JPS6126355Y2 - - Google Patents
Info
- Publication number
- JPS6126355Y2 JPS6126355Y2 JP3327382U JP3327382U JPS6126355Y2 JP S6126355 Y2 JPS6126355 Y2 JP S6126355Y2 JP 3327382 U JP3327382 U JP 3327382U JP 3327382 U JP3327382 U JP 3327382U JP S6126355 Y2 JPS6126355 Y2 JP S6126355Y2
- Authority
- JP
- Japan
- Prior art keywords
- cooling chamber
- atmospheric gas
- duct
- coil
- forced circulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001816 cooling Methods 0.000 claims description 61
- 238000000137 annealing Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Landscapes
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Furnace Details (AREA)
Description
本考案は箱型焼鈍炉の冷却室の改良に関する。
箱型焼鈍炉として第1図に示すような加熱室1
0と冷却室11とが別々に設けられたものが用い
られている。このような箱型焼鈍炉における冷却
室11として従来、第2図に示すような構造が採
用されている。即ち、冷却室11の側部に設けら
れた雰囲気ガス循環用のダクト12内に雰囲気ガ
ス冷却用の熱交換器13を設置し、冷却室11内
には前記ダクト12から吸引した雰囲気ガスを下
方のコイル6に向けて吹き付けるための強制循環
フアン14と、該強制循環フアン14直下の整流
板18を配設したもので、プレナムチヤンバ15
を介してトレイ16上にコイル6を平置きし、加
熱室10での加熱後トレイ16を冷却室11内に
移動させ、熱交換器13により冷却された雰囲気
ガスを前記強制循環フアン14により、整流板1
8を通してコイル6上面に吹き付け、各コイル6
の冷却が行なわれる。しかし、このような構造の
冷却室11では前記強制循環フアン14の取付位
置が冷却室11内部であるためそのメインテナン
スが煩雑であるという難点がある。又、一般に冷
却室11のパージを短時間にするためには、冷却
室11の内容積を極力小さくすることが望まし
く、このため上記冷却室11では強制循環フアン
14と整流板18との間隔を狭くしている。しか
しこのような構造では、強制循環フアン14の吐
出流速分布を整流板18で均一にすることは難し
く、場所によつては吐出圧がマイナスとなる場合
さえある。このような吐出流速分布の不均一性は
必然的に前記コイル6に当たる雰囲気ガスの流れ
の方向性や流速の不均一化を招き、その結果コイ
ル6の冷却時間も各場所によつて異なつたものと
なつてしまう。1チヤージの冷却所要時間は最も
冷却の遅いコイル6によつて決定されることか
ら、上記した冷却所要時間のバラツキは冷却能率
ひいては焼鈍能率を落すことになる。
〓〓〓〓
本考案は以上のような従来の難点に鑑みてなさ
れたもので強制循環フアンのメインテナンスを容
易にし、しかもコイルに当たる雰囲気ガスの流れ
の方向性・流速を均一にすることが出来る冷却室
の構造の提供をその目的とする。
このため本考案は、上端及び下端がそれぞれ冷
却室の上部及び下部に接続された雰囲気ガス循環
用のダクトと、該ダクト内に設けられた雰囲気ガ
ス冷却用の熱交換器と、前記ダクト上端部に設け
られた強制循環フアンと、コイル上面に対して冷
却室の幅方向で分散して雰囲気ガスを供給し得る
ような複数の雰囲気ガス流路を形成せしめるべ
く、強制循環フアンの位置から冷却室内部方向に
延出し且つ先端側が斜め下方に屈曲した複数の整
流板とを備えたことをその基本的特徴とする。
以下本考案の実施例を図面に基づいて説明す
る。第3図及び第4図は本考案の一実施例を示す
ものであり、1は本考案に係る冷却室である。
冷却室1は、その炉壁外側に配設された雰囲気
ガス循環用のダクト2と、該ダクト2内に設けら
れた雰囲気ガス冷却用の熱交換器3と、ダクト2
内上端部に設けられた強制循環フアン4と、該強
制循環フアン4の位置から冷却室1内部方向に延
出した複数の整流板5とを有している。
前記ダクト2は、炉壁外側に配設されると共
に、その上端及び下端がそれぞれ冷却室1の上部
及び下部に接続され、冷却室1内部と連通してい
る。ダクト2は本実施例においては冷却室1の両
側で各一対ずつ設けられている。
前記熱交換器3は、前記各ダクト2内の長手方
向略中間部にそれぞれ設けられており、各ダクト
2内を流通する雰囲気ガスを冷却する。
前記強制循環フアン4は各ダクト2の上端部に
それぞれ設けられている。この強制循環フアン4
は熱交換器3で冷却された雰囲気ガスを吸引しこ
れをダクト2の上端部から冷却室1内に送風する
ものであり、該装置によつて雰囲気ガスは冷却室
1と各ダクト2内を循環せしめられる。
前記複数の整流板5は強制循環フアン4から送
風される雰囲気ガスをコイル6上面に均等に当て
るために設けられるもので、冷却室幅方向両側の
強制循環フアン4,4及び4,4の位置からそれ
ぞれ冷却室内部方向に延出し且つ先端側が下方に
屈曲するようにして設けられ、これによつて冷却
室1内部の左右各側で、コイル6上面に対して冷
却室1の幅方向に分散して雰囲気ガスを供給し得
