JPS61262708A - Single mode optical fiber for 1.5 micron band - Google Patents

Single mode optical fiber for 1.5 micron band

Info

Publication number
JPS61262708A
JPS61262708A JP60106431A JP10643185A JPS61262708A JP S61262708 A JPS61262708 A JP S61262708A JP 60106431 A JP60106431 A JP 60106431A JP 10643185 A JP10643185 A JP 10643185A JP S61262708 A JPS61262708 A JP S61262708A
Authority
JP
Japan
Prior art keywords
base material
core
furnace
refractive index
kept
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60106431A
Other languages
Japanese (ja)
Inventor
Gotaro Tanaka
豪太郎 田中
Hiroshi Yokota
弘 横田
Hiroo Kanamori
弘雄 金森
Yoichi Ishiguro
洋一 石黒
Yuichi Masuda
裕一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60106431A priority Critical patent/JPS61262708A/en
Publication of JPS61262708A publication Critical patent/JPS61262708A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01466Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/24Single mode [SM or monomode]

Abstract

PURPOSE:To obtain optical fiber structure which has a zero dispersion wavelength at a 1.5 micron band and has an extremely low transmission loss by forming a core and clad in such a manner that the refractive index at the boundary therebetween decreases gradually from the core toward the clad. CONSTITUTION:A porous base material consisting of the pure silica prepd. by a VAD method is inserted into a furnace kept at 1,100 deg.C. He and Cl2 are kept kept passed as an atmosphere gas in the furnace to decrease substantially the OH groups in the porous base material. Such porous base material is inserted into a furnace kept at 1,400 deg.C and is thereby shrunk. The material is further inserted into a furnace kept at 1,640 deg.C to form the transparent glass base material. A rod stretched from such base material to 3nm outside diameter is prepd. On the other hand, a quartz glass tube which is similarly synthesized by the VAD method, is added with fluorine, has 0.65% specific refractive index difference as compared to quartz and has the gradually decreasing refractive index is prepd. The rod is inserted into such tube and while the tube is heated from the outside, SiF4, Cl2 and O2 are passed to crush successively the tube. The resulted preform is stretched under heating and SiO2 soot is deposited on the outside circumferential part. Such deposited body is subjected to a treatment for adding fluorine and vitrification to transparent glass in a heating treatment furnace.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は1.jtクロン帯に零分散波長をもつシングル
モード光ファイバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Fields] The present invention is based on 1. This invention relates to a single mode optical fiber having a zero dispersion wavelength in the jt Chron band.

[背景技術と問題点コ 石英系ガラス光ファイバは、光の波長が1.5〜t、g
tクロンの領域において、伝送損失が最小となる。した
がって光ファイバを用いた伝送システムで中継間隔を最
大にしようとすれば、波長が1.5ミクロン帯の光を用
いる必要がある。
[Background technology and problems] Silica-based glass optical fibers have light wavelengths of 1.5 to t, g.
In the region of t cron, the transmission loss is minimum. Therefore, in order to maximize the repeater spacing in a transmission system using optical fibers, it is necessary to use light with a wavelength of 1.5 microns.

この場合、高い伝送速度で情報を送ろうとすれば、マル
チモードファイバよりもずっと広い伝速帯域をもつシン
グルモード光ファイバが用いられる。そして非常に高い
伝送速度で情報を送ろうとすれば、使用する光波長にお
いて、光ファイバの分散効果を最小にする必要がある。
In this case, if information is to be transmitted at a high transmission rate, a single mode optical fiber is used, which has a much wider transmission band than a multimode fiber. In order to transmit information at very high transmission speeds, it is necessary to minimize the dispersion effect of optical fibers at the optical wavelengths used.

現在通常用いられている波長が1.32クロン用のシン
グルモード光ファイバは、波長が1.3ミクロン付近で
、材料分散と構造分散が相殺され、分散相が零となるよ
うに設計されている。
Single-mode optical fibers for wavelengths of 1.32 microns, which are currently in common use, are designed so that material dispersion and structural dispersion cancel each other out at wavelengths around 1.3 microns, resulting in zero dispersed phase. .

