JPS61263741A - Sheet-shaped composite magnetic material - Google Patents

Sheet-shaped composite magnetic material

Info

Publication number
JPS61263741A
JPS61263741A JP60107502A JP10750285A JPS61263741A JP S61263741 A JPS61263741 A JP S61263741A JP 60107502 A JP60107502 A JP 60107502A JP 10750285 A JP10750285 A JP 10750285A JP S61263741 A JPS61263741 A JP S61263741A
Authority
JP
Japan
Prior art keywords
resin
sheet
magnetic material
composite magnetic
bonded magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60107502A
Other languages
Japanese (ja)
Inventor
文敏 山下
正美 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60107502A priority Critical patent/JPS61263741A/en
Publication of JPS61263741A publication Critical patent/JPS61263741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はパルスモータ、サーボモータ、アクチュエータ
などの部材としてメカトロニクス分野に幅広く実用化さ
れている樹脂結合型磁石に関するもので、更に詳しくは
、該樹脂結合型磁石となる前段階のシート状複合磁性材
料の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a resin-bonded magnet that is widely used in the mechatronics field as a member of pulse motors, servo motors, actuators, etc. The present invention relates to the structure of a sheet-like composite magnetic material before it becomes a molded magnet.

従来の技術 従来、一般に使用されている樹脂結合型磁石は強磁性粒
子と樹脂組成物とで構成されている。該強磁性粒子とは
一般式MO・nFe203(但し式中MはB a + 
S r * P bの群より選ばれた1種または2種以
上、nは4.5〜6.2の数)で知られるフェライト磁
石粒子、一般式RCo5或はR2TM17(但し式中R
はSm、Pr、Ceなとの希土類元素、TMはCOを中
心とする遷移金属元素)で知られる希土類コバルト磁石
粉子のような磁気異方性定数が概ね108〜108e 
r g/cdと大きな値を有する強磁性材料であり、し
かもそれ等の粒子の大きさは該強磁性材料固有の磁気異
方性定数から定まる単磁区程度、即ち1〜5μm程度の
微粒子に調整されたものである。また、該強磁性粒子は
一般に複合磁性材料中の60〜70vo2%を占めるの
である。この理由は樹脂結合型磁石の残留磁束密度Br
が4πσ5xRsxd(但し式中σSは強磁性材料の飽
和磁化Rsは配向度、dは強磁性材料の体積分率)に比
例するためであり、磁気性能を確保するためには磁気異
方性に基づく配向度に重大な影響を及ぼさない範囲で多
量の強磁性材料を加えた複合磁性材料とする必要がある
からである。
2. Description of the Related Art Conventionally, resin-bonded magnets commonly used are composed of ferromagnetic particles and a resin composition. The ferromagnetic particles have the general formula MO・nFe203 (where M is B a +
Ferrite magnet particles known as one or more selected from the group S r * P b, where n is a number from 4.5 to 6.2), general formula RCo5 or R2TM17 (however, in the formula R
is a rare earth element such as Sm, Pr, or Ce, and TM is a transition metal element mainly composed of CO).The magnetic anisotropy constant is approximately 108 to 108 e
It is a ferromagnetic material that has a large value of r g/cd, and the size of these particles is adjusted to about a single magnetic domain determined from the magnetic anisotropy constant specific to the ferromagnetic material, that is, fine particles of about 1 to 5 μm. It is what was done. Furthermore, the ferromagnetic particles generally account for 60 to 70 VO2% of the composite magnetic material. The reason for this is that the residual magnetic flux density Br of the resin-bonded magnet is
is proportional to 4πσ5xRsxd (where σS is the saturation magnetization Rs of the ferromagnetic material, and d is the volume fraction of the ferromagnetic material), and in order to ensure magnetic performance, it is based on magnetic anisotropy. This is because it is necessary to create a composite magnetic material in which a large amount of ferromagnetic material is added within a range that does not significantly affect the degree of orientation.

