JPS61262221A - Dynamic pressure fluid bearing device - Google Patents

Dynamic pressure fluid bearing device

Info

Publication number
JPS61262221A
JPS61262221A JP10308085A JP10308085A JPS61262221A JP S61262221 A JPS61262221 A JP S61262221A JP 10308085 A JP10308085 A JP 10308085A JP 10308085 A JP10308085 A JP 10308085A JP S61262221 A JPS61262221 A JP S61262221A
Authority
JP
Japan
Prior art keywords
material member
bearing device
thrust
resin
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10308085A
Other languages
Japanese (ja)
Other versions
JPH0517964B2 (en
Inventor
Shinji Goto
信治 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10308085A priority Critical patent/JPS61262221A/en
Publication of JPS61262221A publication Critical patent/JPS61262221A/en
Publication of JPH0517964B2 publication Critical patent/JPH0517964B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a thrust seat member from accelerative wear, by projecting the end surface of the first material member from that of the second material member to a predetermined quantity, and eliminating wear exceeding the radius of the first material. CONSTITUTION:A resin member end part 3 and a metal member end part 4 of the end surface of a thrust seat member A, faced to a rotational shaft 6, are integrally clamped for simultaneously machining the flat surface thereof so as to obtain the same flat surface of the end parts of both materials 3, 4. But Young's modulus <E> of resin is different from that of metal, and therefore, when the load applied to resin and metal is removed after machining them, the deviation due to elastic deformation is generated. Therefore, the first material member 1 which slightly projects during low speed running, comes in contact with the rotational shaft 6 for supporting thrust force and thereby, even if wear due to sliding contact is increased, it never exceeds the radius of the first material member 1 projected from the second material member 2 so that accelerative wear is prevented.

Description

【発明の詳細な説明】 (イ)産業上の利用分針 本発明は、高速、高精度の回転が要求されるモータ、例
えばオーディオプレイヤーのモータ、VTRのモータ、
レーザービームプリンタ (LBP)のポリゴンミラー
駆動用モーターの軸受手段として用いられている動圧流
体軸受装置に係り、詳しくはラジアル用動圧流体軸受部
及びスラスト用動圧流体軸受部からなる動圧流体軸受装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Minute Hand The present invention is applicable to motors that require high-speed, high-precision rotation, such as audio player motors, VTR motors,
It relates to a hydrodynamic bearing device used as a bearing means for a motor for driving a polygon mirror of a laser beam printer (LBP), and specifically includes a radial hydrodynamic bearing section and a thrust hydrodynamic bearing section. Regarding bearing devices.

(ロ)従来の技術 一般に、空気、オイル等を潤滑流体とした動圧流体軸受
装置は定常回転時に於いては、高剛性の潤滑流体膜によ
り回転を支承されるため、回転ムラ、軸の振れ回り等が
極めて少なく、回転に際しての騒音、振動も小さい、極
めて回転精度の高い軸受手段として近年多用されている
。該動圧流体軸受装置は定常回転に於いては非接触であ
るため寿命が長い等の特性を有していることから、オー
ディオプレイヤーのモータ、VTRのモータ、レーザー
ビームプリンタ (LBP)のポリゴンミラー駆動用の
モータの軸受手段として用いられている。
(b) Conventional technology In general, hydrodynamic bearing devices using air, oil, etc. as a lubricating fluid are supported by a highly rigid lubricating fluid film during steady rotation, which causes uneven rotation and shaft runout. In recent years, it has been widely used as a bearing means with extremely high rotation accuracy, with extremely little rotation, noise and vibration during rotation. The hydrodynamic bearing device has characteristics such as a long life as it is non-contact during steady rotation, and is therefore used in audio player motors, VTR motors, and polygon mirrors in laser beam printers (LBP). It is used as a bearing means for a drive motor.