これに対し、1.5ミクロン帯でシングルモード光ファ
イバを使用し、かつ、この波長で分散を小さくするには
、2つの方法がある。1つは光フアイバ構造を1.5ミ
クロン帯で零分散となるように設計することであり、他
の1つは下記文献(1)で述べられているように、1.
5μ帯の使用波長で非常に狭いスペクトル幅をもつ光源
を用いることである。
On the other hand, there are two methods for using a single mode optical fiber in the 1.5 micron band and reducing dispersion at this wavelength. One is to design the optical fiber structure to have zero dispersion in the 1.5 micron band, and the other is to design the optical fiber structure to have zero dispersion in the 1.5 micron band.
The purpose of this method is to use a light source with a wavelength of 5 μ band and a very narrow spectral width.

文献(1)Malyan、P、J、and MCdOn
na、Ap、102kmunrepe102k mon
owode flber system exper1
mentat  140  Mbit/s  wlth
  an  1njectlon−1ocked  1
.52μ1llaser transmltter+E
Iactron、Lett、19B2,18pp 44
5−447. (102に一無中継、140Mblt/
s+のシングルモードファイバの実験システム)。
Literature (1) Malyan, P. J. and MCdOn
na, Ap, 102kmunrepe102k mon
owode flber system exper1
mentat 140 Mbit/s wth
an 1njectlon-1ocked 1
.. 52μ1laser transmltter+E
Iactron, Lett, 19B2, 18pp 44
5-447. (No relay on 102, 140Mblt/
s+ single mode fiber experimental system).

本発明は後に詳述するが1.5ミクロン帯で零分散とな
るシングルモード光ファイバを得ることにある。
The purpose of the present invention is to obtain a single mode optical fiber having zero dispersion in the 1.5 micron band, which will be described in detail later.

シングルモード光ファイバにおいて、零分散波長を1.
3ミクロンから1.5ミクロンに移すには、下記の文献
■に述べられているように、光ファイバのコア径をより
細(するとともに、コアとクラッドとの屈折率差Δnを
増大させる必要がある。
In a single mode optical fiber, the zero dispersion wavelength is set to 1.
In order to move from 3 microns to 1.5 microns, it is necessary to make the core diameter of the optical fiber thinner (as well as increase the refractive index difference Δn between the core and the cladding), as described in the following document (■). be.

文献■Cohen、L、(i、LInC,、and F
renchj、G。
Literature ■Cohen, L, (i, LInC,, and F
renchj, G.

“Tallorlng zero chromatlc
 dlsperslon ll。
“Tallorlng zero chromatlc
dlsperslon ll.

the I 、5〜1 、Bμta low−loss
+ 5pectral regon ofslngla
mode Nbres”+ EIoctrom、Let
t、1979.15pp 334−335. (シング
ルモードファイバの零分散を1.5〜1.6μ諺波長帯
の低損失領域への移動)。
the I, 5-1, Bμta low-loss
+5pectral region ofslngla
mode Nbres”+ EIoctrom, Let
t, 1979.15pp 334-335. (Moving the zero dispersion of single-mode fiber to the low-loss region of the 1.5-1.6μ wavelength band).

Δnを増大させることにより、2つの理由により、伝送
損失が生ずるという問題が発生する。一つはΔnを増大
させるため、コアに添加するゲルマニウムを多くするこ
とによって光の散乱損失が増加することであり、他の一
つはΔnを増大させることは、コアとクラッドの線膨張
係数の差を増大させ、光フアイバ内のコアとクラッドの
界面での応力の増大をもたらし、これが伝送損失の増加
をひき起すことになる。このことは下記の文献■に述べ
られている。
Increasing Δn causes a problem of transmission loss for two reasons. One is that increasing Δn increases light scattering loss by adding more germanium to the core, and the other is that increasing Δn increases the linear expansion coefficient of the core and cladding. This increases the difference, leading to increased stress at the core-cladding interface within the optical fiber, which causes increased transmission loss. This is described in the following document (■).

文献■Anslle、B、J、et at、Nonom
ode flberwith ultra−1ow 1
oss and mln1mu+* dlspersl
onat 1.55”Electron、Lett、l
98218 pp 842−844゜(1,55μ謬波
長帯で超低損失と最小分散をもつシングルモードファイ
バ)。
Literature ■Anslle, B. J. et at, Nonom
ode flberwith ultra-1ow 1
oss and mln1mu+*dlspersl
onat 1.55"Electron, Lett, l
98218 pp 842-844° (single mode fiber with ultra-low loss and minimum dispersion in the 1,55μ error band).