発明が解決しようとする問題点 しかし、上記のような微粒子状の強磁性材料は樹脂結合
型磁石の一方の観点である樹脂成形品物性、特に寸法精
度や機械的強度に関しては好ましい影響を及ぼす構成成
分とは言えないものである。この現象は、Griffi
thの理論の適用が妥当であり、特に抗張力や抗折力な
どの低下が著しい。
Problems to be Solved by the Invention However, the fine particle ferromagnetic material described above has a configuration that has a favorable effect on the physical properties of resin molded products, which are one aspect of resin bonded magnets, especially regarding dimensional accuracy and mechanical strength. It cannot be called an ingredient. This phenomenon is explained by Griffin
It is appropriate to apply the theory of th, and in particular, the decrease in tensile strength and transverse rupture strength is remarkable.

このことは、例えばモータなどの部材として用いる樹脂
結合型磁石のような磁石および構造材両面の機能が要求
されるような用途では、重大な欠点となる場合も少な(
ない。そこで、特開昭54−57552号公報の如く、
強磁性粒子と樹脂組成物とから成る複合磁性材料中に無
機非磁性充填剤を併用することにより強磁性粒子の含有
量に拘らず常に一定の収縮挙動を生じせしめて寸法密度
を確保するものや、特公昭59−23446号公報のよ
うに樹脂結合型磁石と該樹脂を含浸した補強繊維シート
とを重畳積層することにより樹脂結合型磁石の機械的強
度を確保するものなど多くの工夫や考案が成されてきた
This is rarely a serious drawback in applications where the functions of both the magnet and the structural material are required, such as resin-bonded magnets used as components in motors, etc.
do not have. Therefore, as in Japanese Patent Application Laid-Open No. 54-57552,
By using an inorganic non-magnetic filler in a composite magnetic material consisting of ferromagnetic particles and a resin composition, a constant shrinkage behavior is always produced regardless of the content of ferromagnetic particles, thereby ensuring dimensional density. , Japanese Patent Publication No. 59-23446, many devices and inventions have been made, such as a method to ensure the mechanical strength of a resin-bonded magnet by overlapping and laminating a resin-bonded magnet and a reinforcing fiber sheet impregnated with the resin. has been accomplished.

上記、前者の如く無機非磁性充填剤を併用することによ
り樹脂結合型磁石の樹脂成形品としての物性を確保する
方法は、一方の重要な機能である磁気性能の低下を余儀
なくするため例えばモータなどの部材としては好ましい
ものではない。一方後者の樹脂結合型磁石と、当該樹脂
またはそれと親和性の優れた樹脂を含浸した繊維補強シ
ートとを重畳積層することにより樹脂結合型磁石の樹脂
成形品としての物性を確保する方法は、樹脂結合型磁石
部分とP RCM (F 1ber Re1nt’or
ced C。
As mentioned above, the method of securing the physical properties of a resin-bonded magnet as a resin molded product by using an inorganic non-magnetic filler in combination with the former method inevitably reduces the magnetic performance, which is an important function. It is not preferable as a member. On the other hand, the latter method of securing the physical properties of a resin-bonded magnet as a resin molded product by superimposing and laminating a resin-bonded magnet and a fiber-reinforced sheet impregnated with the resin or a resin with excellent affinity for the resin is Combined magnet part and PRCM (F1ber Re1nt'or
ced C.

5pite Maferials )とが一体的に積層
されたものであるから、全体を一つの部材と見なした場
合には単位体積当りの磁気エネルギーが低下する。この
ことは例えばモータなどの部材として使用する樹脂結合
型磁石のような磁気特性と構造材としての機能の両立が
求められるものへの使用としては、やはり改良を求めざ
るを得ないものであった。
5-pite materials) are integrally laminated, so when the whole is considered as one member, the magnetic energy per unit volume decreases. This means that improvements must be made for use in products that require both magnetic properties and functionality as a structural material, such as resin-bonded magnets used as components in motors, etc. .

上記のような背景により本発明は樹脂結合型磁石の磁気
性能を繊維確保しながら、同時に該磁石の樹脂形成品と
しての機械的強度の改善を図るこものである。即ち磁気
性能と構造部材としての機能を併わせ持っモータなどの
部材に適した樹脂結合型磁石を提供しようとするもので
ある。
Based on the above background, the present invention aims to improve the mechanical strength of the resin-bonded magnet while ensuring the magnetic performance of the resin-bonded magnet using fibers. That is, the present invention aims to provide a resin-bonded magnet that has both magnetic performance and a function as a structural member and is suitable for members such as motors.