例えば、上記LBP用モータについては第9図に示す様
に、固定部材であるスリーブ9及び該スリーブ9に嵌装
されている回転軸6′からなり、該回転6′にはその表
面に図示しないスパイラル溝、ヘリングボーンからなる
多数の浅溝が形成されており、これら浅溝とスリーブ9
の内周面との間で潤滑流体を空気としたラジアル用動圧
流体軸受部が構成されている。更に、回転軸端部8′と
スラスト軸受部5′との間で、同様に潤滑流体を空気と
したスラスト用動圧流体軸受部が構成されている。しか
し、動圧流体軸受部は定常時に於いては回転軸6′とス
リーブ13は非接触で回転するが、低回転数の場合に於
いては、接触を生じる。
For example, as shown in FIG. 9, the LBP motor is composed of a sleeve 9 that is a fixed member and a rotating shaft 6' fitted in the sleeve 9, and the rotating shaft 6' is not shown on the surface. A large number of shallow grooves consisting of spiral grooves and herringbones are formed, and these shallow grooves and the sleeve 9
A radial dynamic pressure fluid bearing section using air as the lubricating fluid is constructed between the inner peripheral surface of the shaft and the inner circumferential surface of the shaft. Furthermore, a dynamic pressure fluid bearing for thrust using air as the lubricating fluid is similarly configured between the rotating shaft end 8' and the thrust bearing 5'. However, in the dynamic pressure fluid bearing section, the rotary shaft 6' and the sleeve 13 rotate without contact during steady state, but they come into contact at low rotational speeds.

スラスト方向に関しては、ラジアル方向に気体の膜がす
ぐ形成されるのとは異なり、気体膜剛性がスラスト荷重
を支持するまで高まるにはかなり回転数が上がらなけれ
ばならない。従って、その回転数に達するまでは、回転
軸端部8′とスラスト軸受部5′とは接触したまま回転
している。このため、スラスト軸受部5′は焼付けを発
生しゃすい等の問題点を有している。そこで、従来、そ
の接触面を減らすため、回転軸6′の重量を軽減するこ
とか、回転軸端部8′を所定半径(例えば半径750+
w+)の球面に加工したり、スラスト軸受部5′を、研
摩により平面精度、傾き精度を上げる加工を施している
。しかしながら、回転軸端部8′の球面加工は非常に困
難なものであり、そのことが製品のコストアップの要因
とも成っていた。
In the thrust direction, unlike the immediate formation of a gas film in the radial direction, the rotational speed must increase considerably for the gas film stiffness to increase to support the thrust load. Therefore, until the rotational speed reaches that speed, the rotating shaft end 8' and the thrust bearing 5' continue to rotate while being in contact with each other. For this reason, the thrust bearing portion 5' has problems such as being susceptible to seizure. Conventionally, in order to reduce the contact surface, it has been either to reduce the weight of the rotating shaft 6' or to extend the rotating shaft end 8' to a predetermined radius (for example, a radius of 750 +
(w+) spherical surface, and the thrust bearing portion 5' is polished to improve the plane accuracy and inclination accuracy. However, machining the rotary shaft end 8' into a spherical surface is extremely difficult, and this has also been a factor in increasing the cost of the product.

Q→ 発明が解決すようとする問題点 上記の回転軸端部8′及びスラスト軸受部5′との間に
おける接触面を減らすために、回転軸端部8′を半径7
50mの球面に加工したり、スラスト軸受部5′を研摩
により平面精度、傾き精度を上げる加工を施しているが
、球面の半径が大きいため、前記スラスト軸受部5′が
わずか3p摩耗しただけでも摺動径はφ4mを超えるた
め、摩耗は加速的に進む。更に、従来のスラスト軸受部
5′に於いては焼きばめの際、樹脂部材1′が加熱され
た金属部材やスリーブ9に触れたり、焼きばめ仕分のス
トレスを受けて変形するのを防ぐため、第10図の様な
段差をつけて加工しなければならなかった。しかし、こ
の場合にも樹脂部材1′は加熱により第11図に示すよ
うに、変形してしまい、初期時からの摺接径が大きくな
っていた。この状態を避けるためには回転軸6′の上端
の球面の半径を小さくしてやれば良いのだが、そうする
と回転軸端部8′とスラスト軸受部5′との間の空間容
積が大きくなり、該空間に有る空気が自動振動を起こし
、スリーブが回転軸6′方向に振動を生じる、いわゆる
工1−ハンマー現象を起こしてしまうため、回転軸端部
8′の球面の半径を小さくする事はできない。
Q→ Problem to be solved by the invention In order to reduce the contact surface between the rotating shaft end 8' and the thrust bearing 5', the rotating shaft end 8' has a radius of 7.
The thrust bearing part 5' is machined into a 50m spherical surface and polished to improve the flatness and inclination accuracy. However, because the radius of the spherical surface is large, even if the thrust bearing part 5' wears out by just 3p. Since the sliding diameter exceeds φ4 m, wear progresses at an accelerated pace. Furthermore, in the conventional thrust bearing part 5', during shrink fitting, the resin member 1' is prevented from touching the heated metal member or the sleeve 9, or being deformed by the stress of shrink fitting. Therefore, it was necessary to process it with a step as shown in Figure 10. However, even in this case, the resin member 1' was deformed by heating as shown in FIG. 11, and the sliding contact diameter was increased from the initial stage. In order to avoid this situation, the radius of the spherical surface at the upper end of the rotating shaft 6' should be made smaller, but if this is done, the space volume between the rotating shaft end 8' and the thrust bearing part 5' will increase, and this space will increase. It is not possible to reduce the radius of the spherical surface of the rotating shaft end 8' because the air present in the rotating shaft causes automatic vibrations and the sleeve vibrates in the direction of the rotating shaft 6', a so-called hammer phenomenon.