るようなガス流路51…を形成せしめている。
また本実施例では、強制循環フアン4からの雰
囲気ガスを、前記ガス流路51の入側幅方向に均
一に分散して供給できるようにするため、強制循
環フアン4のガス吐出側に縦方向の整流板52…
がガス流路51入側方向に向つて設けられてい
る。さらに、前記整流板5によつて形成されたガ
ス流路51…の出側下方には該ガス流路51から
吐出された雰囲気ガス流をさらに分散せしめるた
め、水平板状でしかも全面に多数の雰囲気ガス噴
出口19を設けた整流板18が配設されている。
この整流板18は本実施例では格子板により構成
されている。
次に本考案の作用を説明する。トレイ16上に
平置された複数のコイル6は加熱室10で加熱さ
れた後中間扉17を経て前記冷却室1に搬送さ
れ、ここで冷却される。冷却室1内では雰囲気ガ
スが強制循環フアン4により冷却室1内及びダク
ト2内で循環せしめられ、コイル6の冷却が行な
われる。即ち、上方から供給された雰囲気ガスは
コイル6の内外周に接触してこれを冷却し、プレ
ナムチヤンバ15の空洞部を通つてダクト2内に
導かれ、熱交換器3により冷却され、さらに、上
方の強制循環フアン4によつて再び冷却室1内に
供給される。
以上の過程において、強制循環フアン4がダク
ト2の上端部に設けられ、しかもこれによつて冷
却室1内に供給される雰囲気ガスが、前記整流板
5…によつて形成された各ガス流路51を通じて
コイル6上面に導かれるため、その流れの方向性
が良好なものとなり、このためガス流路51出側
における雰囲気ガスの流速分布は冷却室1幅方向
で均一化されたものとなる。
加えて本実施例においては、ガス流路51入側
において、その入側幅方向における流速分布が整
流板52…によつて分散均一化され、各ガス流路
51内における流速分布の不均一性を解消し得る
と共に、ガス流路51出側直下の整流板18によ
つてガス流路51から吐出された雰囲気ガス流を
さらに分散せしめ、より均一なガス流速を得るこ
とが出来る。
第5図は、本実施例の整流板18出口側で得ら
〓〓〓〓
れたガス流速分布の一例を第2図に示す従来装置
によるものと比較して示したものである。これに
よれば、従来装置ではガス流速のバラツキが大き
く、特に左右2箇所で負圧を生じているのに対
し、本実施例では、幅方向でほぼ均一な流速が得
られており、コイル6上面にほぼ均等に雰囲気ガ
スが当つていることが示されている。
又下表は、トレイ上に並べられた9個(3×3
個)のコイルを、第4図に示す本考案の冷却室
と、第2図に示す従来の冷却室でそれぞれ冷却
し、その場合の冷却時間と冷却完了時のコイルホ
ツトポイントの温度(コイルの最も温度の高い位
置の温度)とを調べた結果を示すものである。尚
表中は各コイルのホツトポイント温度の平均値
を、またσは該ホツトポイント温度のバラツキを
示すものである。
The present invention relates to an improvement of the cooling chamber of a box-type annealing furnace. A heating chamber 1 as shown in Fig. 1 as a box-type annealing furnace
0 and cooling chamber 11 are provided separately. Conventionally, a structure as shown in FIG. 2 has been adopted as the cooling chamber 11 in such a box-type annealing furnace. That is, a heat exchanger 13 for cooling the atmospheric gas is installed in a duct 12 for circulating the atmospheric gas provided on the side of the cooling chamber 11, and the atmospheric gas sucked from the duct 12 is directed downward into the cooling chamber 11. A forced circulation fan 14 for blowing air toward the coil 6 and a rectifying plate 18 directly below the forced circulation fan 14 are installed.
The coil 6 is placed flat on the tray 16 through the heating chamber 10, and then the tray 16 is moved into the cooling chamber 11, and the atmospheric gas cooled by the heat exchanger 13 is passed through the forced circulation fan 14. Current plate 1
8 to the top surface of the coil 6, each coil 6
