JPS61263607A - Electrodialytic method - Google Patents

Electrodialytic method

Info

Publication number
JPS61263607A
JPS61263607A JP10597985A JP10597985A JPS61263607A JP S61263607 A JPS61263607 A JP S61263607A JP 10597985 A JP10597985 A JP 10597985A JP 10597985 A JP10597985 A JP 10597985A JP S61263607 A JPS61263607 A JP S61263607A
Authority
JP
Japan
Prior art keywords
filtrate
electrodialysis
flocculant
substance
filtered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10597985A
Other languages
Japanese (ja)
Other versions
JPH0369572B2 (en
Inventor
Tomoaki Uehara
上原 智明
Fumito Kishimoto
岸本 文都
Koichi Toi
戸井 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP10597985A priority Critical patent/JPS61263607A/en
Publication of JPS61263607A publication Critical patent/JPS61263607A/en
Publication of JPH0369572B2 publication Critical patent/JPH0369572B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To prevent the contamination of an electrodialyser by the contaminants in a raw soln. for a long period by primarily filtering an electrolyte soln. contg. a flocculant and an oxidizing substance, adding a reducing substance to the filtrate, secondarily filtering the filtrate and then carrying out electrodialysis. CONSTITUTION:A flocculant such as ferric chloride and an oxidizing substance such as sodium hypochlorite are added to a raw soln. such as seawater and the soln. is primarily filtered by a primary sand filter. A reducing agent such as sodium bisulfite is added to the filtrate to neutralize the residual chlorine, etc., and the filtrate is filtered by the secondary sand filter. The filtrate is sent to an ion-exchange membrane electrodialyser and electrodialysis is carried out.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はイオン交換膜性電気透析装置(以下、単に透析
装置ともいう)を用いて電解質溶液C以下、原料溶液と
もいう)を電気透析する方法に関し、特に原料溶液に含
まれる汚染物質による透析装置の汚染を防止し、安定し
て電気透析を行うに好適な原料溶液の前処理方法に関す
る。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a method for electrodialyzing an electrolyte solution C (hereinafter also referred to as a raw material solution) using an ion exchange membrane electrodialysis device (hereinafter also simply referred to as a dialysis device). In particular, the present invention relates to a pretreatment method for a raw material solution that is suitable for preventing contamination of a dialysis apparatus by contaminants contained in the raw material solution and for stably performing electrodialysis.

(従来技術及びその問題点) 電気透析法は、例えば海水を濃縮して食塩を得る分野、
海水な脱塩して飲料水を得る分野、不純物を含有する溶
液を分離精製する分野など種々の分野に利用されている
。近年、これらの分野に用いられる透析装置においては
、q#に層間隔を狭くすることにより電気エネルギーを
小さくすることが図られている。
(Prior art and its problems) Electrodialysis is used, for example, in the field of concentrating seawater to obtain salt;
It is used in a variety of fields, including the field of desalinating seawater to obtain drinking water, and the field of separating and purifying solutions containing impurities. In recent years, in dialysis machines used in these fields, attempts have been made to reduce the electrical energy by narrowing the layer spacing to q#.

一方、このような透析装置に供給される原料溶液には種
々の微生物、懸濁物(以下、S8分とも込う)、コロイ
ド物質等の汚染物質が含まれているため、これをそのま
ま透析装置に供給する場合には、該汚染物質による膜面
の汚れや流路の閉塞等により透析性能が低下する。した
がって、原料溶液は一般に透析装置に供給する前に濾過
することが行なわれる。
On the other hand, the raw material solution supplied to such a dialysis machine contains contaminants such as various microorganisms, suspended matter (hereinafter referred to as S8), and colloidal substances, so it is not directly supplied to the dialysis machine. When the membrane is supplied to the membrane, the dialysis performance deteriorates due to the contaminants staining the membrane surface and clogging the flow path. Therefore, the raw solution is generally filtered before being supplied to the dialysis machine.

濾過方法としては、単に原料溶液を濾過器に通すことが
一般的であるが、最近では原料溶液中に含まれるSS分
の凝集を促進する目的や微生物を滅菌する目的で凝集剤
および酸化性物質を添加した後、砂濾過器等の濾過器に
より濾過する方法も行なわれている。
The filtration method is generally to simply pass the raw material solution through a filter, but recently, flocculants and oxidizing substances have been added for the purpose of promoting the aggregation of SS contained in the raw material solution and for the purpose of sterilizing microorganisms. There is also a method in which the mixture is added and then filtered using a filter such as a sand filter.