問題点を解決するための手段 本発明は強磁性粒子と樹脂組成物がら成るシートの少な
くとも一部表面にガラス密度30 g/d以下のガラス
不織布を介在させるものである。また必要に応じ当該シ
ートの一部表面に分子量103以上で、且つ分子中にア
ルコール性水酸基を有するポリマーを主成分とする任意
の厚さの高分子層を形成するものである。
Means for Solving the Problems In the present invention, a glass nonwoven fabric having a glass density of 30 g/d or less is interposed on at least a portion of the surface of a sheet made of ferromagnetic particles and a resin composition. Further, if necessary, a polymer layer of an arbitrary thickness, which is mainly composed of a polymer having a molecular weight of 103 or more and having an alcoholic hydroxyl group in the molecule, is formed on a part of the surface of the sheet.

以下本発明の構成成分を更に詳しく説明する。The constituent components of the present invention will be explained in more detail below.

本発明で言うガラス不織布とは、例えば直径10μm程
度のガラスフィラメントを面上に不特定方向に吹き付け
、エポキシ樹脂のようなパインダニで該フィラメントを
固定したものである。従ってガラスフィラメントとバイ
ンダーとで構成されるものであるがビニルトリクロロシ
ラン、ビニルトリエトキシシラン、ビニルトリス(β−
メトキシ−エトキシシラン)、γ−グリシドキシプロビ
ルトリメトキシシラン、γ−アミノプロピルトリエトキ
シシラン、メタクリレートクロミッククロリド、N−β
(アミノエチル)γ−アミノプロビルトリメントキシシ
ランなど複合磁性材料を構成する樹脂組成物に応じた官
能基を有するシラン系カップリング剤を構成成分として
加えても差し支えない。要は、このような構成成分によ
って成るガラス不織布のガラス密度が30g/d以下で
あり、更には20 g/d以下であることが望ましいの
である。
The glass nonwoven fabric referred to in the present invention is, for example, one in which glass filaments with a diameter of about 10 μm are sprayed onto a surface in an unspecified direction, and the filaments are fixed with pine dust such as epoxy resin. Therefore, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-
methoxy-ethoxysilane), γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, methacrylate chromic chloride, N-β
A silane coupling agent having a functional group suitable for the resin composition constituting the composite magnetic material, such as (aminoethyl)γ-aminoprobyltrimentoxysilane, may be added as a constituent component. In short, it is desirable that the glass density of the glass nonwoven fabric made of such components is 30 g/d or less, and more preferably 20 g/d or less.

次に本発明で言う強磁性粒子とは既に記載したフェライ
ト磁石粒子、希土類コバルト粒子のほか、磁気異方性定
数の大きなM n −A Q −C磁石粒子、Nd−F
−B磁石粒子などを言う。
Next, the ferromagnetic particles referred to in the present invention include the already described ferrite magnet particles and rare earth cobalt particles, as well as M n -A Q -C magnet particles with a large magnetic anisotropy constant, Nd-F
-B refers to magnetic particles, etc.

更に本発明で言う樹脂組成物とはポリアミド−12のコ
ポリマー、ホモポリマー、エラストマ−などを初めとし
た熱可塑性も使用できるが、好ましくはエポキシ樹脂、
不飽和ポリエステル樹脂のような熱重合性樹脂類である
Furthermore, the resin composition referred to in the present invention may include thermoplastics such as polyamide-12 copolymers, homopolymers, elastomers, etc., but preferably epoxy resins,
These are thermopolymerizable resins such as unsaturated polyester resins.

尚、本発明で併用可能な分子量104以上で、且つ分子
内にアルコール性水酸基を有するポリマーとは下記(1
)、(2)式で示される構造のポリエーテル或はポリエ
ーテルエステルのような表層膜形成能を有するものであ
る。
In addition, the polymers having a molecular weight of 104 or more and having an alcoholic hydroxyl group in the molecule that can be used in combination in the present invention are the following (1)
), which has the ability to form a surface film, such as polyether or polyether ester having a structure represented by the formula (2).