cooling is performed. However, in the cooling chamber 11 having such a structure, the forced circulation fan 14 is installed inside the cooling chamber 11, so that its maintenance is complicated. Generally, in order to shorten the purging time of the cooling chamber 11, it is desirable to reduce the internal volume of the cooling chamber 11 as much as possible, and for this reason, in the cooling chamber 11, the interval between the forced circulation fan 14 and the rectifying plate 18 is reduced. It's narrow. However, in such a structure, it is difficult to make the discharge flow velocity distribution of the forced circulation fan 14 uniform by the rectifying plate 18, and the discharge pressure may even become negative depending on the location. Such non-uniformity in the discharge flow velocity distribution inevitably leads to non-uniformity in the flow direction and flow velocity of the atmospheric gas hitting the coil 6, and as a result, the cooling time of the coil 6 also varies depending on the location. I become confused. Since the cooling time required for one charge is determined by the coil 6 that cools the slowest, the above-mentioned variation in the cooling time required will reduce the cooling efficiency and eventually the annealing efficiency. 〓〓〓〓
The present invention was devised in view of the above-mentioned difficulties in the conventional cooling chamber, which facilitates the maintenance of forced circulation fans and also makes the direction and velocity of the flow of atmospheric gas uniform as it hits the coil. Its purpose is to provide. Therefore, the present invention includes a duct for circulating atmospheric gas whose upper and lower ends are respectively connected to the upper and lower parts of a cooling chamber, a heat exchanger for cooling the atmospheric gas provided in the duct, and an upper end of the duct. In order to form multiple atmospheric gas flow paths that can supply atmospheric gas distributed in the width direction of the cooling chamber to the upper surface of the coil, a forced circulation fan is installed at the cooling chamber from the position of the forced circulation fan. Its basic feature is that it includes a plurality of rectifier plates extending inward and having their distal ends bent diagonally downward. Embodiments of the present invention will be described below based on the drawings. 3 and 4 show an embodiment of the present invention, and 1 is a cooling chamber according to the present invention. The cooling chamber 1 includes a duct 2 for circulating atmospheric gas disposed outside the furnace wall, a heat exchanger 3 for cooling the atmospheric gas disposed within the duct 2, and the duct 2.
