JPS61262635A - Chromatographic scanner - Google Patents

Chromatographic scanner

Info

Publication number
JPS61262635A
JPS61262635A JP10548085A JP10548085A JPS61262635A JP S61262635 A JPS61262635 A JP S61262635A JP 10548085 A JP10548085 A JP 10548085A JP 10548085 A JP10548085 A JP 10548085A JP S61262635 A JPS61262635 A JP S61262635A
Authority
JP
Japan
Prior art keywords
scanning
peak
sample
section
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10548085A
Other languages
Japanese (ja)
Other versions
JPH0629847B2 (en
Inventor
Kazuya Shinya
和也 新屋
Kunihiko Okubo
邦彦 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10548085A priority Critical patent/JPH0629847B2/en
Publication of JPS61262635A publication Critical patent/JPS61262635A/en
Publication of JPH0629847B2 publication Critical patent/JPH0629847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N21/5911Densitometers of the scanning type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/95Detectors specially adapted therefor; Signal analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To shorten the scanning time without lowering the accuracy of quantitative analysis, by automatically limiting a range performing highly accurate final scanning by rough scanning. CONSTITUTION:A specimen 3 such as a thin layer chromatography plate or an electrophoretic gel is held on a specimen stage 3 movable to both X- and Y-directions and irradiated with light from an optical system 2. The specimen stage 20 is controlled by a microcomputer MC12 through a drive mechanism and linear scanning being rough scanning and zigzag scanning being main scanning are performed. The reflected light from the specimen 3 is converted to an electric signal by a photomultiplier tube 4 and the transmitted light from the specimen 3 is converted to an electric signal by a photomultiplier tube 6 while both signals are amplified by an amplifier 8 and converted by an A/D converter 10 to be taken in MC12. MC12 detects the peak position at the time of rough scanning from the taken-in signal and the main scanning range performing zigzag scanning is limited only to a peak range containing a spot and data processing at the time of final scanning is performed to output the processed data to a printer 14 and CRT16.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はTLC(薄層クロマトグラフィ)プレートや電
気泳動ゲルのような試料に光を照射し、その反射光又は
透過光により定量を行なうクロマトスキャナに関するも
のである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a chromatography scanner that irradiates light onto a sample such as a TLC (thin layer chromatography) plate or electrophoresis gel and performs quantitative determination using the reflected or transmitted light. It is related to.

(従来の技術) TLCプレートや電気泳動ゲルは、試料上で直線上に離
散的に広がったパターンをもっている。
(Prior Art) A TLC plate or an electrophoresis gel has a pattern that spreads discretely in a straight line on a sample.

第8図はTLCプレート、第9図は電気泳動ゲルの例で
あり、30.32はスポットである。
Figure 8 is an example of a TLC plate, Figure 9 is an example of an electrophoresis gel, and 30.32 is a spot.

従来のクロマトスキャナでは、TLCプレートや電気泳
動ゲルのようにY方向の直線上に離散的に広がったパタ
ーンを走査し、定量を行なう場合。
Conventional chromatography scanners perform quantification by scanning a pattern spread discretely on a straight line in the Y direction, such as on a TLC plate or electrophoresis gel.

ジグザグ走査の走査開始点を短冊形の走査範囲の端に設
定し、Y方向のステップ数を一定にし、第10図に示さ
れるようにジグザグのスイング幅で決まる短冊形の全面
を走査していた。
The scanning start point of the zigzag scan was set at the end of the scanning range of the rectangle, the number of steps in the Y direction was kept constant, and the entire surface of the rectangle determined by the swing width of the zigzag was scanned as shown in Figure 10. .

(発明が解決しようとする問題点) 試料のスポットは離散しているが、従来のクロマトスキ
ャナではスポットの存在しない部分もスポットの存在す
る重要な部分と同様に走査しなければならず、特に定量
精度向上のために積算を行なう場合など、必要以外の部
分のために浪費する時間は膨大なものであった。
(Problem to be Solved by the Invention) Although the spots on a sample are discrete, in conventional chromatography scanners, areas where there are no spots must be scanned in the same way as important areas where spots are present, especially for quantitative analysis. A huge amount of time is wasted on unnecessary parts, such as when performing integration to improve accuracy.

本発明は、試料スポットの位置を自動的に高速で探索す
ることにより、定量精度を下げずに走査時間を短縮する
クロマトスキャナを提供することを目的とするものであ
る。
An object of the present invention is to provide a chromatography scanner that automatically searches for the position of a sample spot at high speed, thereby shortening scanning time without reducing quantitative accuracy.