−C−0)m               ・・・■
但し、上式中n、mは整数、R1は脂肪族残基、R2は
水素またはアルキル基、R3は脂肪族、芳香族或は脂環
族残基を示す。尚、この様な表層膜形成能をそこなわな
い範囲で当該分子内に有するアルコール性水酸基と橋架
けさせる物質を構成成分としても差し支えない。例えば
末端イソシアナート基の炭素原子に求核的な反応を示す
活性水素化合物を付加せしめたイソシアナート再生体な
どの使用である。
-C-0)m...■
However, in the above formula, n and m are integers, R1 is an aliphatic residue, R2 is hydrogen or an alkyl group, and R3 is an aliphatic, aromatic, or alicyclic residue. Incidentally, a substance capable of cross-linking with the alcoholic hydroxyl group contained in the molecule may be used as a constituent within a range that does not impair such surface film-forming ability. For example, an isocyanate regenerated product in which an active hydrogen compound that exhibits a nucleophilic reaction is added to the carbon atom of a terminal isocyanate group is used.

尚、上記のような構成成分により、シート状複合材料と
する手段はプレス法、流延法、カレンダ法、エクストル
−ディング法などがあり、それ等の手段を特に限定する
ものではないが連続生産性や厚み精度の観点からはカレ
ンダ法やエクストル−ディング法を基礎手段とすること
が好ましい。
There are press methods, casting methods, calendering methods, extruding methods, etc. to produce sheet-like composite materials using the above-mentioned components, and these methods are not particularly limited, but continuous production is possible. From the viewpoint of stability and thickness accuracy, it is preferable to use the calendering method or the extruding method as the basic method.

また、本発明の骨子となるガラス不織布の複合段階はシ
ート状複合磁性材料をシート化する段階であっても、或
は所望の形状に賦形化するための前段階、更には樹脂結
合型磁石の製造段階のいずれであっても差し支えない。
Furthermore, the step of combining glass nonwoven fabric, which is the gist of the present invention, may be a step of forming a sheet-like composite magnetic material into a sheet, or a step before forming it into a desired shape, or even a step of forming a resin-bonded magnet. There is no problem at any stage of manufacturing.

これ等のことは本発明において適宜必要に応じて使用す
ることができる表層膜形成能を有するポリマーにても同
じであることは言うまでもない。
It goes without saying that the same applies to polymers having a surface film-forming ability that can be used as appropriate and necessary in the present invention.

上記の如き構成成分による本発明に係るシート状複合磁
性材料は通常の磁場成形手段で磁気異方性を付与した樹
脂結合型磁石とすることができる。そして該成形手段は
使用する樹脂結合型磁石の信頼性や品質の維持確保に合
致した樹脂組成物の選択と、これに経済性などを加味し
て最終的に選択されるものである。
The sheet-like composite magnetic material according to the present invention made of the above-mentioned components can be made into a resin-bonded magnet imparted with magnetic anisotropy by ordinary magnetic field forming means. The molding means is ultimately selected by selecting a resin composition that meets the reliability and quality of the resin-bonded magnet used, and by taking into consideration economic efficiency.

作用 以下、本発明の作用を詳しく説明する。action Hereinafter, the operation of the present invention will be explained in detail.

本発明は、ガラス密度30g/−以下のガラス不織布を
シート状複合磁性材料の少なくとも一部表面に設けるこ
とを骨子とする。ここで該ガラス不織布のガラス密度に
着目した理由は厚さで規定すると本発明の効果が得られ
る範囲が不明瞭になるためである。また該ガラス不織布
の複合部位は構造部材としての機能を兼ねた樹脂結合型
磁石として、とくに応力集中し易い部位とすることは言
うまでもないが、好ましくはシート状複合磁性材料の両
表面を複合化したサンドイッチ構造であることは容易に
推定できるものである。
The gist of the present invention is to provide a glass nonwoven fabric having a glass density of 30 g/- or less on at least a portion of the surface of a sheet-like composite magnetic material. The reason for focusing on the glass density of the glass nonwoven fabric here is that if it is defined by thickness, the range in which the effects of the present invention can be obtained becomes unclear. In addition, it goes without saying that the composite portion of the glass nonwoven fabric is a resin-bonded magnet that also functions as a structural member, and is a portion where stress is likely to concentrate, but preferably both surfaces of the sheet-like composite magnetic material are composited. It can be easily inferred that it has a sandwich structure.