更に濾過方法は上記の如き一次濾過した濾液が、例えば
濾過層の汚れや濾過層を逆洗した後に生じる凝集剤やS
S分のり−クにより汚染するため該濾液を二次濾過に供
することが一般的に採用されている。
Furthermore, the filtration method is such that the filtrate after the primary filtration as described above is free from dirt on the filter layer, flocculants and S, which are generated after backwashing the filter layer.
It is generally adopted to subject the filtrate to secondary filtration due to contamination with S-based glue.

しかしながら、上記したような多段濾過した原料溶液を
中和処理した後、透析装置忙供給して電気透析を行った
場合においても、一定期間を経過すると透析性能が低下
すると論う問題があった。
However, even when electrodialysis is performed using a dialysis machine after neutralizing the multi-stage filtered raw material solution as described above, there is a problem in that the dialysis performance deteriorates after a certain period of time.

C問題を解決するための手段) 本発明者等は上記問題について種々検討した。その結果
、一般に酸化性物質とともに添加する凝集剤の量は原料
溶液の性状によりコントロールされていたが、それに対
応する正確なコントロールは困難であるため、過剰な凝
集剤が原料溶液中に混入し、二次濾過後の濾液中に存在
することが避けられないことが判った。次いで、かかる
濾液な還元性物質で中和して透析装置に供給する場合に
、該濾液中に存在する凝集剤の沈殿物が生ずるため、透
析性能の低下の原因となることを知見した。
Means for Solving Problem C) The present inventors have conducted various studies regarding the above problem. As a result, although the amount of flocculant added together with the oxidizing substance was generally controlled by the properties of the raw material solution, it was difficult to accurately control the amount, so excessive flocculant was mixed into the raw material solution. It has been found that its presence in the filtrate after secondary filtration is unavoidable. Next, it has been found that when the filtrate is neutralized with a reducing substance and then supplied to a dialysis apparatus, the flocculant present in the filtrate forms a precipitate, which causes a decrease in dialysis performance.

本発明は上記したような知見に基づくもので、凝集剤及
び酸化性物質を含む電解質溶液を一次濾過し1次いで該
濾液に還元性物質を添加して二次濾過した後、イオン交
換膜電気透析装置に供給して電気透析することを特徴と
する電気透析方法である。
The present invention is based on the above-mentioned findings, and consists of firstly filtering an electrolyte solution containing a flocculant and an oxidizing substance, then adding a reducing substance to the filtrate, performing secondary filtration, and then performing ion exchange membrane electrodialysis. This is an electrodialysis method characterized by supplying it to a device and performing electrodialysis.

本発明においては、先ず凝集剤及び酸化性物質を含む原
料溶液を一次濾過する。即ち、一般には汚染物質を含む
原料溶液忙少なくとも凝集剤及び酸化性物質、そのほか
必要に応じてpHコントロール剤等を添加した後、−火
源過器に供給して濾過する。
In the present invention, first, a raw material solution containing a flocculant and an oxidizing substance is primarily filtered. That is, generally, a raw material solution containing contaminants is added with at least a flocculant, an oxidizing substance, and a pH control agent if necessary, and then supplied to a fire source filter and filtered.

上記の原料溶液としては、海水が一般的であるが、その
信地下かん水、湖水、工場排水等も用すられる。また凝
集剤としては、塩化第二鉄が好適であるが、そのほか硫
酸第二鉄等の鉄化合物、硫酸アルミニウム等のアルミニ
ウム化合物など公知のものが特に制限なく用いられる。
The raw material solution mentioned above is generally seawater, but underground brine, lake water, industrial wastewater, etc. can also be used. Further, as the flocculant, ferric chloride is suitable, but other known agents such as iron compounds such as ferric sulfate and aluminum compounds such as aluminum sulfate can be used without particular limitation.

