JPS61264739A - Forming method of electrode wiring pattern - Google Patents

Forming method of electrode wiring pattern

Info

Publication number
JPS61264739A
JPS61264739A JP10596285A JP10596285A JPS61264739A JP S61264739 A JPS61264739 A JP S61264739A JP 10596285 A JP10596285 A JP 10596285A JP 10596285 A JP10596285 A JP 10596285A JP S61264739 A JPS61264739 A JP S61264739A
Authority
JP
Japan
Prior art keywords
electrode
sputtering
bias
forming
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10596285A
Other languages
Japanese (ja)
Inventor
Shoji Madokoro
間所 昭次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP10596285A priority Critical patent/JPS61264739A/en
Publication of JPS61264739A publication Critical patent/JPS61264739A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain ultrafine wirings capable of being patterned and of high reliability without stepwise disconnection by accumulating an electrode metal by a bias sputtering method while a resin remains after opening a contacting or through hole to flatten a superhigh LSI device. CONSTITUTION:An electrode 10 is deposited by sputtering on a resist 5 by a sputtering device. In this case, a semiconductor substrate 26 is first held on a substrate holder 25, contained in a sputtering chamber 20, and an RF (ratio frequency) bias voltage is applied from an RF power source 28 through an RF matching unit 27. DC power is applied from a DC power source 21 to a target 22 in the chamber 20 to deposit by sputtering the electrode 10. When the substrate bias value is optimized, the shoulder of the contacting hole is etched from a metal coating shape 31 at zero biasing time to a metal shape 32 at bias applying time, thereby completely burying an electrode metal 10a in the hole.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、コンタクトホールを完全にメタルで埋め込
む電極配線パターンの形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of forming an electrode wiring pattern in which contact holes are completely filled with metal.

(従来の技術) 電極配線パターンの形成法には、 (リ 電極配線材をスパッタ法または蒸着法で蒸着した
後、フォトリソグラフィおよびエツチングで配線を形成
する方法、 C) レジストパターン上に配線材を蒸着した後、レジ
ストを除去することによって配線パターンを形成するリ
フトオフ法。
(Prior art) Methods for forming electrode wiring patterns include: (i) Depositing electrode wiring material by sputtering or vapor deposition, and then forming wiring by photolithography and etching; C) Depositing wiring material on a resist pattern. A lift-off method in which a wiring pattern is formed by removing the resist after vapor deposition.

などがある。and so on.

後述するこの発明は後者のりフトオツ法に関するものな
ので、従来の技術の説明に際しては、リフトオフ法につ
いて説明する。第4図は従来のリフトオフ法による配線
形成の手順を示す断面図である。
Since this invention, which will be described later, relates to the latter lift-off method, the lift-off method will be explained when explaining the conventional technology. FIG. 4 is a cross-sectional view showing the procedure for forming wiring by the conventional lift-off method.

まず、第411(a)に示すように、St基板l内にベ
ース拡散2およびエミッタ拡散3を行ない、その上面に
絶縁膜4を形成した後、この絶縁膜4上にレジスト5を
塗布し、ベースコンタクト6およびエミッタコンタクト
7をフォトリソグラフィによシ形成する。次に、レジス
ト5をマスクに絶縁膜4の穴あけを行なう。
First, as shown in No. 411(a), base diffusion 2 and emitter diffusion 3 are performed in the St substrate l, and after forming an insulating film 4 on the upper surface thereof, a resist 5 is applied on this insulating film 4, Base contact 6 and emitter contact 7 are formed by photolithography. Next, holes are made in the insulating film 4 using the resist 5 as a mask.

次に、第4図(b)に示すように、レジスト5を残した
まま電極材、たとえばTi8を電子ビーム蒸着法で堆積
する。そして、レジスト5をア七トン超音波によシ除去
すると、第4図(c)のように、コンタクト6.7上に
のみTi8mが残る。
Next, as shown in FIG. 4(b), an electrode material such as Ti8 is deposited by electron beam evaporation with the resist 5 left in place. Then, when the resist 5 is removed by ultrasonication, Ti8m remains only on the contact 6.7, as shown in FIG. 4(c).

続いて、第4図(d)のように、配線材としてM9をス
パッタ法で堆積し、通常のフォトリソグラフィによシ配
線パターンを形成する。最後に保護膜を形成してデバイ
スが完成する(図省略)。
Subsequently, as shown in FIG. 4(d), M9 is deposited as a wiring material by sputtering, and a wiring pattern is formed by ordinary photolithography. Finally, a protective film is formed to complete the device (not shown).

この従来のリフトオフ法による電極配線パターンの形成
方法では、アセトンによるレジストパターン除去が容易
にできる構造にすることが重要で、そのためにはコンタ
クト上で電極膜としてのTi8が第4図(b)のごとく
、不連続にならなければならない。
In this method of forming an electrode wiring pattern using the conventional lift-off method, it is important to create a structure that allows the resist pattern to be easily removed using acetone. It must be discontinuous.