上記の如(ガラス密度30g/−以下のガラス不織布を
サンドイッチ状に複合化したシート状複合磁性材料から
異方性樹脂結合型磁石を製造しても、該ガラス不織布を
使用しない場合と同様な磁気性能を確保することができ
る。そして機械的強度、例えば抗張力や抗折力は、該ガ
ラス不織布を使用しない場合に比べて広い温度範囲で2
0〜30%も高い値を確保することもできるのである。
As mentioned above (even if an anisotropic resin-bonded magnet is manufactured from a sheet-like composite magnetic material made of a sandwich composite of glass non-woven fabrics with a glass density of 30 g/- or less, the same magnetic field as when the glass non-woven fabric is not used) In addition, the mechanical strength, such as tensile strength and transverse rupture strength, can be maintained at
It is also possible to secure a value as high as 0 to 30%.

実施例 (実施例1) 以下実施例により本発明を更に詳しく説明する。Example (Example 1) The present invention will be explained in more detail with reference to Examples below.

テレフタル酸とフマル酸を原料として常法に従って酸価
18の固状不飽和ポリエステルアルキドを得た。得られ
た不飽和ポリエステルアルキドの融点は91℃であり、
これを室温にて共重合性単量体としてのジアリルフタレ
ートに溶解し、該ジアシルフタレート30%溶液とした
。更に重合開始剤としてジクミルパーオキサイドを1%
添加し、これを樹脂マトリクスとした。
A solid unsaturated polyester alkyd having an acid value of 18 was obtained using terephthalic acid and fumaric acid as raw materials according to a conventional method. The melting point of the obtained unsaturated polyester alkyd was 91°C,
This was dissolved in diallyl phthalate as a copolymerizable monomer at room temperature to obtain a 30% solution of diallyl phthalate. Furthermore, 1% dicumyl peroxide was added as a polymerization initiator.
This was used as a resin matrix.

上記樹脂マトリクス10重量部に1%ビニルトリエトキ
シシラン処理した5rO−FeI2018磁石粒子を9
0M量部加え常法に従い35III11同方向回転2軸
エクストルーダで混練したのち、2m厚のシート状複合
磁性材料とした。
Nine parts of 5rO-FeI2018 magnet particles treated with 1% vinyltriethoxysilane were added to 10 parts by weight of the above resin matrix.
After adding 0M parts and kneading in a 35III11 co-rotating twin-shaft extruder according to a conventional method, a sheet-like composite magnetic material having a thickness of 2m was obtained.

上記複合磁性材料を10KOeの磁場中、160℃×6
0secの条件で、そのままシートモールドしたものや
、ガラス密度を興にするガラス不織布を当該シート状複
合磁性材料両表面にサンドイッチ状となるよう複合化し
たものを同様の条件にてシートモードした。これ等の樹
脂結合型磁石の抗折力、抗張力などの機械的特性と磁気
特性とを第1表に示す。
The above composite magnetic material was heated at 160℃×6 in a magnetic field of 10KOe.
Sheet molding was performed as it was under the condition of 0 sec, and sheet molding was performed under the same conditions on the sheet-shaped composite magnetic material in which a glass nonwoven fabric was sandwiched on both surfaces of the sheet-shaped composite magnetic material to improve the glass density. Table 1 shows the mechanical properties such as transverse rupture strength and tensile strength, and magnetic properties of these resin-bonded magnets.

ス不織布で強化されていない従来例に比べて、本発明例
は抗張力で概ね1.35〜1.70倍、抗折力で1.3
3〜1.90倍に向上しているにも拘らず、該表面磁束
密度はほとんど同じ量が得られる。しかし、比較例1,
2のようにガラス密度が高くなると樹脂結合型磁石部分
と表面層とが分離するために表面磁束密度は低下する。
Compared to the conventional example that is not reinforced with a nonwoven fabric, the example of the present invention has a tensile strength of approximately 1.35 to 1.70 times and a transverse rupture strength of 1.3 times.
Although the surface magnetic flux density is improved by 3 to 1.90 times, almost the same amount of surface magnetic flux density can be obtained. However, Comparative Example 1,
When the glass density becomes high as in 2, the surface magnetic flux density decreases because the resin-bonded magnet portion and the surface layer are separated.