原料溶液への凝集剤の添加量は原料溶液中のSS分の濃
度に応じて適宜選定されるが、余り少ないと凝集効果が
不十分であり、過剰に存在させると後述する還元性物質
の添加量が増加すると共に添加した後の濾過処理が煩雑
となる。さらに、原料水に凝集剤と共に存在させる酸化
性物質としては、前記した凝集剤の凝集効果を増加させ
ると共に滅菌作用を有する物質で、一般には標準酸化還
元電位が900 tnV以上の物質が用いられる。例え
ば塩素:次亜塩素酸;次亜塩素酸ナトリウム、次亜塩素
酸カリウム、次亜塩素酸カルシウム等の次亜塩素酸塩;
二酸化塩素等で、特に塩素0次亜塩素酸、又はその塩が
後述する還元性物質との組合せにおいて特に優れた汚染
防止効果を発揮するし、電気透析により発生する塩素等
を循環使用することも好まし−。
The amount of flocculant added to the raw material solution is appropriately selected depending on the concentration of SS in the raw material solution, but if it is too small, the flocculation effect will be insufficient, and if it is present in excess, the addition of the reducing substance described below will occur. As the amount increases, the filtration process after addition becomes complicated. Furthermore, the oxidizing substance to be present in the raw water together with the flocculant is a substance that increases the flocculating effect of the flocculant and has a sterilizing effect, and generally has a standard redox potential of 900 tnV or more. For example, chlorine: hypochlorous acid; hypochlorites such as sodium hypochlorite, potassium hypochlorite, and calcium hypochlorite;
Chlorine dioxide, etc., especially chlorine-free hypochlorous acid, or its salts, exhibits particularly excellent pollution prevention effects when combined with the reducing substances mentioned below, and chlorine, etc. generated by electrodialysis can also be recycled. Preferably.

原料溶液への酸化性物質の添加量は、原料溶液に含まれ
る汚染物質等の性状、含有量などにより異なり、一般に
限定することはできないが、該添加量があまり少ないと
酸化による効果が充分でなく、後述する還元性物質を添
加しても充分な汚染防止効果が得られない。
The amount of the oxidizing substance added to the raw material solution varies depending on the properties and content of contaminants contained in the raw material solution, and cannot be generally limited, but if the amount added is too small, the oxidation effect may not be sufficient. Therefore, even if a reducing substance described below is added, a sufficient pollution prevention effect cannot be obtained.

また、酸化性物質の添加量をあまり増やしても、効果は
頭打ちとなり、該酸化性物質の中和に必要な還元性物質
の量が増加するため経済的でなく、シかも二次濾過処理
が煩雑となる。従って、一般には原料水中の酸化性物質
濃度が1〜10ppm、好ましくは2〜7 ppmとな
るよう忙酸化性物質を添加すればより0上記凝集剤及び
酸化性物質による原料溶液の処理時間は長い程効果的で
あるが、あ普り長−と中間タンクの巨大化を招くので、
10〜60分が適当である。
Furthermore, even if the amount of oxidizing substances added is increased too much, the effect will reach a plateau and the amount of reducing substances required to neutralize the oxidizing substances will increase, making it uneconomical and possibly requiring secondary filtration. It becomes complicated. Therefore, in general, if a busy oxidizing substance is added so that the concentration of the oxidizing substance in the raw water becomes 1 to 10 ppm, preferably 2 to 7 ppm, the treatment time of the raw material solution with the flocculant and oxidizing substance will be longer. Although it is moderately effective, it causes the long length and intermediate tank to become huge.
10 to 60 minutes is appropriate.

上記原料水を一次濾過するために用いられる一次濾過器
及び後述する二次濾過するための二次濾過器は公知のも
のが特に制限なく用いられるが、特に砂濾過器が好適で
ある。砂濾過器は、逆洗可能な砂濾過層を有するもので
あれば公知のものが特に制限なく使用される。例えば、
全濾過層が砂よりなるもの、砂とアンスラサイトとを複
層化したもの等が一般に使用される。−火源過器は原料
溶液の種類や所望する処理量等によって、構造や処理能
力等が選定されるが、原料水を5〜50m/時の速度で
供給した状態で、濾液中の8S分の濃度0.05〜0.
50 ppm以下、酸化性物質の濃度7〜10ppm以
下、F I (FoulingIndex) 5〜6と
なるようkすることが一般的である。
As the primary filter used for primary filtration of the raw material water and the secondary filter for secondary filtration described below, any known filter can be used without particular limitation, but sand filters are particularly preferred. Any known sand filter can be used without particular limitation as long as it has a sand filter layer that can be backwashed. for example,
Commonly used filters include those in which the entire filtration layer is made of sand, and those in which the filtration layer is made of sand and anthracite. -The structure and processing capacity of the fire source filter are selected depending on the type of raw material solution and the desired throughput, etc., but when raw water is supplied at a rate of 5 to 50 m/hour, 8S in the filtrate is The concentration of 0.05-0.
Generally, the concentration of the oxidizing substance is 50 ppm or less, the oxidizing substance concentration is 7 to 10 ppm or less, and the F I (Fouling Index) is 5 to 6.