前者の難点を解消する方法として、コアにゲルマニウム
を添加し、屈折率を上げる代りに、クラッドの屈折率を
下げる方法がある。最も極端な場合が、コアを純石英に
し、クラッドを石英よりも低い屈折率に下げた光ファイ
バである。この構造は本質的にゲルマニウム入りコアの
光ファイバより低損失の可能性があり、1.:Nクロン
帯の零分散光ファイバではすでに下記の文献に)によっ
てよ(知られている。クラッドには通常フッ素が添加さ
れる。
One way to solve the former problem is to add germanium to the core to lower the refractive index of the cladding instead of increasing the refractive index. The most extreme case is an optical fiber whose core is made of pure quartz and whose cladding has a refractive index lower than that of quartz. This structure inherently has the potential for lower loss than germanium-filled core optical fibers; 1. :N-band zero-dispersion optical fiber is already known from the following literature.The cladding is usually doped with fluorine.

文献(4)R,Csencgfts at al、“F
abrication oflow−1oss  si
ngle−+5ode  fiber″ In  τe
chnlcalD1gest、Toplcal Mse
tlng on 0ptlcal FlborComm
unlcatlon 1984.TU 13. (低損
失シングルモードファイバの構造)。
Reference (4) R, Csencgfts at al, “F
abrication offlow-1oss si
ngle−+5ode fiber″ In τe
chnlcalD1gest, Toplcal Mse
tlng on 0ptlcal FlborComm
unlcatlon 1984. TU 13. (Structure of low loss single mode fiber).

後者のコアとクラッドの界面の応力を解消する方法とし
て、コアの屈折率分布をステップ状ではなく、三角形杖
にすることにより界面の応力集中を緩和させることが提
案され、ゲルマニウム入りコアで1.55 ミクロンで
零分散であり、ある程度低損失が実現されている。この
点前掲文献■参照。
As a method of resolving the latter stress at the interface between the core and the cladding, it has been proposed to reduce the stress concentration at the interface by making the refractive index distribution of the core triangular rather than step-like. It has zero dispersion at 55 microns and achieves a certain degree of low loss. On this point, refer to the above-mentioned document ■.

[発明の目的コ 本発明は以上述べた技術手法を組合せて応用し、1.5
ミクロン帯に零分散波長をもち、かつ、非常に低い伝送
損失の光フアイバ構造を提供しようとするものである。
[Purpose of the Invention] The present invention combines and applies the above-mentioned technical methods to achieve 1.5
The objective is to provide an optical fiber structure that has a zero dispersion wavelength in the micron band and has extremely low transmission loss.

[問題を解決するための手段] 第1図に本発明シングルモード光ファイバの屈折率分布
を示す。図は中心線より横軸に半径方向距離をとり、縦
軸に屈折率をとっている。図示のようにコアの中央部^
は純石英であり、クラッドCは純石英によるコアの中央
部4よりも屈折率を低(シ、コアの中央部4とクラッド
Cの界面 6は徐々に屈折率を変化させる層よりなる。
[Means for Solving the Problem] FIG. 1 shows the refractive index distribution of the single mode optical fiber of the present invention. In the figure, the horizontal axis represents the radial distance from the center line, and the vertical axis represents the refractive index. As shown, the center of the core ^
is pure quartz, and the cladding C has a refractive index lower than that of the central part 4 of the core made of pure quartz.The interface 6 between the central part 4 of the core and the cladding C consists of a layer whose refractive index gradually changes.

このような構造の光ファイバは、光エネルギーの最も集
中するコアの中央部^は純石英であるため、光の吸収損
失を非常に小さくでき、またコアとクラフトの線膨張率
係数差によるコア/クラッド界面の応力集中を回避する
ことができるので、界面での応力に起因する損失増を軽
減することができる。
In an optical fiber with such a structure, the central part of the core where the light energy is most concentrated is made of pure silica, so light absorption loss can be extremely small. Since stress concentration at the cladding interface can be avoided, an increase in loss due to stress at the interface can be reduced.

以下具体的な実施例について述べる。Specific examples will be described below.

本発明の光ファイバの製造方法としては、一般に知られ
ているCVD法、 MCVD法などによってもよいが、
以下VAD法(軸つけ法)を利用して作製した実施例に
ついて説明する。
The optical fiber of the present invention may be manufactured by the generally known CVD method, MCVD method, etc.
Examples manufactured using the VAD method (axial attachment method) will be described below.