(問題点を解決するための手段) 本発明は、第1図に示されるように、モード切換え部が
粗走査モードと本走査モードの切換えを行なう。
(Means for Solving the Problems) In the present invention, as shown in FIG. 1, a mode switching section switches between a coarse scanning mode and a main scanning mode.

粗走査時にはステージ制御部により試料ステージ20は
X方向を固定してY方向のみのリニア走査を行なう。こ
のリニア走査時にピーク処理部は検出信号からピーク位
置を検出し、そのピーク位置はメモリ18に記憶される
During rough scanning, the stage control unit causes the sample stage 20 to fix the X direction and perform linear scanning only in the Y direction. During this linear scanning, the peak processing section detects the peak position from the detection signal, and the peak position is stored in the memory 18.

本走査時にはステージ制御部により試料ステージ20は
ジグザグ走査を行なうが、このときステージ制御部はメ
モリ18に記憶されているピーク位置に従って、ピーク
位置では精度の高いジグザグ走査を行ない、ピーク位置
以外の部分ではジグザグ走査を省略し又は粗く走査を行
なうように試料ステージ20を制御する。データ処理部
はこの本走査時の検出信号から定量的なデータ処理を行
なう。
During the main scan, the sample stage 20 performs a zigzag scan by the stage control section, but at this time, the stage control section performs a highly accurate zigzag scan at the peak position according to the peak position stored in the memory 18, and performs a highly accurate zigzag scan at the peak position. Then, the sample stage 20 is controlled so that the zigzag scan is omitted or the scan is performed roughly. The data processing section performs quantitative data processing from the detection signals during the main scan.

(実施例) 第2図は本発明の一実施例を表わす。(Example) FIG. 2 represents one embodiment of the invention.

2は試料3に光照射を行なう光学系である。2 is an optical system that irradiates the sample 3 with light.

TLCプレートや電気泳動ゲルのような試料3はX、Y
両方向に移動することのできる試料ステージ20上に保
持されている。試料ステージ20は駆動機構(図示略)
を介してマイクロコンピュータ12により制御され、粗
走査のリニア走査と本走査のジグザグ走査を行なう。
Sample 3 such as TLC plate or electrophoresis gel is X, Y
It is held on a sample stage 20 that can move in both directions. The sample stage 20 is a drive mechanism (not shown)
It is controlled by the microcomputer 12 via the microcomputer 12 to perform coarse linear scanning and main scanning zigzag scanning.

4は試料3からの反射光を受光して電気信号に変換する
光電変換部としての光電子増倍管、6は試料3からの透
過光を受光して電気信号に変換する光電変換部としての
光電子増倍管である。光電子増倍管4又は6の出力信号
は増幅器8で増幅され、信号変換部としてのA/D変換
器10でデジタル信号に変換された後、マイクロコンピ
ュータ12に取り込まれる。
Reference numeral 4 denotes a photomultiplier tube as a photoelectric conversion unit that receives reflected light from the sample 3 and converts it into an electrical signal, and 6 refers to a photoelectron as a photoelectric conversion unit that receives transmitted light from the sample 3 and converts it into an electrical signal. It is a multiplier tube. The output signal of the photomultiplier tube 4 or 6 is amplified by an amplifier 8, converted into a digital signal by an A/D converter 10 serving as a signal converter, and then taken into a microcomputer 12.

マイクロコンピュータ12は取り込んだ信号から粗走査
時のピーク位置検出と本走査時のデータ処理を行なう。
The microcomputer 12 performs peak position detection during rough scanning and data processing during main scanning from the captured signals.

14はマイクロコンピュータ12によるデータ処理結果
を表示するプリンタ、16はCRTである。
14 is a printer for displaying the results of data processing by the microcomputer 12, and 16 is a CRT.

マイクロコンピュータ12は、本発明におけるデータ処
理部、ピーク処理部、メモリ、ステージ制御部及びモー
ド切換え部を実現する。
The microcomputer 12 implements a data processing section, a peak processing section, a memory, a stage control section, and a mode switching section in the present invention.

次に、本実施例の動作を第2図ないし第7図を参照して
説明する。
Next, the operation of this embodiment will be explained with reference to FIGS. 2 to 7.