このような事から、従来のスラスト軸受部には加工面で
も、作動面でも幾多の問題点があった。
For these reasons, conventional thrust bearings have had many problems both in terms of machining and operation.

(ロ) 問題を解決するための手段 本発明は、上述問題点を解消する事を目的とするもので
あって、例えば金属からなる第2材料部材に、インサー
ト形成された例えば自己潤滑性樹脂からなる第1材料部
材にてスリーブ一端のスラスト受部材を構成し、これら
第1材料部材と第2材料部材との縦弾性係数の違いから
、縦弾性係数が小さく弾性変形の大きい第1材料部材の
方が周辺の第2材料部材に比較して、わずかに出張るこ
とを特徴とするものである。
(b) Means for Solving the Problems The present invention aims to solve the above-mentioned problems, and it is an object of the present invention to solve the problems mentioned above. The thrust receiving member at one end of the sleeve is made of a first material member, and due to the difference in longitudinal elastic modulus between the first material member and the second material member, the first material member has a small longitudinal elastic modulus and a large elastic deformation. The second material member is characterized by slightly projecting out compared to the surrounding second material member.

(ホ)作用 上記構成により、低速回転時には、わずかに出張ってい
る第1回転部材が回転軸に摺接してスラスト力を支持し
、摺接による摩耗が進んでも突出している第1材料部材
の径を越える事が無く、加速的な摩耗の増加を防ぎ、か
つ、スリーブから第1材料部材までの距離が遠いことに
より焼きばめの際の加熱による第1材料部材の変形が小
さい。
(e) Effect With the above configuration, during low-speed rotation, the first rotating member that protrudes slightly slides on the rotating shaft to support thrust force, and even if wear due to sliding progresses, the diameter of the first material member that protrudes This prevents accelerated wear from increasing, and since the distance from the sleeve to the first material member is long, deformation of the first material member due to heating during shrink fitting is small.

(へ)実施例 す下、図面に沿って、本発明による実施例について説明
する。
(F) Embodiments Below, embodiments of the present invention will be described with reference to the drawings.