It has a forced circulation fan 4 provided at the inner upper end, and a plurality of rectifying plates 5 extending toward the inside of the cooling chamber 1 from the position of the forced circulation fan 4. The duct 2 is disposed outside the furnace wall, and its upper and lower ends are connected to the upper and lower parts of the cooling chamber 1, respectively, and communicate with the inside of the cooling chamber 1. In this embodiment, a pair of ducts 2 are provided on each side of the cooling chamber 1. The heat exchanger 3 is provided at a substantially intermediate portion in the longitudinal direction of each duct 2, and cools the atmospheric gas flowing through each duct 2. The forced circulation fan 4 is provided at the upper end of each duct 2, respectively. This forced circulation fan 4
This device sucks the atmospheric gas cooled by the heat exchanger 3 and blows it into the cooling chamber 1 from the upper end of the duct 2. With this device, the atmospheric gas flows through the cooling chamber 1 and each duct 2. It is circulated. The plurality of baffle plates 5 are provided to evenly apply the atmospheric gas blown from the forced circulation fans 4 to the upper surface of the coil 6, and are arranged at the positions of the forced circulation fans 4, 4 and 4, 4 on both sides in the width direction of the cooling chamber. The coils 6 are provided in such a way that they extend toward the inside of the cooling chamber, and their tips are bent downward, so that the coils 6 are distributed in the width direction of the cooling chamber 1 with respect to the upper surface of the coil 6 on each left and right side of the inside of the cooling chamber 1. Gas passages 51 are formed to supply atmospheric gas. In addition, in this embodiment, in order to uniformly distribute and supply the atmospheric gas from the forced circulation fan 4 in the width direction of the inlet side of the gas flow path 51, the gas discharge side of the forced circulation fan 4 is provided with a longitudinal direction. The current plate 52...
is provided toward the inlet side of the gas flow path 51. Furthermore, in order to further disperse the atmospheric gas flow discharged from the gas flow path 51, the lower part of the outlet side of the gas flow path 51 formed by the rectifying plate 5 has a horizontal plate shape and a large number of A rectifying plate 18 provided with an atmospheric gas outlet 19 is provided.
In this embodiment, the current plate 18 is composed of a lattice plate. Next, the operation of the present invention will be explained. A plurality of coils 6 placed horizontally on a tray 16 are heated in a heating chamber 10 and then conveyed to the cooling chamber 1 through an intermediate door 17, where they are cooled. Inside the cooling chamber 1, atmospheric gas is circulated within the cooling chamber 1 and the duct 2 by a forced circulation fan 4, thereby cooling the coil 6. That is, the atmospheric gas supplied from above comes into contact with the inner and outer peripheries of the coil 6 to cool it, is led into the duct 2 through the cavity of the plenum chamber 15, is cooled by the heat exchanger 3, and is further cooled from above. The forced circulation fan 4 supplies the air into the cooling chamber 1 again. In the above process, a forced circulation fan 4 is provided at the upper end of the duct 2, and the atmospheric gas supplied into the cooling chamber 1 is controlled by each gas flow formed by the rectifier plates 5. Since it is guided to the upper surface of the coil 6 through the passage 51, the directionality of the flow is good, and therefore the flow velocity distribution of the atmospheric gas on the outlet side of the gas passage 51 is made uniform in the width direction of the cooling chamber 1. . In addition, in this embodiment, on the inlet side of the gas flow path 51, the flow velocity distribution in the width direction of the inlet side is dispersed and made uniform by the rectifier plates 52... In addition, the flow of atmospheric gas discharged from the gas flow path 51 is further dispersed by the rectifier plate 18 immediately below the outlet side of the gas flow path 51, and a more uniform gas flow rate can be obtained. FIG. 5 shows the results obtained on the outlet side of the current plate 18 of this embodiment.