本発明において最も重要な特徴は、上記の如く一次濾過
して得た濾過水に還元性物質を添加した後、二次濾過す
ることである。このようにすることにより本発明によれ
ば、−火源過の濾液に存在する凝集剤が還元性物質の添
加による沈澱物を生成しても、該沈澱物が二次濾過器よ
り除去出来るため、透析装置の汚染による透析性能の低
下を長期間に亘って防止することが出来る。
The most important feature of the present invention is that a reducing substance is added to the filtered water obtained by primary filtration as described above, and then secondary filtration is performed. By doing this, according to the present invention, even if the flocculant present in the filtrate from the fire source produces a precipitate due to the addition of a reducing substance, the precipitate can be removed from the secondary filter. , it is possible to prevent a decline in dialysis performance due to contamination of the dialysis equipment over a long period of time.

なお1本発明において一次濾過および二次濾過は、それ
ぞれ一段瀘過に限らず、二段以上の多段濾過を施しても
よい。
In addition, in the present invention, the primary filtration and the secondary filtration are not limited to a single stage filtration, but may be a multistage filtration of two or more stages.

本発明に用いられる還元性物質は、前記した酸化性物質
を中和する目的のものであれば特に制限されないが、一
般忙は標準酸化還元電位が400 mV以下の物質が用
いられる。
The reducing substance used in the present invention is not particularly limited as long as it has the purpose of neutralizing the above-mentioned oxidizing substance, but in general, a substance having a standard redox potential of 400 mV or less is used.

このような物質としては、例えばチオ硫酸ナトリウム、
亜硫酸ナトリウム、重亜硫酸ナトリウム、ハイドロサル
ファイド等の金運硫酸化合物、水加ヒドラジン、硫酸ヒ
ドラジン。
Such substances include, for example, sodium thiosulfate,
Sodium sulfite, sodium bisulfite, sulfuric compounds such as hydrosulfide, hydrazine hydrate, and hydrazine sulfate.

リン酸ヒドラジン等のヒドラジン類、硫酸ヒドロキシル
アミン、塩酸ヒドロキシルアミン等のヒドロキシルアミ
ン類、水素化ホウ素ナトリウム、リチウムアルミニウム
ハイドライド等の水素化合物が使用される。特に含亜硫
酸化合物が電気透析終了後、容易に分解して無害化する
ことができ好ましく、上記還元性物質に比べ、特に良好
な効果を発揮する。還元性物質の添加量は、−次瀘過し
て得た濾過水に含まれる酸化性物質により、上記した目
的を達成する如く適宜選定すればよい。
Hydrazines such as hydrazine phosphate, hydroxylamines such as hydroxylamine sulfate and hydroxylamine hydrochloride, and hydrogen compounds such as sodium borohydride and lithium aluminum hydride are used. In particular, sulfite-containing compounds are preferred because they can be easily decomposed and rendered harmless after electrodialysis, and exhibit particularly good effects compared to the above-mentioned reducing substances. The amount of the reducing substance added may be appropriately selected depending on the oxidizing substance contained in the filtered water obtained by the second filtration so as to achieve the above-mentioned purpose.

本発明に用いる透析装置は特に制限されず。The dialysis device used in the present invention is not particularly limited.

フィルタープレス式、ユニットセル式等の公知の透析装
置が一般に使用される。透析装置の膜間隔は0.2〜2
■の範囲が一般的であるが、特に0.61以下の透析装
置に好適である。
Known dialysis devices such as filter press type and unit cell type are generally used. The membrane spacing of the dialysis machine is 0.2 to 2
The range (2) is generally suitable, but is particularly suitable for dialysis machines with a diameter of 0.61 or less.