尚、比較例1,2においてガラス不織布に予め当該樹脂
結合型磁石に使用した樹脂マトリクスと同じか、または
それと親和性の良い樹脂組成物を含浸してガラス不織布
基材プリプレグとしたものを用いた場合、抗張力或は抗
折力などの機械的強さは本発明例よりも向上する。しか
し表面磁束密度に関しては当該表面層が空隙となるため
に低下するのは同じである。
In Comparative Examples 1 and 2, a glass nonwoven fabric prepreg was used by impregnating a glass nonwoven fabric with a resin composition that was the same as or had good affinity with the resin matrix used in the resin-bonded magnet. In this case, mechanical strength such as tensile strength or transverse rupture strength is improved compared to the example of the present invention. However, the surface magnetic flux density decreases because the surface layer forms voids.

以上のように本発明は、樹脂結合型磁石の磁気性能を維
持しながら、その機械的強度の改良によって構造部材と
しての性能を向上させることができるのである。
As described above, the present invention can improve the performance of a resin bonded magnet as a structural member by improving its mechanical strength while maintaining its magnetic performance.

(実施例2) 実施例1で得た2m厚のシート状複合磁性材料を5ms
幅にスリットし、該スリット面に分子量25.000〜
30,000のポリエーテル樹脂による15〜30μm
厚の融着層を形成した。更にポリチーチル樹脂のアルコ
ール性水酸基と橋架けし得る下記(3)式で示されるイ
ソシアナート再生体をOH/NCO0,3,0,5の比
で混合したものでも同様に行った。
(Example 2) The 2m thick sheet-like composite magnetic material obtained in Example 1 was heated for 5ms.
A slit is made in the width, and a molecular weight of 25,000~ is applied to the slit surface.
15-30μm by 30,000 polyether resin
A thick fusion layer was formed. Furthermore, the same procedure was carried out using a mixture of a regenerated isocyanate represented by the following formula (3) capable of cross-linking with the alcoholic hydroxyl group of the polythiethyl resin at a ratio of OH/NCO of 0,3,0,5.

上記、シート状複合磁性材料に新たに複合された樹脂組
成物層は当該シートのフレキシビリティに影響を与えず
、むしろ強じん性が増すことで取り扱い性が向上した。
The resin composition layer newly added to the above-mentioned sheet-like composite magnetic material did not affect the flexibility of the sheet, but rather improved the handling properties by increasing the toughness.

上記、シート状複合磁性材料を直径51111のマンド
レルに巻き付け160℃で5m1nの加熱を加えると内
径5III11外径9IIIIlの円筒型樹脂結合型磁
石が得られた。この樹脂結合型磁石の折折力は本発明に
係る樹脂組成物層を設けないものに比べて第2表の如く
大幅に向上した。
The above-mentioned sheet-like composite magnetic material was wound around a mandrel having a diameter of 51111 mm and heated at 160° C. for 5 m1n to obtain a cylindrical resin-bonded magnet with an inner diameter of 5III11 and an outer diameter of 9III1. The rupture strength of this resin-bonded magnet was significantly improved as shown in Table 2, compared to the magnet without the resin composition layer according to the present invention.

但し表中、従来例2は単にシート状複合材料をマンドレ
ルに密に巻き付けたものであり、従来例3は金型にて加
熱圧縮したものである。
However, in the table, Conventional Example 2 is simply a sheet-like composite material tightly wound around a mandrel, and Conventional Example 3 is a sheet-like composite material that is heated and compressed in a mold.

上記のように本発明に係る樹脂組成物により、該皮膜を
形成すると単にマンドレルに密に巻き付け、これを加熱
するのみで高度な機械的強度を有する樹脂結合型磁石を
得ることができる。
As described above, when a film is formed using the resin composition of the present invention, a resin-bonded magnet having high mechanical strength can be obtained by simply winding the film tightly around a mandrel and heating it.

発明の効果 以上の如く、本発明は樹脂結合型磁石の磁気性能を維持
しながら、その機械的強度の改良を図り、構造部材とし
ての機能を向上することができるものである。従ってモ
ータなどの部材の如く磁石としての機能と共に構造機と
しての機能も要求される分野に幅広く適応できるもので
ある。
Effects of the Invention As described above, the present invention is capable of improving the mechanical strength of a resin-bonded magnet while maintaining its magnetic performance, thereby improving its function as a structural member. Therefore, it can be widely applied to fields such as parts such as motors that require the function of a structural machine as well as the function of a magnet.

