy current flaw detection

Publications (1)

Publication Number Publication Date
JPS61265563A true JPS61265563A (en) 1986-11-25

Family

ID=14501165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60109083A Pending JPS61265563A (en) 1985-05-20 1985-05-20 Method for signal processing in eddy current flaw detection

Country Status (1)

Country Link
JP (1) JPS61265563A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185353A (en) * 1989-12-14 1991-08-13 Sumitomo Metal Ind Ltd Eddy current flaw detection
JP2017167057A (en) * 2016-03-17 2017-09-21 Jfeスチール株式会社 Method and device for inspecting surface flaw of round bar
JP2019082369A (en) * 2017-10-30 2019-05-30 矢崎エナジーシステム株式会社 Corrosion diagnostic method and corrosion diagnostic device
WO2023188556A1 (en) * 2022-03-30 2023-10-05 Jfeスチール株式会社 Steel bar surface flaw evaluation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027591A (en) * 1973-07-09 1975-03-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027591A (en) * 1973-07-09 1975-03-20

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185353A (en) * 1989-12-14 1991-08-13 Sumitomo Metal Ind Ltd Eddy current flaw detection
JP2017167057A (en) * 2016-03-17 2017-09-21 Jfeスチール株式会社 Method and device for inspecting surface flaw of round bar
JP2019082369A (en) * 2017-10-30 2019-05-30 矢崎エナジーシステム株式会社 Corrosion diagnostic method and corrosion diagnostic device
WO2023188556A1 (en) * 2022-03-30 2023-10-05 Jfeスチール株式会社 Steel bar surface flaw evaluation method

Similar Documents

Publication Publication Date Title
CN106574912B (en) Method and apparatus for leakage flux testing
CN102435616B (en) Monitoring method of stability of crystal edge detector
JP2009282027A (en) Method for determining and evaluating display of eddy current of crack in object to be tested comprising conductive material
US8552718B2 (en) Method for the nondestructive testing of pipes
JPH03242540A (en) Surface defect inspecting device
CN101571233A (en) Pipeline feature intelligent recognition method based on correlation analysis
CN101968463A (en) Method for recognizing pipeline spiral weld seam type crack defect through triaxial magnetic leakage internal detection line signal
EP0065325A2 (en) Method and apparatus for detecting flaws in tubular metallic members
US2746012A (en) Inductive electromagnetic inspection
JPS61265563A (en) Method for signal processing in eddy current flaw detection
US20060109001A1 (en) Methods and apparatus for testing a component
US3528003A (en) Sensor for inspecting a test piece for inside and outside flaws utilizing means responsive to the type of flaw for adjusting the threshold of the sensor
JPH06501105A (en) How to inspect heat exchanger pipes inside a heat exchanger
Uetake et al. Magnetic flux leakage by adjacent parallel surface slots
JP2798199B2 (en) Noise Removal Method in Eddy Current Testing
RU2607766C2 (en) Method for evaluation of geometrical dimensions of pipe section wall and weld seams defects according to ultrasonic intra-pipe defectoscope data with the help of related indications search
JPH01297551A (en) Deciding method for kind of defect in ultrasonic flaw detection
JPS62266454A (en) Signal processing for eddy current flaw detection
CN109870500A (en) A kind of defect method for real time discriminating and system based on alternating current field measurement
JPS63277963A (en) Method for deciding acceptance or rejection of material to be inspected such as billet
CN106896152A (en) Crack defect area determination method and device
JP2002040000A (en) Device and method for analyzing eddy current test signal
JPS6082958A (en) Eddy current detection of flaw on roll surface
CN114152422B (en) Method for detecting type of non-external defect of pipeline in oil and gas pipeline excavation site
WO2023188556A1 (en) Steel bar surface flaw evaluation method