また、電気透析の条件も従来より実施されている条件が
そのまま適用される。特に好適な条件を示せば、電流密
度0.5〜6 A/ eLn? 。
Moreover, the conditions for electrodialysis that have been conventionally applied are applied as they are. Particularly suitable conditions include a current density of 0.5 to 6 A/eLn? .

液温5〜40℃などである。The liquid temperature is 5 to 40°C.

その他、本発明において凝集剤、酸化性物質及び還元性
物質の添加方法、あるいはこれに付属する例えば中間タ
ンク等の使用につbては公知の方法を特に制限なく採用
することが出来る。
In addition, in the present invention, any known method can be employed without particular limitation regarding the method of adding the flocculant, oxidizing substance, and reducing substance, or the use of an associated intermediate tank, etc.

(効果) 以上の説明より理解される如く、本発明の方法によれば
、原料溶液中に含貰れる汚染物質による透析装置の汚染
を長期間防止しながら電気透析を実施することが出来る
(Effects) As understood from the above explanation, according to the method of the present invention, electrodialysis can be performed while preventing contamination of the dialysis apparatus by contaminants contained in the raw material solution for a long period of time.

(実施例) 以下、本発明を実施例に基づき詳細に説明するが、本発
明は以下の実施例K特に限定されるものではない。
(Example) Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not particularly limited to the following Example K.

比較例 1 原海水(8〜30℃、、H=7.7〜8.1゜SS分=
5〜7”?/l)を原海水ポンプで汲み上げ、酸化性物
質として次亜塩素酸ソーダ(残留塩素として7.5%)
を3.0キ/lとなる様に、定量ポンプで注入し、更に
凝集剤として塩化第二鉄(FeCl2として55%)を
3.0!/lとなる様に注入して5ぜの原料水受はタン
クへ受は入れた。この海水を一次砂濾過器ポンプで第1
表に示す仕様の一次砂濾過器へ供給し、次いで、その濾
液を第1表に示す仕様の二次砂濾過器へ供給した。
Comparative Example 1 Raw seawater (8 to 30°C, H = 7.7 to 8.1° SS min =
5 to 7"?/l) is pumped up with a raw seawater pump, and sodium hypochlorite (7.5% as residual chlorine) is used as an oxidizing substance.
was injected with a metering pump to a concentration of 3.0 kg/l, and ferric chloride (55% as FeCl2) was added as a flocculant at a concentration of 3.0 kg/l. The raw material water was poured into the tank at a concentration of 1.5 m/l. This seawater is passed through the primary sand filter pump.
The mixture was fed to a primary sand filter having the specifications shown in Table 1, and then the filtrate was fed to a secondary sand filter having specifications shown in Table 1.

この濾液を酸性亜硫1(45%工業用)で中和(酸化還
元電位で200〜300mV以下)し、有効面積200
dイ、膜対数200対のイオン交換膜電気透析装置へ供
給し、6A/drr?で連続運転を75日間行なった。
This filtrate was neutralized with acidic sulfite 1 (45% industrial grade) (oxidation-reduction potential of 200 to 300 mV or less), and the effective area was 200 mV or less.
d. Supply to an ion exchange membrane electrodialysis device with 200 pairs of membranes, 6A/drr? It was operated continuously for 75 days.

この間の透析装置の入口の海水の水質は、FI=5.2
〜4.0,58=0.01〜0.0511P/ L 、
 Fe+++= 0.05〜0.2 [189/ Lで
あり、透析装置の希釈室の入口圧力は、運転スタート時
で0.75Kt/ej、75日後で1.551に/−で
あった。
During this period, the quality of the seawater at the inlet of the dialysis machine was FI = 5.2.
~4.0,58=0.01~0.0511P/L,
Fe+++ = 0.05 to 0.2 [189/L], and the inlet pressure of the dilution chamber of the dialysis machine was 0.75 Kt/ej at the start of operation, and 1.551/- after 75 days.