An example of the gas flow velocity distribution obtained is shown in comparison with that obtained by the conventional apparatus shown in FIG. According to this, in the conventional device, there is a large variation in the gas flow velocity, and negative pressure is generated especially at two places on the left and right, whereas in this example, a substantially uniform flow velocity is obtained in the width direction, and the coil 6 It is shown that the upper surface is almost evenly exposed to the atmospheric gas. The table below shows 9 pieces (3 x 3) arranged on a tray.
A number of coils) were cooled in the cooling chamber of the present invention shown in Figure 4 and the conventional cooling chamber shown in Figure 2, and the cooling time and temperature of the coil hot point at the end of cooling (the coil This shows the results of an investigation of the temperature at the highest temperature point. In the table, the average value of the hot point temperature of each coil is shown, and σ shows the dispersion of the hot point temperature.
【表】
この表から明らかなように、本考案の冷却室に
よればσ値が小さく各コイルがほぼ均一に冷却さ
れており、しかも従来の冷却室では、ホツトポイ
ントの最高温度を有するコイルNo.5を185℃まで
冷却するのに23.2時間要しているのに対し、本考
案の冷却室ではコイルNo.4を180℃まで冷却する
のに20.7時間しか要しておらず、冷却所要時間も
短縮されていることがわかる。この結果冷却能率
は約10%向上することが確認された。
以上の様に、本考案に係る箱型焼鈍炉の冷却室
によれば、1チヤージで多数のコイルを均一に冷
却でき、そのため冷却時間の短縮を図り、冷却能
率を従来に較べ大きく向上せしめることができ、
加えて、強制循環フアンを炉壁外側に配設された
ダクト内上端部に設けたので、そのメインテナン
スを容易に行なうことができる等の利点を有して
いる。[Table] As is clear from this table, the cooling chamber of the present invention has a small σ value and each coil is cooled almost uniformly.Moreover, in the conventional cooling chamber, the coil No. with the highest temperature at the hot point It takes 23.2 hours to cool coil No. 5 to 185℃, but in the cooling chamber of this invention, it takes only 20.7 hours to cool coil No. 4 to 180℃. It can be seen that it has also been shortened. As a result, it was confirmed that the cooling efficiency improved by approximately 10%. As described above, according to the cooling chamber of the box-type annealing furnace according to the present invention, a large number of coils can be uniformly cooled in one charge, thereby shortening the cooling time and greatly improving the cooling efficiency compared to the conventional method. is possible,
In addition, since the forced circulation fan is provided at the upper end of the duct located outside the furnace wall, there are advantages such as ease of maintenance.
第1図及び第2図は従来の箱型焼鈍炉を示すも
ので、第1図は平面図、第2図は第1図中−
線に沿う断面図である。第3図及び第4図は本考
案の一実施例を示すもので、第3図は加熱炉と共
に示す平面図、第4図は第3図中−線に沿う
断面図である。第5図は第4図に示す本考案の冷
却室におけるガス流速分布を第2図に示す従来の
ものと比較して示したものである。
図中1は冷却室、2はダクト、3は熱交換器、
4は強制循環フアン、5は整流板、51はガス流
路を各示す。
〓〓〓〓
Figures 1 and 2 show a conventional box-type annealing furnace. Figure 1 is a plan view, and Figure 2 is a
It is a sectional view along a line. 3 and 4 show an embodiment of the present invention, in which FIG. 3 is a plan view together with a heating furnace, and FIG. 4 is a sectional view taken along the line - in FIG. 3. FIG. 5 shows the gas flow velocity distribution in the cooling chamber of the present invention shown in FIG. 4 in comparison with that of the conventional cooling chamber shown in FIG. In the figure, 1 is a cooling room, 2 is a duct, 3 is a heat exchanger,
4 is a forced circulation fan, 5 is a rectifying plate, and 51 is a gas flow path. 〓〓〓〓
Claims (1)
に接続された雰囲気ガス循環用のダクトと、該ダ
クト内に設けられた雰囲気ガス冷却用の熱交換器
と、前記ダクト上端部に設けられた強制循環フア
ンと、コイル上面に対して冷却室の幅方向で分散
して雰囲気ガスを供給し得るような複雑の雰囲気
ガス流路を形成せしめるべく、強制循環フアンの
位置から冷却室内部方向に延出し且つ先端側が斜
め下方に屈曲した複数の整流板とを備えてなる箱