意図的に不連続にさせる方法として、第5図に示すレジ
スト5または絶縁膜4のエツジをひさし状にするかまた
は第6図に示すように絶縁膜とレジストを合せた膜厚を
Hとし、コンタクト直径をWとしたとき、アスペクト比
H/v21とする。そして第5図または第6図の構造上
に堆積する電極膜の膜厚をHの半分以下にする必要があ
った。
As a method of intentionally making the discontinuity, the edge of the resist 5 or the insulating film 4 shown in FIG. When the contact diameter is W, the aspect ratio is H/v21. The thickness of the electrode film deposited on the structure of FIG. 5 or 6 had to be less than half of H.

(発明が解決しようとする問題点) 以上のように、電極膜8がコンタクト上でオーバーハン
グ状になるようにしているので、コンタクトホール上に
す7トオフされた電極膜8aが第5図に示すようにコン
タクトホール全面に堆積されないことが多いという欠点
があった。
(Problems to be Solved by the Invention) As described above, since the electrode film 8 is made to overhang on the contact, the electrode film 8a that is cut off on the contact hole is shown in FIG. As shown in the figure, there is a drawback that the deposit is often not deposited over the entire surface of the contact hole.

さらに、前述した理由のため電極膜厚を厚くできないこ
とや、リフトオフ用の構造にするのにレジストエツジの
テーパー化などの工程が複雑となる欠点があった。
Further, for the reasons mentioned above, the electrode film thickness cannot be made thicker, and processes such as tapering the resist edge are complicated to create a structure for lift-off.

この発明は、前記従来技術がもっている問題点のうち、
電極膜がコンタクトホール全面に堆積されない点と電極
膜厚を厚くできない点および工程が複雑になる点につい
て解決した電極配線パターンの形成方法を提供するもの
である。
This invention solves the problems of the above-mentioned prior art.
The present invention provides a method for forming an electrode wiring pattern that solves the problems that the electrode film cannot be deposited on the entire surface of the contact hole, that the electrode film cannot be thickened, and that the process is complicated.

(問題点を解決するための手段) この発明線電極配線パターンの形成方法において、コン
タクトまたはスルーホール開孔後レジストを残したまた
バイアススパッタ法で電極メタルを堆積させる工程を導
入したものである。
(Means for Solving the Problems) In the method for forming a line electrode wiring pattern of the present invention, a step is introduced in which a resist is left after opening a contact or a through hole, and an electrode metal is deposited by bias sputtering.

(作用) この発明によれば、電極配線パターンの形成方法に以上
のような工程を導入したので、コンタクトフォトリソ後
に電極メタルがバイアススパッタ法で蒸着してコンタク
トホールを完全に埋め込み、したがって、前記問題点を
除去できる。
(Function) According to the present invention, since the above steps are introduced into the method for forming an electrode wiring pattern, the electrode metal is deposited by bias sputtering after contact photolithography and completely fills the contact hole, thus solving the above problem. Points can be removed.

(実施例) 以下、この発明の電極配線パターンの形成方法の実施例
について図面に基づき説明する。第1図はその一実施例
の工程説明図である。この第11において、第4図ない
し第6図と同一部分は同一符号を付して説明する。
(Example) Hereinafter, an example of the method for forming an electrode wiring pattern of the present invention will be described based on the drawings. FIG. 1 is a process explanatory diagram of one embodiment. In this 11th part, the same parts as in FIGS. 4 to 6 will be described with the same reference numerals.

まず、第1図(a)に示すように、従来と同様にして、
St基板l、ベース拡散層、エミッタ拡散層(いずれも
図示省略)を行って、絶縁膜4を上面に形成した後、レ
ジスト5を塗布し、ペース拡散層、エミッタ拡散層に対
応して、ベースコンタクトおよびエミッタコンタクトを
フォトリソグラフィに形成する。以上までの工程は従来
と同様である。
First, as shown in FIG. 1(a), in the same way as before,
After forming the St substrate 1, a base diffusion layer, and an emitter diffusion layer (all not shown) and forming an insulating film 4 on the upper surface, a resist 5 is applied, and a base diffusion layer is formed corresponding to the paste diffusion layer and emitter diffusion layer. Contacts and emitter contacts are formed photolithographically. The steps up to this point are the same as conventional ones.