第1図に示すように、スラスト受け部材Aは、第2材料
部材を構成する金属部材2に、第1材料部材を構成する
樹脂部材1をインサート形成することにより構成されて
いる。該樹脂部材1がポリアセタール樹脂、6・6ナイ
ロン、高密度ポリエチレン、ポリイミド、ポリアミドイ
ミド、PTFE、、+?リエーテルエーテルケトン、ポ
リエーテルサルフオン、ポリフェニリンサルファイド系
樹脂等、一般に用いられている自己潤滑性の樹脂からな
る。そして、前記スラスト受け部材Aの回転軸6と相対
する面の樹脂部材端部3、及び金属部材端部4は第1図
に示すように、一体に把持されて同時に平面削除され、
従って両部材の端部3,4は同一平面に加工される。し
かし、樹脂と金属とでは縦弾性係数Eが異なるため、加
工時に圧力を受け弾性変形により平面となっている樹脂
部材端部3及び金属部材端部4は、加工後除荷されると
弾性変形分だけ段差を生じる。即ち、樹脂部材1の弾性
係数E、は、金属部材2の弾性係数E2より小さいため
、樹脂部材1は金属部材2に比して加工時の変形も大き
く、従って、加工後の戻り量も大きいため、第2図に示
すように、樹脂部材端部3が金属部材端部4に比べ、わ
ずかに出張る形となる。例えば、スラスト受け部材Aの
厚みが10鴎であり、樹脂部材1に高密度ポリエチレン
、金属部材2に鉄を用いて研削した場合、0.1 kg
 / m2の圧力を加えたとすると、加工後の戻り量は
、鉄0、05 p’、高密度ポリエチレンが10μで、
はぼ10pの段差となり、使用に伴う樹脂部材1の摩耗
量は4p以下であるから、これだけの段差があれば十分
′である。また、他の材質においても、研削時に加える
圧力を適宜変えれば適当な段差を付けることが出来る。
As shown in FIG. 1, the thrust receiving member A is constructed by inserting a resin member 1 forming a first material member into a metal member 2 forming a second material member. The resin member 1 is made of polyacetal resin, 6.6 nylon, high density polyethylene, polyimide, polyamideimide, PTFE, +? It is made of commonly used self-lubricating resins such as riether ether ketone, polyether sulfone, and polyphenyline sulfide resins. Then, as shown in FIG. 1, the resin member end 3 and the metal member end 4 on the surface facing the rotating shaft 6 of the thrust receiving member A are held together and their planes are removed at the same time.
Therefore, the ends 3, 4 of both members are machined into the same plane. However, since the longitudinal elastic modulus E is different between resin and metal, the resin member end 3 and metal member end 4, which are flat due to elastic deformation under pressure during processing, will elastically deform when the load is unloaded after processing. There will be a difference in level. That is, since the elastic modulus E of the resin member 1 is smaller than the elastic modulus E2 of the metal member 2, the resin member 1 deforms more during processing than the metal member 2, and therefore has a larger return amount after processing. Therefore, as shown in FIG. 2, the end portion 3 of the resin member protrudes slightly compared to the end portion 4 of the metal member. For example, if the thickness of the thrust receiving member A is 10 mm, and the resin member 1 is made of high-density polyethylene and the metal member 2 is made of iron, the weight of the thrust receiving member A is 0.1 kg.
/ m2 pressure is applied, the amount of return after processing is 0.05 p' for iron, 10 μ for high density polyethylene,
Since the height difference is approximately 10p and the amount of wear of the resin member 1 due to use is 4p or less, this level difference is sufficient. Also, with other materials, appropriate steps can be created by appropriately changing the pressure applied during grinding.

なお、10pの段差がつくと空間容積が増え、先述した
エアーハンマー現象の生じる可能制が生じるが、回転軸
6′の軸径がφ14mであるとすると10pの段差によ
り生じる空間容積は1.5 m3、一方、回転軸端部8
′の半径750+waの球面により生じる空間容積は2
.5 mm’で、合計すると4.0+m0であり、エア
ーハンマー現象の生じるのは611IIm3程度である
から問題は無い。逆に、段差をhp1回転軸端部8′の
半径をrIIIllとすると、エアーハンマー現象を起
こさせない為には、少なくともr2hX10”(6,従
ってh<6000/r2であり、また摩耗量を考えると
1<hであるから、1<h< 6000 / r 2と
いう段差の範囲を定めることが出来る。
Note that when a 10p step is created, the space volume increases and the above-mentioned air hammer phenomenon may occur. However, if the shaft diameter of the rotating shaft 6' is φ14 m, the space volume created by a 10p step is 1.5. m3, on the other hand, rotating shaft end 8
The spatial volume created by a spherical surface with a radius of 750 + wa is 2
.. 5 mm', the total is 4.0+m0, and the air hammer phenomenon occurs at about 611 II m3, so there is no problem. Conversely, if the step is hp1 and the radius of the rotating shaft end 8' is rIIIll, in order to prevent the air hammer phenomenon from occurring, at least r2h Since 1<h, it is possible to define the step range of 1<h<6000/r2.

