JPS59188351A - Dynamic pressure type bearing motor - Google Patents

Dynamic pressure type bearing motor

Info

Publication number
JPS59188351A
JPS59188351A JP58061563A JP6156383A JPS59188351A JP S59188351 A JPS59188351 A JP S59188351A JP 58061563 A JP58061563 A JP 58061563A JP 6156383 A JP6156383 A JP 6156383A JP S59188351 A JPS59188351 A JP S59188351A
Authority
JP
Japan
Prior art keywords
disc
cylindrical member
fluid
shaft
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58061563A
Other languages
Japanese (ja)
Inventor
Takuo Okuno
奥野 卓夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58061563A priority Critical patent/JPS59188351A/en
Publication of JPS59188351A publication Critical patent/JPS59188351A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1677Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To inexpensively eliminate a vibration and a fluctuation of a dynamic pressure type bearing motor by constructing a bearing movably with respect to a rotary unit. CONSTITUTION:A coil 6 generates an alternating magnetic field when a current flows to the coil, and a cylindrical member 3, a disc 4 and a magnet 5 rotate together. Fluid in the gap between the lower end face 3b of the member 3 and the upper surface 7a of a disc 7 generates high pressure by the pumping action of a groove G3, the member 3 is floated with respect to the disc 7, and axially supported. The pressure generated in the fluid between the lower end face 3b of the member 3 and the upper surface 7a of the disc 7 is smaller, as the gap is larger. Accordingly, the disc 7 is altered at an angle to a shaft 1 so that the pressure of the fluid become uniform in all gaps, and the upper surface 7a of the disc 7 and the lower end face 3b of the member 3 becomes in parallel in all range.

Description

【発明の詳細な説明】 本発明は、動圧型軸受モータに関する。[Detailed description of the invention] The present invention relates to a hydrodynamic bearing motor.

最近、コンピューターのメモリ・ディスク用モータ、ビ
デオ令ディスク回転駆動用モーク、VTRの磁気ヘッド
回転用のモータ等として、情fu処理機器や映像機器な
どに精密で、高信頼性、高速性を持つモータが要求され
ている。一般的にこれらのモータの軸受の多くは、ポー
ル・ベアリングなどのころがり軸受が用いられているが
、この種のころがり軸受は摩擦抵抗の小さいことやコス
トの安いこと等の長所はあるが、高速性、騒音、振動、
回転軸の振れ等について、難点を持つている。
Recently, precise, highly reliable, and high-speed motors have been used in information processing equipment and video equipment, such as motors for computer memory disks, motors for video disk rotation drive, motors for rotating magnetic heads of VTRs, etc. is required. Generally, many of the bearings used in these motors are rolling bearings such as pole bearings. Although these types of rolling bearings have advantages such as low frictional resistance and low cost, noise, vibration,
There are some drawbacks such as vibration of the rotating shaft.

近年、ころがり軸受に代って動圧型の軸受が注目されて
いる。動圧型軸受装置とは、軸を軸受部こ対して数μ程
度の微小な間隔をおいて配置し、この間隔に空気、オイ
ル、グリース等の流体を配置し、軸又は軸受が回転する
と、この微小な間隔内の流体が動圧を発生し、この動圧
により回転部(軸又は軸受)を支持する万代のものであ
る。一般的に動圧をより安定にかつ強く発生させるため
に、軸または軸受に螺旋状の極く浅い溝を設けている。
In recent years, dynamic pressure bearings have been attracting attention as an alternative to rolling bearings. A hydrodynamic bearing device is a bearing device in which a shaft is placed against a bearing part with a very small gap of several micrometers, and a fluid such as air, oil, or grease is placed in this gap, and when the shaft or bearing rotates, this Fluid within a minute interval generates dynamic pressure, and this dynamic pressure supports the rotating part (shaft or bearing). Generally, in order to generate dynamic pressure more stably and strongly, a very shallow spiral groove is provided on the shaft or bearing.