光学系2による試料3の照射位置が走査開始点へくるよ
うに試料ステージ20を位置決めする(ステップS1)
。測定モードを粗走査モードに設定する(ステップS2
)、これにより試料ステージ20はマイクロコンピュー
タ12の制御を受けて、第4図に示されるように、X方
向を固定しY方向送りを大きくとってスポット30の列
のリニア走査を積算なしで行なう(ステップS3)。
The sample stage 20 is positioned so that the irradiation position of the sample 3 by the optical system 2 is at the scanning start point (step S1).
. Set the measurement mode to coarse scanning mode (step S2
), whereby the sample stage 20 is controlled by the microcomputer 12 to perform linear scanning of the row of spots 30 without integration by fixing the X direction and increasing the feed in the Y direction, as shown in FIG. (Step S3).

このリニア走査により光電子増倍管4又は6により第5
図に示されるような反射光強度又は透過光強度の波形が
検出される。マイクロコンピュータ12はこの波形から
各ピークについてピーク開始位置71wピークトップ位
置y2及びピーク終了位置y3というピーク位置を求め
るピーク処理を行なう(ステップS4)、このピーク処
理は、例えば第5図のような波形を微分し、微分値によ
り行なうことができる。
This linear scanning causes the photomultiplier tube 4 or 6 to
The waveform of reflected light intensity or transmitted light intensity as shown in the figure is detected. The microcomputer 12 performs peak processing to obtain peak positions such as a peak start position 71w, a peak top position y2, and a peak end position y3 for each peak from this waveform (step S4). This can be done by differentiating and using the differential value.

次に、このピーク処理で求められたピーク範囲71””
’y3を第6図に示されるY 1 ”Y 3のように適
当量だけ広げ(ステップS5)、この広げられたピーク
範囲を各ピークについてメモリに記憶する(ステップS
6)。
Next, the peak range 71"" obtained by this peak processing
'y3 is expanded by an appropriate amount as shown in FIG.
6).

次に、再び照射位置を試料の走査開始点へ位置決めし、
測定モードを本走査モードに設定する(ステップS7)
。マイクロコンピュータ12ではメモリから最初のピー
ク位置を読み出しくステップS8)、試料ステージ20
をそのピーク位置まで移動させ、第7図に示されるピー
ク範囲AIについて本来のジグザグ走査を行ない、検出
信号を取り込んでデータ処理を行なう(ステップS9゜
5IO)。このジグザグ走査及びデータ処理は従来から
行なわれているものである。
Next, position the irradiation position again to the scanning start point of the sample,
Set the measurement mode to main scanning mode (step S7)
. The microcomputer 12 reads out the first peak position from the memory (step S8), and the sample stage 20
is moved to the peak position, the original zigzag scanning is performed for the peak range AI shown in FIG. 7, and the detection signal is taken in and data processing is performed (step S9.5IO). This zigzag scanning and data processing is conventional.

第1のピーク範囲A1のジグザグ走査が終了するとマイ
クロコンピュータ12は次のピーク位置を読み出し、同
じようにジグザグ走査によるデータ処理を行なって行く
、このようにして、第7図にA+ v A2.A3.・
・・・・・で示されるピーク範囲のジグザグ走査が全て
のピークについて終了するまで、順次繰り返されて行く
(ステップ511)。
When the zigzag scan of the first peak range A1 is completed, the microcomputer 12 reads out the next peak position and similarly performs data processing by zigzag scan.In this way, A+ v A2. A3.・
The zigzag scan of the peak range indicated by . . . is sequentially repeated until all peaks are completed (step 511).

以上の処理によりジグザグ走査を行なう範囲がスポット
のある領域のみに制限され、大部分を占めるバックグラ
ンド領域はジグザグ走査の対象から除外され、走査時間
が短縮される。
Through the above processing, the range in which the zigzag scan is performed is limited to only the area where the spot is present, and the background area, which occupies most of the area, is excluded from the target of the zigzag scan, thereby shortening the scanning time.

以上の実施例では、ジグザグ走査を行なう本走査範囲を
スポットを含むピーク範囲のみに絞り。
In the above embodiment, the main scanning range for performing zigzag scanning is limited to only the peak range including the spot.

ピーク範囲以外の領域では全く本走査を行なっていない
、しかし、例えば、ピーク範囲以外の領域でもジグザグ
走査は行なうがそのY方向送りを大きくしたり、積算回
数を減らすようにしてもよい。
In areas other than the peak range, main scanning is not performed at all. However, for example, although zigzag scanning is performed in areas other than the peak range, the feed in the Y direction may be increased or the number of integrations may be reduced.