また、第9図に示すように、一般に回転軸端部8′は球
面にて構成されるが、これを、平面にて構成してもよい
。この場合、初期の摺接径は大きくなるが、該摺接径は
一定値以下に保証されているため問題はなく、かえって
、回転軸端部8とスラスト軸受部5′との間の空間容積
を小さくする事が出来るので、前述したようなエアーハ
ンマー現象に対して非常に有効となり、かつスラスト軸
受部5及び回転軸端部8の加工も非常に容易となる為、
コストダウンも図れる。
Further, as shown in FIG. 9, the rotary shaft end 8' is generally configured with a spherical surface, but it may also be configured with a flat surface. In this case, although the initial sliding contact diameter becomes larger, there is no problem because the sliding contact diameter is guaranteed to be below a certain value, and on the contrary, the space volume between the rotating shaft end 8 and the thrust bearing part 5' can be made small, which makes it very effective against the air hammer phenomenon described above, and also makes it very easy to process the thrust bearing part 5 and the rotating shaft end part 8.
Cost reduction can also be achieved.

また、第3図に示すように、樹脂部材3aを軸に対面す
る接触部近傍にのみ設ける構成でもよい。
Alternatively, as shown in FIG. 3, the resin member 3a may be provided only in the vicinity of the contact portion facing the shaft.

更に、第4図に示すように、金属部材2bの中心部分の
空間の内周面2 b’に段差を設け、樹脂部材3bをイ
ンサート形成してもよく、このものでは研削により、該
樹脂部材3bの端面中央部を第5図に示すように、更に
出張らせる事も可能である。
Furthermore, as shown in FIG. 4, a step may be provided on the inner circumferential surface 2b' of the space at the center of the metal member 2b, and the resin member 3b may be formed by inserting the resin member 3b. It is also possible to extend the center portion of the end face of 3b further as shown in FIG.

また、第6図に示すように、金属部材2Cの内周面を上
方に向かって狭くすると共に、樹脂部材3cを軸接触面
に向かって拡がるように構成してもよく、このものでは
、第7図に示すように樹脂部材端部3cの中央部を更に
出張らせる事が出来る。
Further, as shown in FIG. 6, the inner circumferential surface of the metal member 2C may be narrowed upward, and the resin member 3c may be configured to expand toward the shaft contact surface. As shown in FIG. 7, the center portion of the resin member end portion 3c can be made to protrude further.

また、第8図に示す実施例は、スリーブ9′にスラスト
受け部材Aの金属部材2dを一体化させたものであり、
スリーブ9′の上部中央部分に樹脂部材1′をインサー
ト形成したものである。
Furthermore, the embodiment shown in FIG. 8 is one in which the metal member 2d of the thrust receiving member A is integrated into the sleeve 9'.
A resin member 1' is formed as an insert in the upper center portion of the sleeve 9'.

更に、図示はしていないが、第1材料部材及び第2材料
部材として導電性部材を用いることにより、回転軸6と
スリーブ9との間に電位をかけ、その電位差を検知する
事により回転軸6とスリーブ9の間の接触をチェックし
、軸受のスラスト方向の浮上を測定する事も出来る。
Furthermore, although not shown, by using conductive members as the first material member and the second material member, a potential is applied between the rotating shaft 6 and the sleeve 9, and the potential difference is detected. It is also possible to check the contact between the bearing 6 and the sleeve 9 and measure the bearing's lift in the thrust direction.

なお、上述実施例は、第1材料部材に自己潤滑性樹脂を
用い、第2材料部材に鉄等の金属を用いたが、これに限
らず、第1材料部材に縦弾性係数Eの小さい樹脂を用い
、かつ第2材料部材に縦弾性係数の大きい樹脂を用いて
もよく、また第1材料部材に縦弾性係数の小さい金属、
第2材料部材に縦弾性係数の大きい金属を用いてもよく
、要は第1材料部材と第2材料部材を縦弾性係数の異な
る材料で構成し、かつ第1材料部材の縦弾性係数E、が
第2材料°部材の縦弾性係数E2より小さいものであれ
ばよい。
In the above-mentioned embodiment, a self-lubricating resin was used for the first material member and a metal such as iron was used for the second material member, but the present invention is not limited to this. and a resin having a large longitudinal elastic modulus may be used for the second material member, and a metal having a small longitudinal elastic modulus for the first material member,
A metal having a large longitudinal elastic modulus may be used for the second material member, in short, the first material member and the second material member are made of materials having different longitudinal elastic modulus, and the longitudinal elastic modulus E of the first material member is may be smaller than the longitudinal elastic modulus E2 of the second material member.