[実施例] VAD法により作製した純シリカからなる多孔質母材を
、一旦1100℃の炉内に挿入した、この際、炉内には
雰囲気ガスとしてHeをEl/分、Cn2を200 c
c/分の流量で流しておき、多孔質母材内のOH基を十
分に低減させた。
[Example] A porous base material made of pure silica produced by the VAD method was once inserted into a furnace at 1100 °C. At this time, the atmosphere gas in the furnace was He at El/min and Cn2 at 200 °C.
It was allowed to flow at a flow rate of c/min to sufficiently reduce the OH groups in the porous matrix.

次に、この多孔質母材を1400℃の炉内に挿入し、収
縮させた。この際、炉内にはHeのみ5Q/分の流量で
流した。
Next, this porous base material was inserted into a 1400° C. furnace and shrunk. At this time, only He was flowed into the furnace at a flow rate of 5 Q/min.

さらに、この収縮した多孔質母材を1840℃の炉内に
挿入し、透明ガラス母材とした。この際、炉内にはSi
F4を2fi/分の流量で流した。
Furthermore, this shrunken porous base material was inserted into a furnace at 1840°C to obtain a transparent glass base material. At this time, there is Si in the furnace.
F4 was flowed at a flow rate of 2fi/min.

次にこの透明ガラス母材を外径3Nに延伸したロッドを
準備した。一方間様にVAD法で合成したロッドを挿入
し、管外部より加熱しながら5iF4=CQ2102を
流し、管と棒とのすき間を清浄にしながらつぶしていっ
た。得られたプリフォームを加熱延伸し、さらにこの外
周部に火炎加水分解によるSiO2スートを堆積させた
。この堆積体を加熱処理炉でフッ素の添加処理及び透明
ガラス化を行った。
Next, a rod was prepared by stretching this transparent glass base material to an outer diameter of 3N. On the other hand, a rod synthesized by the VAD method was inserted into the gap, and 5iF4=CQ2102 was poured from the outside of the tube while being heated, and the gap between the tube and the rod was cleaned and crushed. The obtained preform was heated and stretched, and SiO2 soot was deposited on the outer periphery by flame hydrolysis. This deposited body was subjected to fluorine addition treatment and transparent vitrification in a heat treatment furnace.

以上により得られたプリフォームをクラッドCの外径1
25μ謡に線引したところ、第1図に示すような屈折率
分布のシングルモードファイバが得られた。なおコア中
央部^の外径^′は3.5μ■、界面名の最大外径6′
は5.5μ厘比屈折率差Δnは0.65%である。
The preform obtained in the above manner has an outer diameter of 1
When drawn to a diameter of 25 μm, a single mode fiber with a refractive index distribution as shown in FIG. 1 was obtained. The outer diameter of the central part of the core is 3.5 μ■, and the maximum outer diameter of the interface is 6'.
is 5.5μ, and the relative refractive index difference Δn is 0.65%.

この光ファイバの特性を測定したところ、零分散波長が
!、54μ−であった。また1、55μ■波長での損失
は0 、26 dB/kvsと損失の低い!、5μ■帯
零分故ファイバか得られた。
When we measured the characteristics of this optical fiber, we found that it had a zero dispersion wavelength! , 54 μ-. In addition, the loss at 1.55μ■ wavelength is 0.26 dB/kvs, which is low! , a 5μ band zero-fraction fiber was obtained.

[比較例コ コアとして純SiO2からなるロッドを準備する以外は
、実施例と同様な製法により、第2図に示すクラッドC
の外径C’125μm、コア4″の外径4″′4.8μ
■、比屈折率差0.65%の光ファイバを作製した。
[Comparative example The clad C shown in FIG.
outer diameter C'125μm, outer diameter of core 4''4''4.8μm
(2) An optical fiber with a relative refractive index difference of 0.65% was produced.

この光ファイバの特性を測定したところ、零分散波長が
!、54μ閣であった。また、1.55μm波長での損
失値は0.32dB/kmであった。
When we measured the characteristics of this optical fiber, we found that it had a zero dispersion wavelength! , it was 54 μkaku. Further, the loss value at a wavelength of 1.55 μm was 0.32 dB/km.