Claims (2)

【特許請求の範囲】[Claims] (1)強磁性粒子と樹脂組成物とから成るシートの少な
くとも一部表面にガラス密度30g/m^2以下のガラ
ス不織布が介在するシート状複合磁性材料。
(1) A sheet-like composite magnetic material in which a glass nonwoven fabric having a glass density of 30 g/m^2 or less is interposed on at least a portion of the surface of a sheet made of ferromagnetic particles and a resin composition.
(2)シートの少なくとも一部表面が分子量10^4以
上で、且つアルコール性水酸基を有するポリマーを主成
分とした高分子層を設けた特許請求の範囲第1項記載の
シート状複合磁性材料。
(2) The sheet-like composite magnetic material according to claim 1, wherein at least a portion of the surface of the sheet is provided with a polymer layer mainly composed of a polymer having a molecular weight of 10^4 or more and having an alcoholic hydroxyl group.
JP60107502A 1985-05-20 1985-05-20 Sheet-shaped composite magnetic material Pending JPS61263741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60107502A JPS61263741A (en) 1985-05-20 1985-05-20 Sheet-shaped composite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60107502A JPS61263741A (en) 1985-05-20 1985-05-20 Sheet-shaped composite magnetic material

Publications (1)

Publication Number Publication Date
JPS61263741A true JPS61263741A (en) 1986-11-21

Family

ID=14460833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60107502A Pending JPS61263741A (en) 1985-05-20 1985-05-20 Sheet-shaped composite magnetic material

Country Status (1)

Country Link
JP (1) JPS61263741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073880A (en) * 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd Flexible rare earth bond magnet integral with fiber reinforced layer
JP2014036088A (en) * 2012-08-08 2014-02-24 Minebea Co Ltd Method of manufacturing fully dense rare earth-iron based bond magnet
WO2022255217A1 (en) * 2021-06-02 2022-12-08 東洋紡株式会社 Thermosetting composition including magnetic powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073880A (en) * 2004-09-03 2006-03-16 Matsushita Electric Ind Co Ltd Flexible rare earth bond magnet integral with fiber reinforced layer
JP2014036088A (en) * 2012-08-08 2014-02-24 Minebea Co Ltd Method of manufacturing fully dense rare earth-iron based bond magnet
WO2022255217A1 (en) * 2021-06-02 2022-12-08 東洋紡株式会社 Thermosetting composition including magnetic powder

Similar Documents

Publication Publication Date Title
CN1308976C (en) Flexible magnet and method for manufacturing motor using the same
US20180122570A1 (en) Bonded permanent magnets produced by big area additive manufacturing
EP0331055B1 (en) Methods for producing a resinbonded magnet
US11590717B2 (en) Extrudable magnetic ink and novel 3D printing method to fabricate bonded magnets of complex shape
JPS60207302A (en) Rare earth element-iron magnet coupled with epoxy resin
US20180229442A1 (en) Bonded permanent magnets produced by additive manufacturing
JP2867140B2 (en) Manufacturing method of bonded magnet
JP5692496B2 (en) LAMINATED RESIN COMPOSITE MAGNETIC MEMBRANE MANUFACTURING METHOD AND DIAMETER VERTICAL GAP
JPS61263741A (en) Sheet-shaped composite magnetic material
JP4340035B2 (en) Hydraulic composition bonded magnet
US5114604A (en) Resin bonded permanent magnet and a binder therefor
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
KR101881267B1 (en) Method of Nd-Fe-B bonded magnet and Nd-Fe-B bonded magnet using thereof
JPH0993845A (en) Surface magnet type rotor
JPS63289034A (en) Thermoplastic resin composition and its production
JPH10109364A (en) Molding and molding method
JPH03188601A (en) Nb-fe-b plastic magnet composition
JP2732630B2 (en) Method for manufacturing thin bonded magnet and apparatus to which the thin bonded magnet is applied
JP2001054602A (en) Shaft for golf club
JPH01272744A (en) Supermagnetostrictive composite material and mr element
JP2010251545A (en) Resin composition for bond magnet, and molding using the same
JPH0311300B2 (en)
JPH0450725B2 (en)
JPS62260552A (en) Rotor magnet for miniature motor
JPS61279104A (en) Manufacture of sheet-like composite magnetic material