次に、第2図に示すスパッタ装置によシ、レジスト5上
に電極10をスパッタ蒸着する。この際、まず、基板ホ
ルダ25上に半導体基板26(第1図(a)の符号1〜
5で示す基板)を保持し、スパッタチャンバ20内に収
納してRF電源28からRF(高周波)バイアス電圧を
RF整合器27を介して印加する。また、スパッタチャ
ンバ20内のターゲット22には、DC電源21からD
C(直流)電力を印加して電極10をスパッタ蒸着する
Next, an electrode 10 is sputter-deposited on the resist 5 using the sputtering apparatus shown in FIG. At this time, first, the semiconductor substrate 26 (numerals 1 to 1 in FIG. 1(a)) is placed on the substrate holder 25.
A substrate (indicated by 5) is held and housed in a sputtering chamber 20, and an RF (high frequency) bias voltage is applied from an RF power source 28 via an RF matcher 27. Further, the target 22 in the sputtering chamber 20 is connected to a DC power source 21.
The electrode 10 is sputter-deposited by applying C (direct current) power.

この場合、基板バイアス電極10 (Ti−1,5XS
i )をスパッタ蒸着する。基板バイアス値を蛾適化す
ると、コンタクトホールの肩の部分が第3図のごとく、
0バイアス時のメタル被覆形状31からバイアス印加時
のメタル形状32で示すようにエツチングされ、コンタ
クトホール内の電極メタルloaとその他の領域のメタ
ル10のつながシが切れる。その結果、コンタクトホー
ル内に電極メタル10aが完全に埋め込まれる。
In this case, the substrate bias electrode 10 (Ti-1,5XS
i) Sputter deposit. When the substrate bias value is optimized, the shoulder part of the contact hole becomes as shown in Figure 3.
The metal coating shape 31 at the time of 0 bias is etched as shown by the metal shape 32 at the time of bias application, and the connection between the electrode metal loa in the contact hole and the metal 10 in other areas is broken. As a result, the electrode metal 10a is completely embedded in the contact hole.

次に、第1図(b)に示すように、アセトン超音波によ
シコンタクトホール以外の不要メタル10を除去した後
、配線メタル11を蒸着し、パターン形成を行なう。た
とえば電極メタルIOとしてM−1,5%Stを用いた
場合のバイアススパッタ条件はターゲット22にDC3
KW、基板26 K 1.5謀を印加し%Arガス23
の圧51L11 Torrで15分間スパッタ蒸着する
と一9t−1μmの段差がA/ −81で埋め込まハ、
かつ肩の部分で不連続となシ、良好な結果を得ることが
できる。なお、第2図の24は真空排気系である。
Next, as shown in FIG. 1(b), unnecessary metal 10 other than the contact hole is removed by ultrasonic acetone, and then wiring metal 11 is deposited and patterned. For example, when using M-1,5%St as the electrode metal IO, the bias sputtering conditions are as follows:
KW, substrate 26 K 1.5 plots applied and %Ar gas 23
After sputter deposition for 15 minutes at a pressure of 51L11 Torr, a step of -9t-1μm was filled with A/-81c.
In addition, good results can be obtained without discontinuities in the shoulder area. Note that 24 in FIG. 2 is a vacuum evacuation system.