(ト)発明の詳細 な説明したように、本発明によると、第1材料部材は第
2材料部材により囲まれるように形−成されていると共
に、その端面が第2材料部材の端面より所定量出張って
いるため、軸との摺接により摩耗が進んでも、第1材料
部材の径を越える事が無く、スラスト受け部材の加速的
な摩耗の増加を防ぐ事が出来、また、スリーブから軸と
摺接する第2材料部材までの距離が遠いため、焼きばめ
の際の加熱による該第2材料部材の変形を小さくする事
が出来る。これにより、軸端面の球面加工等の困難な作
業が不要となり、大幅なコストダウンを図れるものであ
りながら、スラスト受け部材の精度及び耐久性を大幅に
向上することができる。
(g) As described in detail, according to the present invention, the first material member is formed so as to be surrounded by the second material member, and the end surface thereof is located at a distance from the end surface of the second material member. Because of the fixed amount of protrusion, even if wear progresses due to sliding contact with the shaft, the diameter will not exceed the diameter of the first material member, preventing accelerated wear of the thrust receiving member. Since the distance to the second material member in sliding contact with the second material member is long, deformation of the second material member due to heating during shrink fitting can be reduced. This eliminates the need for difficult work such as machining the shaft end surface into a spherical surface, thereby significantly reducing costs and significantly improving the accuracy and durability of the thrust receiving member.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の加工時の状態を示す断面図
、第2図はその加工後の状態を示す断面図、第3図は一
部変更した実施例を示す断面図、第4図は他の実施例の
加工時の状態を示す断面図、第5図はその加工後の状態
を示す断面図、第6図は更に変更した実施例の加工時の
状態を示す断面図、第7図はその加工後の状態を示す断
面図、第8図は更に他の実施例を示す断面図である。そ
して第9図は従来のモータ装置の一例を示す断面図第1
0図及び第11図はその異なる状態におけるスラスト受
け部材を示す断面図である。 1・・・第1材料部材(樹脂部材)、 2・・・第2材
料部材(金属部材)、 3・・・第1材料部材端部、 
 4・・・第2材料部材端部、 5・・・スラスト軸受
部、6・・・回転軸、 8・・・回転軸端部、9・・・
スリーブ、 A・・・スラスト受け部材。
FIG. 1 is a sectional view showing the state of an embodiment of the present invention during processing, FIG. 2 is a sectional view showing the state after processing, and FIG. 3 is a sectional view showing a partially modified embodiment. 4 is a cross-sectional view showing the state of another embodiment during processing, FIG. 5 is a cross-sectional view showing the state after processing, and FIG. 6 is a cross-sectional view showing the state of a further modified embodiment during processing. FIG. 7 is a sectional view showing the state after processing, and FIG. 8 is a sectional view showing still another embodiment. FIG. 9 is a first cross-sectional view showing an example of a conventional motor device.
0 and 11 are cross-sectional views showing the thrust receiving member in different states. 1... First material member (resin member), 2... Second material member (metal member), 3... First material member end,
4... Second material member end, 5... Thrust bearing, 6... Rotating shaft, 8... Rotating shaft end, 9...
Sleeve, A... Thrust receiving member.

Claims (5)