第1図には、一般的な動圧型の軸受モータとして、ラジ
アル軸受部及びスラスト軸受部におし1て双方共、動圧
を利用した磁気ディスク駆動用のモータが示されている
。軸1の外側面1aの上部及び下部には、それぞれへリ
ングポーンと呼ばれる非常に浅い矢はず状の溝Gl及び
G2が設けられ、更に軸1下方のやや大きい円形のフラ
ンジ部1cの上端面1d(すなわち軸1と直角方向の面
)には、第2図に示すような螺旋状の極めて浅い溝03
が設けられている。溝G、、GZ 、G3には、空気、
オイル、グリース等の流体が配置されている。軸1は、
その軸方向の下端において基台2の中心部に固定され、
基台2の内側の面には複数個のコイル6が固定されてい
る。一方、円筒形の部材3は、その内側面3aが軸1の
外側面1aと数μ程度の間隔をおいて、軸1に嵌合して
おり、部材3の外側の面にはロータマグネット5が固定
され、更に軸方向の上端部には、ディスク4が固定され
、下端部には、半径方向に円形の下部端面3bを有する
突出部3cが設けられている。すなわち、軸1の溝G□
、G2と円筒部材3の内側面3aとにより動圧型のラジ
アル軸受装置が構成され、軸1の溝G3と円筒部材3の
下部端面3bとにより、動圧型のスラスト軸受装置が構
成される。なお、モータの静止時には、円筒部材3(デ
ィスク4、マグネット5と共に)は、円筒部材3の下部
端面3bと軸1の7ラング部1cの上端面1bが接触す
るように、載置されている。このモータにおいて、コイ
ル6は電流が流れると交番磁界を発生し、円筒部材3、
ディスク4、マグネット5は共に回転する。従って溝G
□、G2によるポンプ作用により円筒部材3の内側面3
aと軸1の外側面1aとの間隔部の流体は高い圧力を発
生し、回転する円筒部材3は、ラジアル方向に支持され
る。−・方、溝G3のポンプ作用により円筒部材3の下
部端面3bと軸1のフランジ部1cの上端面1bとの間
隔部の流体も同様に高い圧力を発生して、円筒部材3は
浮き上り、軸方向に支持される。
FIG. 1 shows a motor for driving a magnetic disk, which uses dynamic pressure in both a radial bearing portion and a thrust bearing portion, as a general dynamic pressure type bearing motor. Very shallow arrow-shaped grooves Gl and G2 called herring pawns are provided in the upper and lower parts of the outer surface 1a of the shaft 1, respectively, and the upper end surface 1d of a slightly larger circular flange portion 1c below the shaft 1. (that is, the surface perpendicular to the axis 1) has a spiral extremely shallow groove 03 as shown in FIG.
is provided. Grooves G, GZ, and G3 contain air,
A fluid such as oil or grease is placed there. Axis 1 is
fixed to the center of the base 2 at its lower end in the axial direction,
A plurality of coils 6 are fixed to the inner surface of the base 2. On the other hand, the cylindrical member 3 is fitted onto the shaft 1 with its inner surface 3a spaced from the outer surface 1a of the shaft 1 by a distance of approximately several micrometers, and the outer surface of the member 3 is fitted with a rotor magnet 5. Further, a disk 4 is fixed to the upper end in the axial direction, and a protrusion 3c having a circular lower end surface 3b in the radial direction is provided at the lower end. That is, the groove G□ of shaft 1
, G2 and the inner surface 3a of the cylindrical member 3 constitute a dynamic pressure type radial bearing device, and the groove G3 of the shaft 1 and the lower end surface 3b of the cylindrical member 3 constitute a dynamic pressure type thrust bearing device. Note that when the motor is at rest, the cylindrical member 3 (together with the disk 4 and the magnet 5) is placed such that the lower end surface 3b of the cylindrical member 3 and the upper end surface 1b of the seven rungs 1c of the shaft 1 are in contact with each other. . In this motor, the coil 6 generates an alternating magnetic field when current flows, and the cylindrical member 3,
The disk 4 and magnet 5 rotate together. Therefore, the groove G
□, the inner surface 3 of the cylindrical member 3 due to the pump action by G2
The fluid in the space between a and the outer surface 1a of the shaft 1 generates high pressure, and the rotating cylindrical member 3 is supported in the radial direction. - On the other hand, due to the pumping action of the groove G3, the fluid in the space between the lower end surface 3b of the cylindrical member 3 and the upper end surface 1b of the flange portion 1c of the shaft 1 similarly generates high pressure, and the cylindrical member 3 floats up. , axially supported.