(発明の効果) 以上詳細に説明し友ように、この発明によれば、コンタ
クトフォトリソ後にバイアススパッタ法を用いてコンタ
クトホールを電極メタルで完全に埋め込むと同時にリフ
トオフし易いように切れ目を入れるようにしたので、急
峻な段差を有する超LSIデバイスの平担化が図られる
。その結果、多層配線の場合でも微細配線のパターニン
グが可能でかつ段切ねのない信頼性の高い配線を得るこ
とができる。
(Effects of the Invention) As described above in detail, according to the present invention, after contact photolithography, a bias sputtering method is used to completely fill the contact hole with electrode metal, and at the same time, a cut is made to facilitate lift-off. Therefore, a VLSI device having a steep step can be made flat. As a result, even in the case of multilayer wiring, fine wiring patterning is possible and highly reliable wiring without step cutting can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および第1図(b)はこの発明の電極配線
パターンの形成方法の一実施例の工程説明図、第2図は
同上電極配線パターンの形成方法に適用されるバイアス
スパッタ装置の概略的構成を示す図、第3図は同上電極
配線パターンの形成方法にバイアススパッタ法を適用す
ることによるメタル被覆形状を示す断面図、第4図(a
)ないし第4図(d)は従来の電極配線パターンの形成
方法の工程説明図、第5図および第6図はそれぞれ従来
の電極配線パターンの形成方法におけるフォトリソグラ
フィでのリフトオフ用構造の断面図である。 l・・・SL基板、4・・・絶縁膜、5・・・レジスト
、10・・・電極、lOa・・・電極メタル、11・・
・配線メタル、20・・・スパッタチャンバ、22・・
・ターゲット、25・・・基板ホルダ、26・・・基板
。 5ルジスト 10:f極 第2図
FIGS. 1(a) and 1(b) are process explanatory diagrams of an embodiment of the method for forming an electrode wiring pattern of the present invention, and FIG. 2 is a bias sputtering apparatus applied to the method for forming the same electrode wiring pattern. 3 is a cross-sectional view showing the metal coating shape obtained by applying the bias sputtering method to the method of forming the electrode wiring pattern, and FIG. 4 (a)
) to 4(d) are process explanatory diagrams of a conventional method for forming an electrode wiring pattern, and FIGS. 5 and 6 are cross-sectional views of a structure for lift-off using photolithography in the conventional method for forming an electrode wiring pattern, respectively. It is. l... SL substrate, 4... Insulating film, 5... Resist, 10... Electrode, lOa... Electrode metal, 11...
・Wiring metal, 20...Sputter chamber, 22...
- Target, 25...substrate holder, 26... substrate. 5 Lugist 10: f pole Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に絶縁膜を形成した後レジストを塗
布してフォトリソグラフィによりスルーホールまたはコ
ンタクトホールを形成する工程と、上記スルーホールま
たはコンタクトホールの形成後上記レジストを残したま
まバイアススパッタ法によりこのスルーホールまたはコ
ンタクトホールを電極メタルで埋め込む工程とよりなる
ことを特徴とする電極配線パターンの形成方法。
(1) After forming an insulating film on a semiconductor substrate, applying a resist and forming a through hole or contact hole by photolithography, and after forming the through hole or contact hole, bias sputtering with the resist remaining. A method for forming an electrode wiring pattern, comprising the step of filling the through hole or contact hole with an electrode metal.
(2)バイアススパッタの条件は0バイアスのときのド
ープレートをAとし、バイアス印加時のドープレートを
Bとし、(A−B)/Aが20%以上となるようにター
ゲットに直流電源を印加し、基板に高周波バイアスを印
加しながら蒸着することを特徴とする特許請求の範囲第
1項記載の電極配線パターンの形成方法。
(2) Conditions for bias sputtering are: the dope rate at 0 bias is A, the dope rate at bias application is B, and DC power is applied to the target so that (A-B)/A is 20% or more. 2. The method of forming an electrode wiring pattern according to claim 1, wherein the vapor deposition is performed while applying a high frequency bias to the substrate.
JP10596285A 1985-05-20 1985-05-20 Forming method of electrode wiring pattern Pending JPS61264739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10596285A JPS61264739A (en) 1985-05-20 1985-05-20 Forming method of electrode wiring pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10596285A JPS61264739A (en) 1985-05-20 1985-05-20 Forming method of electrode wiring pattern

Publications (1)

Publication Number Publication Date
JPS61264739A true JPS61264739A (en) 1986-11-22

Family

ID=14421420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10596285A Pending JPS61264739A (en) 1985-05-20 1985-05-20 Forming method of electrode wiring pattern

Country Status (1)

Country Link
JP (1) JPS61264739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476611B2 (en) * 2002-07-08 2009-01-13 Nec Electronics Corporation Semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476611B2 (en) * 2002-07-08 2009-01-13 Nec Electronics Corporation Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0046525B1 (en) Planar multi-level metal-insulator structure comprising a substrate, a conductive interconnection pattern and a superposed conductive structure and a method to form such a structure
US4337115A (en) Method of forming electrodes on the surface of a semiconductor substrate
EP0156185B1 (en) Electrode pattern of semiconductor device and method of forming thereof
JPS6110256A (en) Method of automatically positioning mutual connection line to connecting hole of integrated circuit
JPH098130A (en) Viahole formation of semiconductor device
JPS61264739A (en) Forming method of electrode wiring pattern
JP3055176B2 (en) A method of providing a metallization layer on an insulating layer and forming a through hole using the same mask
JPS639391B2 (en)
JP2503662B2 (en) Dry etching method
JPS62149125A (en) Manufacture of semiconductor device
JPH0536839A (en) Manufacture of semiconductor device
JP2985204B2 (en) Method for manufacturing semiconductor device
JPH05315459A (en) Manufacture of semiconductor device
JPS6056295B2 (en) Manufacturing method of semiconductor device
JPH01107557A (en) Forming method for wiring
JPH06177255A (en) Manufacture of semiconductor integrated circuit device
JPS5841775B2 (en) hand tai souchi no seizou houhou
JPS6261334A (en) Formation of pattern
JPH0364933A (en) Manufacture of semiconductor device
JPH02137329A (en) Al thin film for multilayer interconnections
JPH01209726A (en) Method for forming electrode of semiconductor device
JPH047836A (en) Semiconductor device and manufacture thereof
JPH02148725A (en) Manufacture of semiconductor integrated circuit
JPS61187348A (en) Manufacture of semiconductor device
JPH0555385A (en) Manufacture of semiconductor device