このような操作によっても走査時間を短縮することがで
きる。
Such an operation can also shorten the scanning time.

(発明の効果) 本発明のクロマトスキャナは、光学系、光電変換部、信
号変換部、及びマイクロコンピュータにより駆動が制御
される試料ステージ、並びにマイクロコンピュータによ
り実現されるデータ処理部。
(Effects of the Invention) The chromatography scanner of the present invention includes an optical system, a photoelectric conversion section, a signal conversion section, a sample stage whose drive is controlled by a microcomputer, and a data processing section implemented by the microcomputer.

ピーク処理部、メモリ、ステージ制御部及びモード切換
え部を備え、粗調査によって精度の高い本走査を行なう
範囲を自動的に制限するように動作するので、スポット
のないバックグランド部での走査時間が短縮され、定量
精度を下げずに走査時間を大幅に短縮することができる
It is equipped with a peak processing unit, memory, stage control unit, and mode switching unit, and operates to automatically limit the range of highly accurate main scanning based on a rough survey, reducing the scanning time in the background area where there are no spots. The scanning time can be significantly shortened without reducing quantitative accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック用、第2図は本発
明の一実施例を示す概略図、第3図は一実施例の動作を
示すフローチャート、第4図は同実施例における粗走査
のリニア走査を示す図、第5図はリニア走査で得られる
検出波形を示す図。 第6図はメモリに記憶されるピーク範囲を示す図、第7
図は同実施例における本走査範囲を示す図、第8図はT
LCプレートを示す図、第9図は電気泳動ゲルを示す図
、第10図は従来のジグザグ走査を示す図である。 2・・・・・・光学系、 4.6・・・・・・光電子増倍管、 10・・・・・・A/D変換器、 12・・・・・・マイクロコンピュータ、18・・・・
・・メモリ。 20・・・・・・試料ステージ。
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a schematic diagram showing an embodiment of the present invention, FIG. 3 is a flowchart showing the operation of one embodiment, and FIG. 4 is a rough diagram of the same embodiment. FIG. 5 is a diagram showing a linear scan, and FIG. 5 is a diagram showing a detected waveform obtained by the linear scan. Figure 6 is a diagram showing the peak range stored in memory, and Figure 7 is a diagram showing the peak range stored in memory.
The figure shows the main scanning range in the same embodiment, and FIG.
FIG. 9 is a diagram showing an LC plate, FIG. 9 is a diagram showing an electrophoresis gel, and FIG. 10 is a diagram showing conventional zigzag scanning. 2...Optical system, 4.6...Photomultiplier tube, 10...A/D converter, 12...Microcomputer, 18...・・・
··memory. 20...Sample stage.

Claims (1)

【特許請求の範囲】[Claims] (1)試料に光照射を行なう光学系と、 試料からの反射光又は透過光を受光して電気信号に変換
する光電変換部と、 この光電変換部からの出力信号をデジタル信号に変換す
る信号変換部と、 本走査時にこの信号変換部の出力信号を処理して出力す
るデータ処理部と、 粗走査時に前記信号変換部の出力信号からピークの位置
を検出するピーク処理部と、 このピーク処理部で検出されたピークの位置を記憶する
メモリと、 試料を移動させる試料ステージと、 粗走査時には予め設定された移動様式により、本走査時
には前記メモリに記憶されたピークの位置に従って前記
試料ステージの駆動を制御するステージ制御部と、 本走査時と粗走査時とで前記データ処理部、ピーク処理
部及びステージ制御部の動作を切り換えるモード切換え
部と、を備えたクロマトスキャナ。
(1) An optical system that irradiates the sample with light, a photoelectric conversion unit that receives reflected light or transmitted light from the sample and converts it into an electrical signal, and a signal that converts the output signal from this photoelectric conversion unit into a digital signal. a converting section; a data processing section that processes and outputs the output signal of the signal converting section during main scanning; a peak processing section that detects a peak position from the output signal of the signal converting section during rough scanning; and this peak processing. a memory for storing the position of the peak detected in the section, a sample stage for moving the sample, and a sample stage for moving the sample according to a preset movement mode during rough scanning and according to the peak position stored in the memory during main scanning. A chromato scanner comprising: a stage control section that controls driving; and a mode switching section that switches operations of the data processing section, peak processing section, and stage control section between main scanning and coarse scanning.
JP10548085A 1985-05-16 1985-05-16 Chromatoskiana Expired - Lifetime JPH0629847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10548085A JPH0629847B2 (en) 1985-05-16 1985-05-16 Chromatoskiana