型焼鈍炉の冷却室。 a duct for circulating atmospheric gas whose upper and lower ends are respectively connected to the upper and lower parts of the cooling chamber; a heat exchanger for cooling the atmospheric gas provided within the duct; and a forced circulation provided at the upper end of the duct. In order to form a complex atmospheric gas flow path that can supply atmospheric gas distributed in the width direction of the cooling chamber to the top surface of the coil, the fan and the coil extend from the position of the forced circulation fan toward the inside of the cooling chamber. A cooling chamber of a box-shaped annealing furnace comprising a plurality of straightening plates whose tips are bent diagonally downward.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3327382U JPS58140165U (en) | 1982-03-11 | 1982-03-11 | Cooling chamber of box type annealing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3327382U JPS58140165U (en) | 1982-03-11 | 1982-03-11 | Cooling chamber of box type annealing furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58140165U JPS58140165U (en) | 1983-09-21 |
JPS6126355Y2 true JPS6126355Y2 (en) | 1986-08-07 |
Family
ID=30044825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3327382U Granted JPS58140165U (en) | 1982-03-11 | 1982-03-11 | Cooling chamber of box type annealing furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58140165U (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5422228B2 (en) * | 2009-03-12 | 2014-02-19 | 株式会社正英製作所 | Heat treatment furnace |
JP5912670B2 (en) * | 2012-03-02 | 2016-04-27 | Dowaサーモテック株式会社 | Work gas cooling system |
JP7036681B2 (en) * | 2018-06-25 | 2022-03-15 | 大同プラント工業株式会社 | Heat treatment furnace |
JP7286843B2 (en) * | 2018-09-10 | 2023-06-05 | 株式会社ジェイテクトサーモシステム | Heat treatment equipment |
JP2020041737A (en) * | 2018-09-10 | 2020-03-19 | 光洋サーモシステム株式会社 | Heat treatment device |
-
1982
- 1982-03-11 JP JP3327382U patent/JPS58140165U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58140165U (en) | 1983-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05184951A (en) | Heating storehouse for testing | |
JPS6126355Y2 (en) | ||
JPH04148139A (en) | Clean room | |
CN106048162A (en) | Cold-chamber high-pressure gas quenching structure | |
CN206143269U (en) | Suspension type air cooling system | |
US2276971A (en) | Annealing furnace | |
JPH04188535A (en) | Gas exhausting furnace for cathode ray tube | |
CN201463608U (en) | High-temperature material gas rapid injection cooing unit | |
CN111163592A (en) | PCB baking device | |
JP3491127B2 (en) | Cooling device for hot rolled coil | |
CN213037832U (en) | Circulating air cooling device for vertical carburizing furnace | |
CN211903819U (en) | White type evaporation air cooler disappears | |
CN218486760U (en) | Plate production line and steel belt heating mechanism of plate press | |
CN216786219U (en) | Return air duct type circulating heating system of heat treatment furnace | |
JPS6244988Y2 (en) | ||
JPS598123Y2 (en) | hot air heater | |
CN116397090B (en) | Iron core heat treatment device and process | |
CN217361263U (en) | Waste gas treatment device for enameled wire paint baking oven | |
JPS6321567Y2 (en) | ||
CN210474561U (en) | Aluminum foil coating line | |
CN220450245U (en) | High-efficiency energy-saving aluminum wafer annealing furnace | |
CN221197952U (en) | Drying device of production line | |
JPS6156248A (en) | Method for cooling coil in box annealing furnace | |
JPS5915518B2 (en) | Electronic device cooling method | |
GB1100892A (en) | Improvements relating to method and apparatus for effecting heat exchange with a moving body |