[効果コ 以上説明したうように本発明においては、コアが純石英
、クラッドがフッ素を添加した石英ガラスによりなる1
、5ミクロン帯シングルモードファイバにおいて、コア
とクラッドの界面がコアからクラッドに向って屈折率が
徐々に小さくなるように構成されており、コアとクラッ
ドの界面が純石英から順次フッ素の増加する層よりなっ
ているので、コアとクラッドの線膨張係数の差によって
生ずる集中応力もこの層によって緩和され、前記実施例
と比較例に示されるように損失の減少ができるものであ
る。
[Effects] As explained above, in the present invention, the core is made of pure quartz and the cladding is made of fluorine-doped silica glass.
In the 5-micron band single mode fiber, the interface between the core and the cladding is constructed so that the refractive index gradually decreases from the core to the cladding, and the interface between the core and the cladding is composed of layers in which fluorine content increases sequentially from pure quartz. Therefore, the concentrated stress caused by the difference in linear expansion coefficient between the core and the cladding is also alleviated by this layer, and the loss can be reduced as shown in the examples and comparative examples.

また、コアのゲルマニウムを含存するものに比べ、光の
集中するコアが純石英よりなっているので、この点でも
損失はすくなく、波長1.5ミクロン帯ですぐれた伝送
帯域特性を備えるシングルモードファイバが得られる。
In addition, compared to a core containing germanium, the core on which the light is concentrated is made of pure silica, so there is less loss in this respect as well, making it a single mode fiber with excellent transmission band characteristics in the 1.5 micron wavelength band. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のシングルモードファイバの屈折率分布
および寸法を示す。 第2図は従来のシングルモードファイバの屈折率及び寸
法を示す。 ^・・・コア中央部、治・・・界面、C・・・クラッド
、4′・・・コア。
FIG. 1 shows the refractive index profile and dimensions of the single mode fiber of the present invention. FIG. 2 shows the refractive index and dimensions of a conventional single mode fiber. ^...Central part, cure...interface, C...cladding, 4'...core.

Claims (1)

【特許請求の範囲】[Claims] コアが純石英、クラッドがフッ素を添加した石英ガラス
よりなる1.5ミクロン帯シングルモードファイバにお
いて、コアとクラッドの界面の屈折率がコアからクラッ
ドに向って徐々に小さくなっていることを特徴とする1
.5ミクロン帯用シングルモード光ファイバ。
A 1.5-micron band single mode fiber whose core is pure quartz and whose cladding is fluorine-doped silica glass is characterized in that the refractive index at the interface between the core and cladding gradually decreases from the core to the cladding. Do 1
.. Single mode optical fiber for 5 micron band.
JP60106431A 1985-05-17 1985-05-17 Single mode optical fiber for 1.5 micron band Pending JPS61262708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60106431A JPS61262708A (en) 1985-05-17 1985-05-17 Single mode optical fiber for 1.5 micron band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60106431A JPS61262708A (en) 1985-05-17 1985-05-17 Single mode optical fiber for 1.5 micron band

Publications (1)

Publication Number Publication Date
JPS61262708A true JPS61262708A (en) 1986-11-20

Family

ID=14433466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60106431A Pending JPS61262708A (en) 1985-05-17 1985-05-17 Single mode optical fiber for 1.5 micron band

Country Status (1)

Country Link
JP (1) JPS61262708A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649406A (en) * 1987-07-02 1989-01-12 Kokusai Denshin Denwa Co Ltd Optical fiber
JPH01102507A (en) * 1987-10-16 1989-04-20 Sumitomo Electric Ind Ltd Optical fiber
JPH01107211A (en) * 1987-10-21 1989-04-25 Sumitomo Electric Ind Ltd Environmental resistant optical fiber
JPH01107210A (en) * 1987-10-21 1989-04-25 Sumitomo Electric Ind Ltd Environmental resistant optical fiber
WO1991013038A1 (en) * 1990-02-28 1991-09-05 Otc Limited A rare-earth doped fibre
WO1993002018A1 (en) * 1991-07-15 1993-02-04 The University Of Sydney Light transmitting device having regions of differing refractive index
US5655039A (en) * 1995-12-22 1997-08-05 Corning, Inc. Nonlinear optical loop mirror device including dispersion decreasing fiber
WO1999022258A1 (en) * 1997-10-29 1999-05-06 Sumitomo Electric Industries, Ltd. Dispersion-shifted optical fiber
WO2011110617A1 (en) * 2010-03-10 2011-09-15 Heraeus Quarzglas Gmbh & Co. Kg Method and tubular semi-finished product for producing an optical fiber
CN113264670A (en) * 2021-04-13 2021-08-17 江苏永鼎股份有限公司 Method for preparing large-size fluorine-doped quartz tube and fluorine-doped quartz tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017405A (en) * 1983-04-21 1985-01-29 アメリカン・テレフォン・アンド・テレグラフ・カムパニー Single mode optical guide fiber having trapezoidal refractive index distribution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017405A (en) * 1983-04-21 1985-01-29 アメリカン・テレフォン・アンド・テレグラフ・カムパニー Single mode optical guide fiber having trapezoidal refractive index distribution