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10548085A JPH0629847B2 (en) 1985-05-16 1985-05-16 Chromatoskiana

Publications (2)

Publication Number Publication Date
JPS61262635A true JPS61262635A (en) 1986-11-20
JPH0629847B2 JPH0629847B2 (en) 1994-04-20

Family

ID=14408749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10548085A Expired - Lifetime JPH0629847B2 (en) 1985-05-16 1985-05-16 Chromatoskiana

Country Status (1)

Country Link
JP (1) JPH0629847B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391127A (en) * 1992-05-15 1995-02-21 Mitsubishi Denki Kabushiki Kaisha Control apparatus in a motor vehicle for controlling a throttle valve on the base of actuation of an accelerator pedal and intake air quantity
WO2001077679A1 (en) * 2000-04-12 2001-10-18 Hamamatsu Photonics K.K. Measuring method for immunochromatographic test strip
WO2001077680A1 (en) * 2000-04-12 2001-10-18 Hamamatsu Photonics K.K. Measuring method for immunochromatographic test strip
US7173705B2 (en) 2003-02-26 2007-02-06 Hamamatsu Photonics K.K. Measuring device for immunochromatography test piece
US7173704B2 (en) 2003-02-26 2007-02-06 Hamamatsu Photonics K.K. Measuring device for immunochromatography test piece and light source device
JP2013040890A (en) * 2011-08-19 2013-02-28 Dainippon Screen Mfg Co Ltd Electromagnetic wave pulse measurement instrument

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391127A (en) * 1992-05-15 1995-02-21 Mitsubishi Denki Kabushiki Kaisha Control apparatus in a motor vehicle for controlling a throttle valve on the base of actuation of an accelerator pedal and intake air quantity
WO2001077679A1 (en) * 2000-04-12 2001-10-18 Hamamatsu Photonics K.K. Measuring method for immunochromatographic test strip
WO2001077680A1 (en) * 2000-04-12 2001-10-18 Hamamatsu Photonics K.K. Measuring method for immunochromatographic test strip
US6819422B2 (en) 2000-04-12 2004-11-16 Hamamatsu Photonics K.K. Measuring method for immunochromatographic test strip
US6879399B2 (en) 2000-04-12 2005-04-12 Hamamatsu Photonics K.K. Measuring method for immunochromatographic test strip
US7173705B2 (en) 2003-02-26 2007-02-06 Hamamatsu Photonics K.K. Measuring device for immunochromatography test piece
US7173704B2 (en) 2003-02-26 2007-02-06 Hamamatsu Photonics K.K. Measuring device for immunochromatography test piece and light source device
JP2013040890A (en) * 2011-08-19 2013-02-28 Dainippon Screen Mfg Co Ltd Electromagnetic wave pulse measurement instrument

Also Published As

Publication number Publication date
JPH0629847B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
EP0401821B1 (en) Electrophoresis pattern reading system of fluorescence type
EP0780671A1 (en) Spectrophotometers and colorimeters
JPH0743353B2 (en) Fluorescence detection type gel electrophoresis device
JPS61262635A (en) Chromatographic scanner
EP1431748A3 (en) Automated optical alignment using a galvanometric scanner
US4150899A (en) Densitometer
EP0437968B1 (en) Video densitometer
US5194949A (en) Video densitometer
Mathies et al. Laser‐excited confocal‐fluorescence gel scanner
JPH0776744B2 (en) Spatially developed sample pattern measuring device
US4145139A (en) Zig zag scanning densitometer with base line and impurity correction
JPS5942684Y2 (en) densitometer
JPH095630A (en) Optical scanning method
NZ262032A (en) Video camera measurement of colour composition integrated densities of irregularly shaped areas
JPH11148900A (en) Apparatus for reading light emitting pattern
JPH0578780B2 (en)
JPH01155242A (en) Processing method of data of chromatoscanner
JPS6342221B2 (en)
JPH05309590A (en) Robot control device and method for positioning robot working part
Uchiyama et al. Photoacoustic densitometry of ovalbumin on nitrocellulose sheet by imaging by fast laser beam scanning
JPS61155731A (en) Photometric signal processing circuit for chromatoscanner
JPH0440825B2 (en)
JPH0680416B2 (en) How to display densitogram
JPH02203249A (en) Chromatoscanner
JPS61225606A (en) Body shape measuring apparatus