この場合、円筒部材3の下部端面3bと軸lのフランジ
部の上端面1bの間隔部は、数賜程度に保持される。以
上のような構成から従来の動圧型の軸受モータにおいて
は、軸lと各軸受部との間隔は数−程度であるので、ラ
ジアル軸受部の内側面3aとスラスト軸受部の1部端面
3b、及び軸lの外側面1aと上端面1bとの直角度を
かなり高精度に加工しなければならず、製作コストが高
くなる。一般的に、上記の間隔量が数μ程度である場合
には、直角度の精度は1−以下にしなければならない。
In this case, the distance between the lower end surface 3b of the cylindrical member 3 and the upper end surface 1b of the flange portion of the shaft l is maintained at a distance of about a few degrees. From the above-described structure, in the conventional hydrodynamic bearing motor, the distance between the shaft l and each bearing part is about a few inches, so the inner surface 3a of the radial bearing part, the end face 3b of one part of the thrust bearing part, Also, the perpendicularity between the outer surface 1a and the upper end surface 1b of the shaft l must be machined with considerably high precision, which increases the manufacturing cost. Generally, when the above-mentioned spacing is on the order of several microns, the accuracy of the squareness must be 1- or less.

第3図及び第4図は、それぞれ軸1の外側面1aとフラ
ンジ部1cの上端面1bとの直角度が不良の場合、及び
円筒部材3の下部端面3bと内側面3aとの直角度が不
良の場合の軸と軸受部の縦断面図である。このいずれの
場合にも、フランジ部1cの上端面1bと円筒部材3の
下部端面3bとは平行でなくなるため、それぞれ上端面
1bと回転する円筒部材3の下部端面3bとの間隔部の
流体の圧力は不均一となる。この圧力は1間隔部が小さ
いほど大きくなる。従って下部端面3bの各部分が受け
る流体の圧力は、円筒部材3の回転に従って周期的に変
化する。すなわちこの圧力の変化により、円筒部材3を
支持する力が不均一に変化し、モータが振動したり、回
転体3.4.5が揺れたれする欠点がある。実際の場合
には、第3図すなわち軸1の加工不良、及び第4図すな
わち円筒部材3の加工不良が共存しており、モータの複
雑な振動の原因となっている。
3 and 4 show cases in which the perpendicularity between the outer surface 1a of the shaft 1 and the upper end surface 1b of the flange portion 1c is poor, and the perpendicularity between the lower end surface 3b and the inner surface 3a of the cylindrical member 3, respectively. FIG. 6 is a longitudinal cross-sectional view of the shaft and bearing portion in the case of a defect. In any of these cases, the upper end surface 1b of the flange portion 1c and the lower end surface 3b of the cylindrical member 3 are no longer parallel, so that the fluid in the space between the upper end surface 1b and the lower end surface 3b of the rotating cylindrical member 3 is not parallel to each other. The pressure becomes uneven. This pressure increases as the interval becomes smaller. Therefore, the pressure of the fluid that each portion of the lower end surface 3b receives changes periodically as the cylindrical member 3 rotates. That is, due to this change in pressure, the force supporting the cylindrical member 3 changes non-uniformly, resulting in the disadvantage that the motor vibrates and the rotating body 3.4.5 shakes. In actual cases, the defective machining of the shaft 1 shown in FIG. 3 and the defective machining of the cylindrical member 3 shown in FIG. 4 coexist, causing complex vibrations of the motor.