【特許請求の範囲】[Claims] (1)相対的に回転する軸と該軸に嵌装されたスリーブ
とを備え、該軸の外周面とスリーブの内周面とでラジア
ル用動圧流体軸受部を構成すると共に、前記軸の一端面
と前記スリーブに設けたスラスト受け部材とでスラスト
用動圧流体軸受部を構成してなる動圧流体軸受装置であ
って、前記スラスト受け部材を、前記軸一端面との接触
部近傍を形成する縦弾性係数E_1の第1の材料部材と
、該第1の材料部材の周辺を形成する縦弾性係数E_2
の第2の材料部材から形成し、かっ第1の材料部材の縦
弾性係数E_1が第2の材料部材の縦弾性係数E_2よ
り小さいことを特徴とする動圧流体軸受装置。
(1) Comprising a shaft that rotates relatively and a sleeve fitted to the shaft, the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve constitute a radial dynamic pressure fluid bearing part, and A dynamic pressure fluid bearing device in which a thrust dynamic pressure fluid bearing section is configured by one end surface and a thrust receiving member provided on the sleeve, wherein the thrust receiving member is connected to a portion near the contact portion with the one end surface of the shaft. A first material member having a longitudinal elastic modulus E_1 and a longitudinal elastic modulus E_2 forming the periphery of the first material member.
A hydrodynamic bearing device formed from a second material member, characterized in that a longitudinal elastic modulus E_1 of the first material member is smaller than a longitudinal elastic modulus E_2 of the second material member.
(2)前記第1の材料部材が前記第2の材料部材に対し
て、軸端面側に所定量出張っている特許請求の範囲第1
項記載の動圧流体軸受装置。
(2) The first material member protrudes by a predetermined amount toward the shaft end surface with respect to the second material member.
Dynamic pressure fluid bearing device described in .
(3)前記第2の材料部材に対する前記第1の材料部材
の出張り量h(μm)が、前記軸の半径に(mm)に対
して、1<h<6000/r^2なる範囲内にある特許
請求の範囲第2項記載の動圧流体軸受装置。
(3) The amount of protrusion h (μm) of the first material member relative to the second material member is within the range of 1<h<6000/r^2 with respect to the radius of the shaft (mm). A hydrodynamic bearing device according to claim 2.
(4)前記第1の材料部材が自己潤滑性樹脂からなる特
許請求の範囲第1項記載の動圧流体軸受装置。
(4) The hydrodynamic bearing device according to claim 1, wherein the first material member is made of a self-lubricating resin.
(5)前記第1の材料部材及び第2の材料部材が共に導
電性材料からなる特許請求の範囲第1項記載の動圧流体
軸受装置。
(5) The hydrodynamic bearing device according to claim 1, wherein both the first material member and the second material member are made of conductive material.
JP10308085A 1985-05-15 1985-05-15 Dynamic pressure fluid bearing device Granted JPS61262221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10308085A JPS61262221A (en) 1985-05-15 1985-05-15 Dynamic pressure fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10308085A JPS61262221A (en) 1985-05-15 1985-05-15 Dynamic pressure fluid bearing device

Publications (2)

Publication Number Publication Date
JPS61262221A true JPS61262221A (en) 1986-11-20
JPH0517964B2 JPH0517964B2 (en) 1993-03-10

Family

ID=14344657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10308085A Granted JPS61262221A (en) 1985-05-15 1985-05-15 Dynamic pressure fluid bearing device

Country Status (1)

Country Link
JP (1) JPS61262221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107569A (en) * 2005-10-11 2007-04-26 Ntn Corp Fluid bearing device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107569A (en) * 2005-10-11 2007-04-26 Ntn Corp Fluid bearing device and method for manufacturing the same
JP4559336B2 (en) * 2005-10-11 2010-10-06 Ntn株式会社 Hydrodynamic bearing device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0517964B2 (en) 1993-03-10

Similar Documents

Publication Publication Date Title
US6123460A (en) Hydrodynamic gas bearing structure and optical deflection scanner comprising the same
US20030002757A1 (en) Dynamic bearing device and motor having the same
US7566174B2 (en) Fluid lubricated bearing device
US20030091249A1 (en) Fluid lubricated bearing device
JP2728202B2 (en) Hemispherical type fluid bearing
JPH04235522A (en) Rotating mirror optical scanner with grooved grease bearing
JP3774080B2 (en) Hydrodynamic bearing unit
JP4602497B2 (en) Bearing device and spindle motor assembly using the same
JP3990181B2 (en) Manufacturing method of hydrodynamic bearing device
JP2003184864A (en) Hydrodynamic bearing
JP3983435B2 (en) Hydrodynamic bearing unit
EP0794344B1 (en) High speed rotor assembly
JPS61262221A (en) Dynamic pressure fluid bearing device
JP4566565B2 (en) Hydrodynamic bearing device
JPH07310733A (en) Dynamic pressure bearing device
KR19980030392A (en) Fluid Bearing Device
JPH033805B2 (en)
JP4504391B2 (en) Manufacturing method of hydrodynamic bearing device
JP4024007B2 (en) Hydrodynamic bearing unit
JPH03181612A (en) Bearing device
JPS59188351A (en) Dynamic pressure type bearing motor
JPH04145215A (en) Dynamic pressure bearing device
JPH0293115A (en) Ceramic rotating shaft
KR100196934B1 (en) Thrust bearing system
KR100208014B1 (en) Thrust bearing