実施例 1 比較例1と同じ原海水を汲み上げ、比較例1と同条件で
酸化性物質、凝集剤を注入(残留CL2 = 3’F/
 L 、 Fe”” 5 q/ L ) して、g1表
に示す仕様の一次砂濾過器へ通液し、この濾液を5−の
−火源過海水タンクへ受けた。これを二次濾過器への配
管内で残留塩素中和用の還元剤(比較例1の酸性亜硫曹
)を添加して中和(酸化還元電位で200〜300mV
)t、、第1表に示す仕様の二次砂濾過器で通液、濾過
した。
Example 1 The same raw seawater as in Comparative Example 1 was pumped up, and oxidizing substances and flocculants were injected under the same conditions as in Comparative Example 1 (residual CL2 = 3'F/
L, Fe"" 5 q/L) and passed through a primary sand filter having the specifications shown in Table G1, and this filtrate was received into a 5-fire source filtered seawater tank. This is neutralized by adding a reducing agent (acidic sodium sulfite of Comparative Example 1) for neutralizing residual chlorine in the piping to the secondary filter (oxidation-reduction potential of 200 to 300 mV).
)t, The liquid was passed through and filtered through a secondary sand filter having the specifications shown in Table 1.

との濾液を比較例1と同様の透析装置で90日間の連続
運転を行なって評価した。
The filtrate was continuously operated for 90 days using the same dialysis apparatus as in Comparative Example 1, and evaluated.

この間の透析装置の入口の海水の水質は、F I = 
2.4〜3.2 、88=0.001〜0.00811
1f / L 、 Fe””= 0.05 ’IP /
 を以下であり、透析装置の入口圧力は、運転スタート
時で0.75に4/d、90日後で1.25に4/−で
あった。
During this period, the quality of the seawater at the inlet of the dialysis machine is F I =
2.4~3.2, 88=0.001~0.00811
1f/L, Fe””=0.05'IP/
The inlet pressure of the dialyzer was 0.75 to 4/d at the start of operation and 1.25 to 4/d after 90 days.

第 1 表 濾過器仕様 実施例 2 実施例1と同じように原海水を汲み上げ、次亜塩素酸ソ
ーダを6wq/L、塩化第二鉄を51111/lとなる
様に注入し、第1表に示す仕様の一次砂濾過器へ通液、
濾過し、実施例1と同じく二次砂濾過器の入口配管内で
酸性亜硫曹で還元中和(酸化還元電位で 200〜30
0mV)L、aE1表に示す仕様の二次砂濾過器で通液
、濾過した。
Table 1 Example of filter specifications 2 Pump up raw seawater in the same way as Example 1, inject sodium hypochlorite at 6 wq/L and ferric chloride at 51111/L, and add the following to Table 1. Pass the liquid through the primary sand filter with the specifications shown.
Filter, and reduce and neutralize with acidic sodium sulfite in the inlet pipe of the secondary sand filter as in Example 1 (oxidation-reduction potential: 200-30
0 mV)L, aE1 The liquid was passed through and filtered through a secondary sand filter having the specifications shown in the table.

この濾液を実施例1と同様な透析装置で110日間の連
続運転を行なって評価した。
This filtrate was continuously operated for 110 days using the same dialysis apparatus as in Example 1, and evaluated.

この間の透析装置の入口の海水の水質は、実施例1と同
様で、透析装置入口圧力は運転スタート時で0.70K
t/c11.110日後で1.20 Kt/cIiであ
った。
During this period, the quality of the seawater at the inlet of the dialysis machine was the same as in Example 1, and the pressure at the dialysis machine inlet was 0.70K at the start of operation.
t/c11.110 days later it was 1.20 Kt/cIi.

Claims (1)