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649406A (en) * 1987-07-02 1989-01-12 Kokusai Denshin Denwa Co Ltd Optical fiber
JPH01102507A (en) * 1987-10-16 1989-04-20 Sumitomo Electric Ind Ltd Optical fiber
JPH01107211A (en) * 1987-10-21 1989-04-25 Sumitomo Electric Ind Ltd Environmental resistant optical fiber
JPH01107210A (en) * 1987-10-21 1989-04-25 Sumitomo Electric Ind Ltd Environmental resistant optical fiber
WO1991013038A1 (en) * 1990-02-28 1991-09-05 Otc Limited A rare-earth doped fibre
WO1993002018A1 (en) * 1991-07-15 1993-02-04 The University Of Sydney Light transmitting device having regions of differing refractive index
US5655039A (en) * 1995-12-22 1997-08-05 Corning, Inc. Nonlinear optical loop mirror device including dispersion decreasing fiber
US5689596A (en) * 1995-12-22 1997-11-18 Corning, Inc. Nonlinear optical loop mirror device providing pulse width switching
WO1999022258A1 (en) * 1997-10-29 1999-05-06 Sumitomo Electric Industries, Ltd. Dispersion-shifted optical fiber
US6360046B1 (en) 1997-10-29 2002-03-19 Sumitomo Electric Industries, Ltd. Dispersion-shifted optical fiber
WO2011110617A1 (en) * 2010-03-10 2011-09-15 Heraeus Quarzglas Gmbh & Co. Kg Method and tubular semi-finished product for producing an optical fiber
US9085481B2 (en) 2010-03-10 2015-07-21 Heraeus Quarzglas Gmbh & Co. Kg Method and tubular semifinished product for producing an optical fiber
US10118854B2 (en) 2010-03-10 2018-11-06 Heraeus Quarzglas Gmbh & Co. Kg Tubular semifinished product for producing an optical fiber
CN113264670A (en) * 2021-04-13 2021-08-17 江苏永鼎股份有限公司 Method for preparing large-size fluorine-doped quartz tube and fluorine-doped quartz tube

Similar Documents

Publication Publication Date Title
US10150695B2 (en) Low loss optical fibers with fluorine and chlorine codoped core regions
US4339173A (en) Optical waveguide containing P2 O5 and GeO2
US4691990A (en) Optical fiber with depressed index outer cladding
WO2016206308A1 (en) Doping optimized single-mode optical fibre with ultralow attenuation
JPH041706A (en) Manufacture of optical fiber
US4804247A (en) Quartz glass optical fiber
WO2022100422A1 (en) Fully synthetic low-loss single-mode optical fiber
JPS61262708A (en) Single mode optical fiber for 1.5 micron band
JP4101227B2 (en) Optical fiber and optical fiber manufacturing method used therefor
JPS61191543A (en) Quartz base optical fiber
JPS62297808A (en) Dispersion shift optical fiber
JPS62116902A (en) Wide-band low dispersion optical fiber
JPH0281004A (en) Optical fiber and its production
JP3731243B2 (en) Single mode optical fiber and manufacturing method thereof
JP3315786B2 (en) Optical amplifier type optical fiber
JP2004126141A (en) Optical fiber and its manufacturing method
US8792762B2 (en) Low loss aluminum doped optical fiber for UV applications
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
CN113625390B (en) Dispersion optimization bending insensitive optical fiber
JPH0717395B2 (en) Manufacturing method of base material for dispersion shift fiber
JPS62292647A (en) Production of decentralized-shift single-mode optical fiber
JPS6011250A (en) Fiber for optical transmission and its manufacture
JPS61264303A (en) Single mode optical fiber for 1.5mu band
JPH0672967B2 (en) Zero-dispersion single-mode optical fiber
JP2657726B2 (en) Radiation-resistant optical fiber and image fiber