本発明は、上記従来例の欠点に鑑み、回転中は回転部と
軸受部との角度を一定に維持するようにした動圧型軸受
モータを提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks of the conventional example, an object of the present invention is to provide a hydrodynamic bearing motor in which the angle between the rotating part and the bearing part is maintained constant during rotation.

以下、図面を参照して本発明の一実施例を説明する。第
5図は、本発明の一実施例の縦断面図である。尚、図に
おいて、第1図の部材と同一の部材には同一の符号を賄
す。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a longitudinal sectional view of one embodiment of the present invention. In the drawings, the same members as those in FIG. 1 are designated by the same reference numerals.

軸lOの軸方向の下部には、軸10の直径より大きく、
かつ軸方向に両端部から中央部に向けて直径が漸増する
球状部10rが形成されている。球状部10rには、半
径方向に円環状の板7が滑らかに嵌合して係止されてお
り、この円板7の軸1に対する角度は任意に変えること
ができる構成になっている。軸10の下端部は、基台2
の内側の底の中央孔に嵌合、固定されている。円板7の
上面7aには、第2図と同様な螺旋状の溝G3が形成さ
れ、軸10の外側面10aの上部及び下部には、第1図
と同様に、それぞれへリングボーンと呼ばれる非常に浅
い溝G□及びG2が形成され、溝G1、G2、G3には
、空気、オイル、グリース等の流体が配置されている。
At the lower part of the axis lO in the axial direction, there is a diameter larger than the diameter of the axis 10,
A spherical portion 10r is formed whose diameter gradually increases in the axial direction from both ends toward the center. A circular plate 7 is smoothly fitted and locked in the radial direction of the spherical portion 10r, and the angle of the circular plate 7 with respect to the axis 1 can be changed as desired. The lower end of the shaft 10 is connected to the base 2
It fits into the center hole on the inside bottom and is fixed. A spiral groove G3 similar to that shown in FIG. 2 is formed on the upper surface 7a of the disk 7, and a herringbone called a herringbone is formed on the upper and lower portions of the outer surface 10a of the shaft 10, respectively, as in FIG. Very shallow grooves G□ and G2 are formed, and fluids such as air, oil, and grease are placed in the grooves G1, G2, and G3.

円筒形の部材3は、その内側面3aが軸lOの外側面1
0aと数μ程度の間隔をおいて、WBlOに嵌合してお
り、また軸方向の上端部には、ディスク4が固定され、
下端部には、半径方向に円環状の下部端面3bを有する
突出部3cが形成されている。すなわち、軸1の溝G1
、G2(及び流体)と円筒部材3の内側面3aとにより
動圧型のラジアル軸受装置が構成され、円板7の溝03
 (及び流体)と円筒部材3の下部端面3cとにより動
圧型のスラスト軸受装置が構成Sれる。
The cylindrical member 3 has an inner surface 3a aligned with the outer surface 1 of the axis lO.
The disk 4 is fitted into the WBLO with an interval of several μ from 0a, and a disk 4 is fixed to the upper end in the axial direction.
A protrusion 3c having a radially annular lower end surface 3b is formed at the lower end. That is, the groove G1 of the shaft 1
, G2 (and fluid) and the inner surface 3a of the cylindrical member 3 constitute a dynamic pressure type radial bearing device.
(and the fluid) and the lower end surface 3c of the cylindrical member 3 constitute a dynamic pressure type thrust bearing device S.

5は、ローフマグ2ツト、6は、コイルである。5 is two loaf mugs, and 6 is a coil.

」二足実施例の作動を説明すると、コイル6は、電流が
流れると交番磁界を発生し、円筒部材3、ディスク4、
マグネット5は、共に回転する。
” To explain the operation of the two-legged embodiment, the coil 6 generates an alternating magnetic field when a current flows, and the cylindrical member 3, the disk 4,
The magnet 5 rotates together.

溝03のポンプ作用により、円筒部材3の下部端面3b
と円板7の上面7aと間の間隙部の流体は、高い圧力を
発生して、円筒部材7は円板7に対して浮き上り、軸方
向に支持される。ここで加工不良等により、円筒部材3
の内側面3aと下端面3bとが完全な直角でない場合、
下部端面3bと内板7の上面7aの間の流体は不均一な
圧力を発生する。この不均一な圧力は、間隙部材が小さ
いほど大きく、間隙部が大きいほど小さい。従って間隙
部の小さい部分における円板7の当該部分は、より大き
な圧力により円筒部材3の下部端面3bとの距離が大き
くなり、一方、間隙部の大きい部分における円板7の当
該部分は、より小さな圧力により下部端面3bとの距離
が小さくなる。このように時間の経過に従い、流体の圧
力が全ての間隙部において均一になるように、円板7が
軸lに対して角度を変え、円板7の上面7aと円筒部材
3の下部端面3bとが全ての領域において平行となる。
Due to the pump action of the groove 03, the lower end surface 3b of the cylindrical member 3
The fluid in the gap between the upper surface 7a of the disc 7 generates high pressure, and the cylindrical member 7 floats up relative to the disc 7 and is supported in the axial direction. Here, due to processing defects etc., the cylindrical member 3
If the inner surface 3a and the lower end surface 3b are not at a perfect right angle,
The fluid between the lower end surface 3b and the upper surface 7a of the inner plate 7 generates non-uniform pressure. This non-uniform pressure increases as the gap member becomes smaller, and decreases as the gap becomes larger. Therefore, the distance between the part of the disc 7 in the small gap part and the lower end surface 3b of the cylindrical member 3 becomes larger due to the larger pressure, while the part of the disc 7 in the large gap part becomes more distant from the lower end surface 3b of the cylindrical member 3 due to the larger pressure The distance from the lower end surface 3b becomes smaller due to the smaller pressure. In this way, as time passes, the angle of the disk 7 changes with respect to the axis l so that the pressure of the fluid becomes uniform in all the gaps, and the upper surface 7a of the disk 7 and the lower end surface 3b of the cylindrical member 3 are parallel in all regions.

このように加工精度が悪くとも、流体の平衡作用により
、振動や揺れのない安定した動圧型軸受モータを実現す
ることかでさる。
Even if the machining accuracy is poor, it is still possible to create a stable hydrodynamic bearing motor that does not vibrate or shake due to the fluid's equilibrium effect.

上記の実施例において、流体の平衡作用を受ける円板は
、軸に対し移動可能に係止されている、が、基台に係止
しても同様の効果が得られる。第6図において、円環状
の板71は、その外周部を円環状の板バネ8の内周部に
固定され、更に板バネ8の外周部は基台2の内側面に固
定されている。
In the embodiments described above, the disc subjected to the fluid balancing action is movably locked to the shaft, but the same effect can be obtained even if it is locked to the base. In FIG. 6, an annular plate 71 has its outer circumference fixed to the inner circumference of an annular plate spring 8, and the outer circumference of the plate spring 8 is further fixed to the inner surface of the base 2. As shown in FIG.

このような構成により、板バネ8は流体の平衡作用によ
り弾性変形し、従って円板71は角度を変え、その上面
71aと円筒部材3の下部端面3bは平行になる。第7
図は、円環状の板72を基部2の底部に係止した場合を
示す。すなわち円板72の下面は、ゴム等の弾性部材9
の上面に接着剤等により固定され、更に弾性部材9の下
面は、基台2の内底面に接着剤等により固定されている
。従って、円板72の上面72aと円筒部材3の下部端
面3bとの間の流体の平衡作用により、弾性部材9は弾
性変形し、円板72は角度を変え、上面?2a と下部
端面3bとは全ての領域において平行になる。
With such a configuration, the leaf spring 8 is elastically deformed by the equilibrium action of the fluid, so that the disk 71 changes its angle so that its upper surface 71a and the lower end surface 3b of the cylindrical member 3 become parallel. 7th
The figure shows a case where an annular plate 72 is locked to the bottom of the base 2. That is, the lower surface of the disc 72 is made of an elastic member 9 such as rubber.
The elastic member 9 is fixed to the upper surface with an adhesive or the like, and the lower surface of the elastic member 9 is fixed to the inner bottom surface of the base 2 with an adhesive or the like. Therefore, due to the equilibrium action of the fluid between the upper surface 72a of the disk 72 and the lower end surface 3b of the cylindrical member 3, the elastic member 9 is elastically deformed, the disk 72 changes its angle, and the upper surface? 2a and the lower end surface 3b are parallel to each other in all regions.

」二記第5図、第6図及び第7図の実施例において、動
圧型のラジアル軸受装置として、軸10、及び12に溝
G1、G2がされているが、従来のころがり軸受を用い
てもよく、すなわちラジアルころがり軸受と動圧型のス
ラスト軸受の組み合わせのモータにも、本発明を適用−
することが可能である。
In the embodiments shown in Figures 5, 6, and 7, grooves G1 and G2 are formed on the shafts 10 and 12 as a dynamic pressure type radial bearing device, but it is not possible to use conventional rolling bearings. In other words, the present invention can also be applied to motors with a combination of radial rolling bearings and hydrodynamic thrust bearings.
It is possible to do so.

一方、動圧型のラジアル軸受装置を用いたモータにも本
発明を適用することは可能である。すなわち第8図に示
すように、円環状の板73は、基台2の内底面に固定さ
れ、軸13の下端部は、弾性部材90を介して基台2の
底部に支持されている。この場合、軸13の外側面13
aと円筒部材3の内側面3aとの間の流体の平衡作用に
より、軸13は軸方向に傾斜する。尚、図において動圧
型のスラスト軸受装置として円板73に溝G3がされて
いるが、従来のころがり軸受の場合にも同様の効果があ
る。
On the other hand, the present invention can also be applied to a motor using a dynamic pressure type radial bearing device. That is, as shown in FIG. 8, the annular plate 73 is fixed to the inner bottom surface of the base 2, and the lower end of the shaft 13 is supported by the bottom of the base 2 via the elastic member 90. In this case, the outer surface 13 of the shaft 13
The shaft 13 is tilted in the axial direction due to the fluid balancing action between a and the inner surface 3a of the cylindrical member 3. In the figure, a groove G3 is formed in the disk 73 as a dynamic pressure type thrust bearing device, but the same effect can be obtained in the case of a conventional rolling bearing.

以上説明したように、回転部と軸受部の角度を回転中は
一定に維持し得る構成にしたので、安価な、また振動や
揺れのない安定した動圧型軸受モータを実現することが
できる効果がある。
As explained above, since the angle between the rotating part and the bearing part can be maintained constant during rotation, it is possible to realize an inexpensive hydrodynamic bearing motor that is stable without vibration or shaking. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の動圧型軸受モータの縦断面図、第2図
は、81図のフランジ部の上面図、第3図及び第4図は
、第1図の軸及び軸受部の縦断面図、第5図は、本発明
の一実施例の縦断面図、第6図、第7図及び第8図は、
それぞれ本発明の他の実施例の縦断面図である。 1.10.11.12.13・・・軸、    3・・
・円筒部材、7.71.72.73・・・円板、   
 8・・・へネ9.90・・・弾性部材、10r・・・
球状部。 第1図      1゜ / 1 276− 第5図 第6図
Fig. 1 is a longitudinal cross-sectional view of a conventional hydrodynamic bearing motor, Fig. 2 is a top view of the flange portion of Fig. 81, and Figs. 3 and 4 are longitudinal cross-sections of the shaft and bearing portion of Fig. 1. 5 is a longitudinal sectional view of one embodiment of the present invention, and FIGS. 6, 7, and 8 are
FIG. 6 is a vertical cross-sectional view of another embodiment of the present invention, respectively. 1.10.11.12.13...axis, 3...
・Cylindrical member, 7.71.72.73...disc,
8... Hene 9.90... Elastic member, 10r...
Globular part. Figure 1 1°/ 1 276- Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 回転により生ずる動圧により回転部を支持する軸受部を
有する動圧型のモータであって、該軸受部が該回転部に
対し遊動可能である手段を設けたことを特徴とする動圧
型軸受モータ。
1. A dynamic pressure type bearing motor having a bearing part that supports a rotating part by dynamic pressure generated by rotation, characterized in that the bearing part is provided with means that allows the bearing part to freely move with respect to the rotating part.
JP58061563A 1983-04-09 1983-04-09 Dynamic pressure type bearing motor Pending JPS59188351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58061563A JPS59188351A (en) 1983-04-09 1983-04-09 Dynamic pressure type bearing motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58061563A JPS59188351A (en) 1983-04-09 1983-04-09 Dynamic pressure type bearing motor

Publications (1)

Publication Number Publication Date
JPS59188351A true JPS59188351A (en) 1984-10-25

Family

ID=13174703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58061563A Pending JPS59188351A (en) 1983-04-09 1983-04-09 Dynamic pressure type bearing motor

Country Status (1)

Country Link
JP (1) JPS59188351A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445029U (en) * 1987-09-12 1989-03-17
JPH0186454U (en) * 1987-11-25 1989-06-08
US4984480A (en) * 1989-12-14 1991-01-15 Carrier Corporation Rolling rotor motor balancing means
US5332237A (en) * 1990-07-26 1994-07-26 Taiho Kogyo Co., Ltd. Metal gasket with welded shim
US9885418B2 (en) 2014-08-07 2018-02-06 Nok Corporation Metal gasket

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445029U (en) * 1987-09-12 1989-03-17
JPH0518489Y2 (en) * 1987-09-12 1993-05-17
JPH0186454U (en) * 1987-11-25 1989-06-08
US4984480A (en) * 1989-12-14 1991-01-15 Carrier Corporation Rolling rotor motor balancing means
US5332237A (en) * 1990-07-26 1994-07-26 Taiho Kogyo Co., Ltd. Metal gasket with welded shim
US5385354A (en) * 1990-07-26 1995-01-31 Taiho Kogyo Co., Ltd. Metal gasket
US5393076A (en) * 1990-07-26 1995-02-28 Taiho Kogyo Co., Ltd. Metal gasket with base plate having coatings of diverse thicknesses
US5472217A (en) * 1990-07-26 1995-12-05 Taiho Kogyo Co., Ltd. Metal gasket
US9885418B2 (en) 2014-08-07 2018-02-06 Nok Corporation Metal gasket

Similar Documents

Publication Publication Date Title
US5127744A (en) Self-acting air bearing spindle for disk drive
US4998033A (en) Gas dynamic bearing for spindle motor
JPH03128650A (en) Spindle motor
US6672767B2 (en) Dynamic bearing device and motor having the same
JPS59188351A (en) Dynamic pressure type bearing motor
JP2000295816A (en) Motor, manufacture thereof, and rotor device
JPS60241518A (en) Dynamic pressure spindle unit
KR100592744B1 (en) Spindle motor structure using ceramic ball bearing for hard disk drive
JP2000074043A (en) Spindle motor
KR100749028B1 (en) Spindle motor with fluid dynamic bearing
JPS6387162A (en) Motor
JP2505916B2 (en) Bearing structure
JPS59188350A (en) Dynamic pressure type bearing motor
JP4024007B2 (en) Hydrodynamic bearing unit
JPH11201153A (en) Rotating machine
JP2003329037A (en) Bearing device
JPH09331652A (en) Fluid bearing motor and disc drive having this motor
KR200177723Y1 (en) Air dynamic pressure bearing apparatus having micro pockets
KR100213921B1 (en) Assembling method of hemisphere bearing
JPH03159537A (en) Rotor and bearing structure therefor
KR100196933B1 (en) Hydrodynamic fluid bearing system
JP2003028149A (en) Spindle motor
JPH03128649A (en) Spindle motor
JP3292508B2 (en) Spindle motor
JPH03261359A (en) Motor for disk driving equipment