【特許請求の範囲】 1)凝集剤及び酸化性物質を含む電解質溶液を一次濾過
し、次いで該濾液に還元性物質を添加して二次濾過した
後、イオン交換膜電気透析装置に供給して電気透析する
ことを特徴とする電気透析方法。 2)電解質溶液が海水である特許請求の範囲第1項記載
の電気透析方法。 3)凝集剤が塩化第二鉄である特許請求の範囲第1項記
載の電気透析方法。 4)酸化性物質が塩素、次亜塩素酸又はその塩である特
許請求の範囲第1項記載の電気透析方法。 5)一次濾過及び二次濾過に砂濾過器を用いる特許請求
の範囲第1項記載の電気透析方法。 6)還元性物質が含亜硫酸化合物である特許請求の範囲
第1項記載の電気透析方法。
[Scope of Claims] 1) An electrolyte solution containing a flocculant and an oxidizing substance is first filtered, then a reducing substance is added to the filtrate, secondly filtered, and then supplied to an ion exchange membrane electrodialysis device. An electrodialysis method characterized by electrodialysis. 2) The electrodialysis method according to claim 1, wherein the electrolyte solution is seawater. 3) The electrodialysis method according to claim 1, wherein the flocculant is ferric chloride. 4) The electrodialysis method according to claim 1, wherein the oxidizing substance is chlorine, hypochlorous acid, or a salt thereof. 5) The electrodialysis method according to claim 1, in which a sand filter is used for primary filtration and secondary filtration. 6) The electrodialysis method according to claim 1, wherein the reducing substance is a sulfite-containing compound.
JP10597985A 1985-05-20 1985-05-20 Electrodialytic method Granted JPS61263607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10597985A JPS61263607A (en) 1985-05-20 1985-05-20 Electrodialytic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10597985A JPS61263607A (en) 1985-05-20 1985-05-20 Electrodialytic method

Publications (2)

Publication Number Publication Date
JPS61263607A true JPS61263607A (en) 1986-11-21
JPH0369572B2 JPH0369572B2 (en) 1991-11-01

Family

ID=14421867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10597985A Granted JPS61263607A (en) 1985-05-20 1985-05-20 Electrodialytic method

Country Status (1)

Country Link
JP (1) JPS61263607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829549A1 (en) * 1996-09-14 1998-03-18 Hüls Aktiengesellschaft Process for the removal of heavy metal impurities from a concentrated alkali chloride solution down to a rest value of 0,01 ppm

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874652A (en) * 1972-01-10 1973-10-08
JPS5232173A (en) * 1975-09-08 1977-03-11 Tokuyama Soda Co Ltd Filtration method
JPS59150507A (en) * 1983-02-18 1984-08-28 Tokuyama Soda Co Ltd Electrodialysis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874652A (en) * 1972-01-10 1973-10-08
JPS5232173A (en) * 1975-09-08 1977-03-11 Tokuyama Soda Co Ltd Filtration method
JPS59150507A (en) * 1983-02-18 1984-08-28 Tokuyama Soda Co Ltd Electrodialysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829549A1 (en) * 1996-09-14 1998-03-18 Hüls Aktiengesellschaft Process for the removal of heavy metal impurities from a concentrated alkali chloride solution down to a rest value of 0,01 ppm

Also Published As

Publication number Publication date
JPH0369572B2 (en) 1991-11-01

Similar Documents

Publication Publication Date Title
CN105800886B (en) The resource utilization of high-concentration hardly-degradable salt-containing organic wastewater utilizes treatment process
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
CN105384316B (en) A kind of processing method of the fluorine-containing nitrogen-containing wastewater of electronics industry
CN105439395A (en) Zero-discharge treatment method of salt-containing organic wastewater
CN112805247B (en) Water treatment device, water treatment method, forward osmosis membrane treatment system, and water treatment system
JPH09192661A (en) Ultrapure water producing device
JPH11510432A (en) Production of high-purity water using reverse osmosis
CA2905926C (en) Process for water treatment prior to reverse osmosis
CN106517598A (en) Treating method and treating device for zero discharging of desulfurization wastewater
JP3137831B2 (en) Membrane processing equipment
CN210915600U (en) Recycling device of RO strong brine
JPH0714512B2 (en) Treatment method of wastewater containing heavy metals
JPS6336890A (en) Apparatus for producing high-purity water
CN110683691A (en) High-salt-content and high-organic-matter wastewater treatment system and method
CN213771708U (en) Novel membrane treatment system for wastewater hardness removal
CN109354338A (en) A kind of device and method of advanced treating Lonster production waste water
JPH09220564A (en) Removal of boron in reverse osmosis seawater desalting
KR102380597B1 (en) Seawater desalination system using capacitive deionization electrode
JP3111508B2 (en) Treatment method for wastewater containing heavy metals
JPS61263607A (en) Electrodialytic method
JPH11267645A (en) Production of pure water
JP3259557B2 (en) How to remove organic matter
JPH0632834B2 (en) Organic wastewater treatment method
CN220703439U (en) High sodium chloride, sodium nitrate's wastewater treatment system
JP2000271569A (en) Production of pure water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees