JPH03159537A - Rotor and bearing structure therefor - Google Patents

Rotor and bearing structure therefor

Info

Publication number
JPH03159537A
JPH03159537A JP2214789A JP21478990A JPH03159537A JP H03159537 A JPH03159537 A JP H03159537A JP 2214789 A JP2214789 A JP 2214789A JP 21478990 A JP21478990 A JP 21478990A JP H03159537 A JPH03159537 A JP H03159537A
Authority
JP
Japan
Prior art keywords
bearing
side member
radial
thrust
support shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2214789A
Other languages
Japanese (ja)
Inventor
Daisuke Konno
紺野 大介
Yukihiko Miwa
三和 幸彦
Shiyunichi Aiyoshizawa
相吉澤 俊一
Kazushi Kasahara
一志 笠原
Yoshio Sato
良雄 佐藤
Kazuto Hirokawa
一人 廣川
Yumiko Noda
野田 ゆみ子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of JPH03159537A publication Critical patent/JPH03159537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Frames (AREA)

Abstract

PURPOSE:To improve rotary performance of a motor by supporting a rotary shaft on a supporting shaft and a fixing base through two dynamic pressure bearings and further supporting the rotary shaft through a rolling bearing. CONSTITUTION:A fixed side member 3a constituting a thrust bearing 3 is arranged on a fixing base 1 separated from the outer circumference of a supporting shaft a. A fixed side member 4a constituting a radial bearing 4 is fixed to the outer circumferential section of the supporting shaft 2. A supporting member 6 is supported by a ball bearing 9, one type of rolling bearing; fixed to the supporting shaft 2 at the canopy part, and a circular shaft member 7 is secured to the lower end part. The lower end part of the shaft member 7 provides the movable side member 3b of the thrust bearing 3 and the inner circumferential face thereof provides the movable side member 4b of the radial bearing 4. The radial bearing 4 and the thrust bearing 3 constitute dynamic pressure bearings respectively. When the dynamic pressure rolling bearing is additionally employed, rotary performance is improved and starting torque can be reduced regardless of the attitude.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はラジアル軸受及びスラスト軸受が流体動圧軸受
で構成される軸fj:構造を具備し、回転時の振動が少
なく、高速回転が可能なスピンドルモータ等に好適な回
転体及びその軸受構造に関し、特にレーザスキャナモー
夕やモータの姿勢いかんにかかわらず回転性能の良好な
ハードディスクドライバー(以下、車に’HDDJと称
する)等の駆動用のスピンドルモータに好適な回転体及
びその軸受構造に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a shaft fj: structure in which the radial bearing and the thrust bearing are composed of fluid dynamic pressure bearings, and the vibration during rotation is small and high-speed rotation is possible. Regarding the rotating body and its bearing structure suitable for spindle motors, etc., it is particularly suitable for driving laser scanner motors and hard disk drivers (hereinafter referred to as 'HDDJ' in cars), etc., which have good rotational performance regardless of the orientation of the motor. The present invention relates to a rotating body suitable for a spindle motor and its bearing structure.

〔従来技術及び発明が解決しようとする課題〕近年、H
DDの高記憶容量化及び低電力消費化にffい、その駆
動用であるスピンドルモータに対しても、それにより適
した高性能のものが要望されている。
[Prior art and problems to be solved by the invention] In recent years, H
In order to increase the storage capacity and reduce power consumption of DDs, there is a demand for a spindle motor for driving the DDs, which has a higher performance and is more suitable for this purpose.

第5図は従来のHDD用スピンドルモータの一部断面図
を示す図であり、取付台21の中央部に軸支持筒22を
設け、該軸支持筒22の外周にはステータコイル群23
が固定されており、内周にはボールベアリング24を介
して回転軸25が回転自在に支持されている。回転軸2
5の上端には、外周面にハードディスクを載架固定する
支持部材27が固定されている。支持部材27の内周面
{illにはロータマグネット群28が前記ステータコ
イル群23と対向して固定されている。
FIG. 5 is a partial sectional view of a conventional HDD spindle motor, in which a shaft support tube 22 is provided in the center of a mounting base 21, and a stator coil group 23 is provided on the outer periphery of the shaft support tube 22.
is fixed, and a rotary shaft 25 is rotatably supported on the inner periphery via a ball bearing 24. Rotating axis 2
A support member 27 for mounting and fixing a hard disk on the outer circumferential surface is fixed to the upper end of the hard disk drive 5 . A rotor magnet group 28 is fixed to the inner circumferential surface of the support member 27 so as to face the stator coil group 23 .

上記軸受に玉軸受を使用したスピンドルモータにおいて
、スピンドルモータの振動の大きさは玉軸受の隙間に依
存し、ラジアル方向の振動は玉軸受のラジアル隙間、ス
ラスト方向の振動は玉軸受のスラスト隙間と同程度であ
り、この隙間を少なくするために玉軸受けにプリロード
をかける等の工夫がなされているが、ラジアル方向のラ
ンアウト(振れ)は非繰り返し成分でO.S ミクロン
程度であり満足できる値とはなっていない。また、玉軸
受にこのようなプリロードをかけると逆にモータのトル
クを増しHDDの低消費電力化に逆行する。従って、上
記のような玉軸受を使用する限り原理的にスピンドルモ
ータの振動をさらに低減させることは実質上不可能であ
る.また、レーザプリンター等に用いられているスキャ
ナモー夕の回転数は年々高くなる傾向にあり、従来の軸
受として玉軸受を用いる軸受構造では対応出来なくなっ
ている。
In the spindle motor that uses a ball bearing as the bearing, the magnitude of vibration of the spindle motor depends on the gap between the ball bearings. Vibration in the radial direction depends on the radial gap between the ball bearings, and vibration in the thrust direction depends on the thrust gap between the ball bearings. They are about the same level, and measures such as applying preload to the ball bearings have been taken to reduce this gap, but runout in the radial direction is a non-repetitive component and the O. S is about microns, which is not a satisfactory value. Moreover, if such a preload is applied to the ball bearing, the torque of the motor increases and goes against the goal of reducing the power consumption of HDDs. Therefore, as long as the above-mentioned ball bearings are used, it is practically impossible in principle to further reduce the vibration of the spindle motor. Furthermore, the rotational speed of scanner motors used in laser printers and the like tends to increase year by year, and conventional bearing structures using ball bearings are no longer able to handle this.

そこで、より高い回転性能を実現するものとして、流体
動圧軸受を用いたスピンドルモータが提案されている。
Therefore, a spindle motor using a fluid dynamic bearing has been proposed to achieve higher rotational performance.

第6図は本出願前に本出願人が特許出願した動圧軸受け
を使用したスピンドルモータの断面図である。取付台3
1の中央部に支持軸32を立設し、取付台31に円環状
スラスト板33を、また支持軸32と同心円に円筒状ラ
ジアル軸受34を各々固定する.支持軸32の円筒状ラ
ジアル軸受34の上方向には、ステータコイル35を複
数個等間隔で固定する. 寅、支承部材36はキ勺ブ形状をしており、上方天蓋部
は支持軸32の上方に遊嵌されており、下方輸部には断
面L字型の円環状軸部材37が固着されている。該軸部
材37の下端部はスラスト板33と内周面はラジアル軸
受34と各々対向して、スバイアル溝動圧スラスト軸受
とへリボーン溝動圧ラジアル軸受を形成している。支承
部材36の内周ステータコイル35の対向位置には、複
数個のロータマグネット38が等間隔で固定されている
FIG. 6 is a cross-sectional view of a spindle motor using a dynamic pressure bearing for which the present applicant applied for a patent prior to this application. Mounting stand 3
A support shaft 32 is erected at the center of the support shaft 1, and an annular thrust plate 33 is fixed to the mounting base 31, and a cylindrical radial bearing 34 is fixed concentrically with the support shaft 32. A plurality of stator coils 35 are fixed at equal intervals above the cylindrical radial bearing 34 of the support shaft 32. The support member 36 is in the shape of a horn, and the upper canopy part is loosely fitted above the support shaft 32, and the annular shaft member 37 with an L-shaped cross section is fixed to the lower canopy part. There is. The lower end of the shaft member 37 faces the thrust plate 33 and the inner circumferential surface faces the radial bearing 34, forming a savial groove dynamic pressure thrust bearing and a herribone groove dynamic pressure radial bearing. A plurality of rotor magnets 38 are fixed at equal intervals at positions facing the inner stator coil 35 of the support member 36.

ステータコイル35に順次電流が流れるとロータマグネ
ット38を備えた支承部材36は回転を開始し、スラス
ト板33の上面と軸部材37の下面間空気動圧スラスト
軸受をラジアル軸受34の外周面と軸部材37の内周面
で空気動圧ラジアル軸受を構成する。そのため、軸部材
37は固体接触することなく軸支されるので、スムーズ
にしかも高速回転に対応でき、従来の玉軸受を使用した
ものに比較し、摩擦の問題点及び振動の問題点等が解消
される。
When current sequentially flows through the stator coil 35, the support member 36 equipped with the rotor magnet 38 starts rotating, and the air dynamic pressure thrust bearing between the upper surface of the thrust plate 33 and the lower surface of the shaft member 37 is connected to the outer peripheral surface of the radial bearing 34 and the shaft. The inner peripheral surface of the member 37 constitutes an air dynamic pressure radial bearing. Therefore, since the shaft member 37 is supported without solid contact, it can handle smooth and high-speed rotation, and problems such as friction and vibration are solved compared to those using conventional ball bearings. be done.

しかしながら、上記スピンドルモータも横姿勢(重力方
向がモータの軸と直角となる方向)で動作させた場合は
、回転邪の重力に起因するラジアル方向ノモーメントが
発生しラジアル軸受に対シてラジアル軸が傾き、ロータ
マグネットとステータコイルのラジアル方向の不釣合い
がより大きくなった状態で回転部分が軸受に対して片当
り状態で押しつけられる。また、軸受側が別ピースで構
成されている為、組立時の直角を出すには困難をffっ
た。
However, when the above-mentioned spindle motor is also operated in a horizontal position (in a direction in which the direction of gravity is perpendicular to the motor axis), a radial moment is generated due to the gravity of rotation, and the radial axis is affected by the radial bearing. is tilted, and the rotating part is pressed against the bearing in a state where the radial unbalance between the rotor magnet and the stator coil becomes larger. Also, since the bearing side is made up of a separate piece, it was difficult to achieve a right angle during assembly.

また、上記問題点を含み、一般に従来の動圧軸受を使用
したスピンドルモ〜タを横姿勢で使用した場合下記のよ
うな問題点があった。
In addition to the above-mentioned problems, when a conventional spindle motor using a dynamic pressure bearing is used in a horizontal position, the following problems occur.

■2個の別体の動圧軸受を使用する場合は組み立て時、
同心の調整に困難があり、またラジアル軸受と軸のクリ
アランスはミクロン台であり2つの軸心のクリアランス
を合わせることは製造工程上問題があった.また、スラ
スト軸受が2個の別体の軸受の場合はスラスト間の相対
位置の調整が無しい。また、スラスト軸受のスラストカ
ラー{ま通常平行度数ミクロン以内で作成してあり、セ
ット時にこれの数分の1程度に抑えることが必要となり
困難なものとなる。
■When using two separate hydrodynamic bearings, when assembling,
It was difficult to adjust the concentricity, and the clearance between the radial bearing and the shaft was on the order of microns, so matching the clearance between the two shaft centers was a problem in the manufacturing process. Furthermore, if the thrust bearings are two separate bearings, there is no adjustment of the relative position between the thrust bearings. In addition, the thrust collar of a thrust bearing is usually made within a few microns of parallelism, and it is necessary to suppress it to a fraction of this when setting, which makes it difficult.

■また、第6図に示すようなラジアルギ勺ブタイブのス
ピンドルモータでは、ロータマグネットとステータコイ
ルのラジアル方向の磁カの不釣り合いによるモーメント
が発生し、主軸に対してラジアル軸が傾き、動圧面が片
当りして起動トルクが大きくなった。
■In addition, in a radial gear type spindle motor as shown in Figure 6, a moment is generated due to the unbalance of magnetic force in the radial direction between the rotor magnet and the stator coil, causing the radial axis to tilt with respect to the main shaft, and the dynamic pressure surface to The starting torque increased due to uneven contact.

本発明は上述の点に鑑みてなされたもので、上記問題点
を除去し、軸受に流体動圧軸受ところがり軸受を用い、
回転性能がよく、使用される姿勢に関係なく起動トルク
が小さくてすむスピンドルモータ等に好適な回転体及び
その軸受構造を提伏することにある。
The present invention has been made in view of the above-mentioned points, and eliminates the above-mentioned problems by using a fluid dynamic pressure bearing and a rolling bearing as a bearing.
The object of the present invention is to provide a rotating body and its bearing structure suitable for spindle motors and the like, which have good rotational performance and require a small starting torque regardless of the orientation in which they are used.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明は軸受構造を下記の如く
構成した。
In order to solve the above problems, the present invention has a bearing structure configured as follows.

取付基台の中央部に立設した支持軸と、中央部に該支持
軸が貫押される支持軸貫挿穴を有する回転部とを具備し
、回転部はラジアル軸受を介して支持軸に支持されと共
にスラスト軸受を介して取付基台に支持され、ラジアル
軸受及びスラスト軸受はそれぞれ動圧軸受であり、さら
に回転部はころがり軸受を介して支持軸に支持されてい
ることを特徴とする。
The mounting base includes a support shaft that stands upright in the center of the mounting base, and a rotating part that has a support shaft penetration hole in the center through which the support shaft is pushed through, and the rotating part is supported by the support shaft via a radial bearing. The radial bearing and the thrust bearing are each hydrodynamic bearings, and the rotating part is supported by the support shaft via a rolling bearing.

また、ラジアル軸受を構成する固定側部材及び可動側部
材、スラスト軸受を構成する固定側部材及び可動側部材
、支持軸の少なくとも1つ又はその一部がセラミックス
材料で作られ、又はスラスト軸受及びラジアルの軸受の
固定側部材と可動側部材の互いに対向する摺動面にセラ
ミック材層又は素地とは異種材料をコーティングした薄
膜又は素地を変質させた表面変質層が設けられたことを
特徴とする。また、セラミックスが炭化ケイ素又はアル
ミナであることを特徴とする。
In addition, at least one or a part of the fixed side member and movable side member constituting the radial bearing, the fixed side member and movable side member constituting the thrust bearing, and the support shaft are made of a ceramic material, or the thrust bearing and the movable side member constitute the thrust bearing. A ceramic material layer or a thin film coated with a material different from the base material or a surface-altered layer formed by altering the base material is provided on the mutually opposing sliding surfaces of the fixed side member and the movable side member of the bearing. Moreover, it is characterized in that the ceramic is silicon carbide or alumina.

また、スラスト軸受の動圧発生方向と反対方向に磁力に
よりプリロードすることを特徴とする。
Further, the thrust bearing is characterized in that it is preloaded by magnetic force in a direction opposite to the direction in which dynamic pressure is generated in the thrust bearing.

また、スラスト軸受を構成する固定側部材と取付基台の
間にシリコンゴム等からなる弾性パッドを介在させたこ
とを特徴とする。
Another feature is that an elastic pad made of silicone rubber or the like is interposed between the fixed side member constituting the thrust bearing and the mounting base.

また、上記いずれか1つに記載の軸受構造を具備する回
転体。
Moreover, a rotating body comprising the bearing structure described in any one of the above.

また、回転部にロータマグネット又はロータ磁性体を配
設し、固定側には該ロータマグネット又Iまロータ磁性
体に対応してステータフィルを配設し、スピンドルモー
タとしたことを特徴とする。
Further, a rotor magnet or a rotor magnetic body is disposed on the rotating part, and a stator filter is disposed on the stationary side in correspondence with the rotor magnet or rotor magnetic body, thereby forming a spindle motor.

〔作用〕[Effect]

上記の如く軸受構造を動圧軸受にころがり軸受を併用す
る構成とすることにより、回転部の停止時と低速回転時
はころがり軸受に支持されて回転するから、起動及び初
期回転トルクが小さくなる。また、高速回転時には動圧
軸受に支持されて回転するから、動圧軸受の特徴である
高性能の回転特性が得られると共に、ラジアル軸受を短
くできることにより、スピンドルモータとして利用した
場合、モータ駆動部の配置スペースを大きく取れる。
By configuring the bearing structure to use both a hydrodynamic bearing and a rolling bearing as described above, the rotating part rotates while being supported by the rolling bearing when it is stopped and rotates at low speed, so the startup and initial rotational torques are reduced. In addition, since it rotates while being supported by the hydrodynamic bearing during high-speed rotation, it provides the high-performance rotational characteristics that are characteristic of hydrodynamic bearings, and the radial bearing can be shortened, so when used as a spindle motor, the motor drive unit You can take up a lot of space for the installation.

また、磁力によるスラスト方向にプリロードをかけるこ
とにより、ラジアル軸受に対するラジアル軸の傾きを矯
正し片当りが無くなり、起動トルクをより低減できる。
Furthermore, by applying a preload in the thrust direction using magnetic force, the inclination of the radial shaft with respect to the radial bearing is corrected, eliminating uneven contact and further reducing the starting torque.

また、回転部がスラスト方向の動圧力により飛び出るこ
とがなく安定して回転させることができる。特にスピン
ドルモータに利用した場合、スピンドルモータを横姿勢
で使用してもモータ回転部Cま安定して回転ずる。
Further, the rotating part can be stably rotated without being thrown out by dynamic pressure in the thrust direction. Particularly when used in a spindle motor, even if the spindle motor is used in a horizontal position, the motor rotating portion C rotates stably.

また、ラジアル軸受を構成する固定側部材及び可動側部
材、スラスト軸受を構或する固定側部材及び可動側部材
及び支持軸の少なくとも1つ又はその一部が耐摩耗性の
優れたセラミ・冫クス材料で作られ、又は固定側部材及
び可動側部材の互いに対向する摺動面に耐摩耗性の優れ
たセラミ・7ク材層又は素地とはタ4種材料をコーティ
ングした薄膜又は素地を変質させた表面変τK層を設け
たので、無潤滑又は最小限潤滑で使え起動トルクとf′
t荷トルクを低減できる。
In addition, at least one or a portion of the fixed side member and movable side member constituting the radial bearing, the fixed side member and movable side member constituting the thrust bearing, and the support shaft may be made of ceramic or plastic material with excellent wear resistance. Ceramic material with excellent abrasion resistance on the mutually opposing sliding surfaces of the fixed side member and the movable side member. Since the surface has a modified τK layer, it can be used without or with minimal lubrication, and the starting torque and f′
Load torque can be reduced.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明に係る軸受構造を利用したスピンドルモ
ータの断面図である。取付基台1の中央部に支持軸2を
立設している。支持軸2の外周から所定寸法離れた取付
基台1の上にはスラスト軸受3を構成する円環状の固定
側部材3aが弾性体からなる弾性バッド10を介在させ
て配設されている。また、支持軸2の外周部にはラジア
ル軸受4を構成する円筒状の固定側部材4aが固定され
ている。支持軸2の可動側部材4aの上方部にはステー
タコイル5を複数個等間隔で固定する。
FIG. 1 is a sectional view of a spindle motor using a bearing structure according to the present invention. A support shaft 2 is provided upright in the center of the mounting base 1. An annular stationary member 3a constituting the thrust bearing 3 is disposed on the mounting base 1 at a predetermined distance from the outer periphery of the support shaft 2 with an elastic pad 10 made of an elastic body interposed therebetween. Furthermore, a cylindrical stationary member 4a constituting the radial bearing 4 is fixed to the outer peripheral portion of the support shaft 2. A plurality of stator coils 5 are fixed to the upper part of the movable member 4a of the support shaft 2 at equal intervals.

一方、支承部材6はキャップ形状をしており、上方天蓋
部は支持軸2に取り付けられたころがり軸受の一種であ
る玉軸受9により受けられており、下方端部には断面L
字型の円環状Ipth都材7が固着されている.該軸部
材7の下端部はスラスト軸受3の固定側部材3aに対向
する可動側郡材3bとなっており、その内周面はラジア
ル軸受4の固定側部材4aに対向する可動側部材4bと
なっている.前記固定側部材3aと可動側部材3bで後
に詳述するスバイラル満動圧のスラスト軸受3を構成し
、固定側部材4aと可動側部材4bで後に詳述するヘリ
ングボーン溝動圧のラジアル軸受4を構成する。
On the other hand, the support member 6 has a cap shape, the upper canopy part is supported by a ball bearing 9 which is a type of rolling bearing attached to the support shaft 2, and the lower end part has a cross section L.
A letter-shaped annular Ipth material 7 is fixed. The lower end of the shaft member 7 is a movable side member 3b facing the fixed side member 3a of the thrust bearing 3, and its inner peripheral surface is a movable side member 4b facing the fixed side member 4a of the radial bearing 4. It has become. The fixed side member 3a and the movable side member 3b constitute a radial full dynamic pressure thrust bearing 3, which will be described in detail later, and the fixed side member 4a and the movable side member 4b constitute a herringbone groove dynamic pressure radial bearing 4, which will be described in detail later. Configure.

また、支承部材6の内周で前記ステータコイル5と対向
する位置には、複数個のロータマグネット8が等間隔で
固定されている.ステータコイル5に順次Tftを通電
すると、ロータマグネット8を備えた支承邪材6(モー
タ回転部)は回転を開始し、この支承部材6はスラスト
軸受3の固定側部材3aと可動側部材3bの間に発生す
る空気動圧及びラジアル軸受4の固定側部材4aと可動
側部材4bに発生する空気動圧により固体接触すること
なく軸支されるので、スムーズにしかも高速回転に対応
でき、従来の玉軸受を使用したものに比較し、摩擦の問
題点及び振動の問題点等が解消される。
Furthermore, a plurality of rotor magnets 8 are fixed at equal intervals on the inner periphery of the support member 6 at positions facing the stator coil 5. When the stator coil 5 is sequentially energized with Tft, the support member 6 (motor rotating part) equipped with the rotor magnet 8 starts rotating, and this support member 6 is connected to the fixed side member 3a and the movable side member 3b of the thrust bearing 3. The air dynamic pressure generated between the fixed side member 4a and the movable side member 4b of the radial bearing 4 allows the shaft to be supported without any solid contact, allowing for smooth and high-speed rotation. Compared to those using ball bearings, problems such as friction and vibration are eliminated.

ラジアル軸受4の固定側部材4aの円環状軸受部材7(
可動側部材4b)と対向する面には第2図に示すような
ヘリングボーン状の溝C等の動圧力を発生させる動圧発
生溝が形成されており、スラスト軸受3の固定側部材3
aの円環状軸受部材7(可動側部材3b)との対向面に
は第3図に示すスバイラル溝C等の動圧力を発生させる
動圧発生溝が形成されている。
The annular bearing member 7 of the fixed side member 4a of the radial bearing 4 (
A dynamic pressure generating groove for generating dynamic pressure, such as a herringbone-shaped groove C as shown in FIG. 2, is formed on the surface facing the movable side member 4b).
A dynamic pressure generating groove for generating dynamic pressure, such as a spiral groove C shown in FIG. 3, is formed on the surface facing the annular bearing member 7 (movable side member 3b) of a.

なお、動圧発生溝は円環状軸部材7の内周面(可動側部
材4b)及び下端面(可動側部材3b)に形成し、それ
と対向する固定側部材4a及び固定側部材3aの上面を
平滑としてもよい。
The dynamic pressure generating grooves are formed on the inner peripheral surface (movable side member 4b) and lower end surface (movable side member 3b) of the annular shaft member 7, and on the upper surfaces of the fixed side member 4a and the fixed side member 3a facing the same. It may be smooth.

上記構成のスピンドルモータにおいて、ステータコイル
5に順次電流を通電するとロータマグネット8が固定さ
れた支承部材6は玉軸受9の軸受中心で回転を開始し、
同時にスラスト軸受3の固定側部材3aと可動側部材3
bの間に空気動圧が発生する.また、ラジアル軸受4の
固定側部材4aと可動側部材4bとの間に仝気動圧が発
生する.また、支承部材6の回転速度が増し、高速回転
となった時には上記動圧力が増し、動圧軸受けの軸受ク
リアランスが一様となり、支承部材6と支持軸2との同
芯度が高まる。即ち、動圧軸受の軸受クリアランスが一
様でない支承部材6の回転初期には玉軸受で回転し、高
速回転時には円環状軸部材7(可動側部材3b及び可動
側部材4b)は固定側部材3a及び固定側部材4aと固
体接触することなく軸支されるので、スムーズでしかも
高速回転に対応できる.従って、上記従来の軸受に玉軸
受のみを用いたスピンドルモータに摩擦ノ問題、振動の
問題が解消される。
In the spindle motor having the above configuration, when the stator coil 5 is sequentially energized, the support member 6 to which the rotor magnet 8 is fixed starts rotating at the center of the ball bearing 9.
At the same time, the fixed side member 3a and the movable side member 3 of the thrust bearing 3
Air dynamic pressure is generated between b. Furthermore, air dynamic pressure is generated between the fixed side member 4a and the movable side member 4b of the radial bearing 4. Further, when the rotational speed of the support member 6 increases and the rotation becomes high speed, the dynamic pressure increases, the bearing clearance of the dynamic pressure bearing becomes uniform, and the concentricity between the support member 6 and the support shaft 2 increases. That is, at the initial stage of rotation of the support member 6, where the bearing clearance of the hydrodynamic bearing is not uniform, the support member 6 rotates with a ball bearing, and during high-speed rotation, the annular shaft member 7 (movable side member 3b and movable side member 4b) rotates with the fixed side member 3a. Since it is pivoted without solid contact with the stationary side member 4a, it can handle smooth and high-speed rotation. Therefore, the problems of friction and vibration in the conventional spindle motor using only ball bearings can be solved.

4二記構成のスピンドルモータにおいて、動圧ラジアル
軸受4を構成する固定側部材4aと可動側部材4b及び
スラスト軸受3を構成する固定側部材3aと可動側部材
3bは、回転時動圧縮仝気を介して、非接触回転するこ
とから、これら軸受を構成する部材の材質は高精度で加
工できる材質であればどんな材料でも良く、一般の金属
材料、有機材料の利用が考えられる.問題は起動時と低
速回転時の摩擦抵抗と摩耗を少なくすることであり、一
般的に使用可能な材質の範囲は軸受構造に依存する。
In the spindle motor having the configuration described in 42 above, the fixed side member 4a and the movable side member 4b that constitute the dynamic pressure radial bearing 4 and the fixed side member 3a and the movable side member 3b that constitute the thrust bearing 3 generate dynamic compression air during rotation. Because these bearings rotate without contact, the parts that make up these bearings can be made of any material that can be processed with high precision, and common metal materials and organic materials can be considered. The problem is to reduce frictional resistance and wear during startup and low-speed rotation, and the range of materials that can generally be used depends on the bearing structure.

本実施例では、軸受として、玉軸受9を動圧軸受に併用
する構成としたことにより、起動時の動圧軸受の摩擦抵
抗を低減すると共に、ロータマグネット8の磁力により
、スラスト軸受の動圧力方向と反対方向にプリロードす
るから、片当りしない構成となっている。従って、軸受
に使用できる材料の範囲は広範囲となる。ここでプリロ
ードの方法はロータマグネット8の磁気中心をステータ
コイル5の磁気中心に対して上方、即ちスラスト軸受と
は反対{lul+に所定量dだけずらすか、モータの駆
動部を図示しないがスラストギャップタイプとすること
によりなされる。スラスト軸受3を構成ずる固定fll
I1部材3aと可動側部材3b(円環状軸受部材7)、
ラジアル軸受4を構成する固定側部材4aと可動側部材
4b(円環状軸受部材7)のいずれか一吉又は双方に例
えばステンレス材を用いれば軸受の接触面に薄く潤滑剤
を塗布することにり、長時間にわたって安定した性能が
得られる。
In this embodiment, the ball bearing 9 is used in combination with the hydrodynamic bearing, so that the frictional resistance of the hydrodynamic bearing at the time of startup is reduced, and the magnetic force of the rotor magnet 8 is used to reduce the dynamic pressure of the thrust bearing. Since it is preloaded in the opposite direction, it has a structure that prevents uneven hitting. Therefore, the range of materials that can be used for bearings is wide. Here, the method of preloading is to shift the magnetic center of the rotor magnet 8 upwards with respect to the magnetic center of the stator coil 5, that is, by a predetermined amount d in the direction opposite to the thrust bearing, or to shift the magnetic center of the rotor magnet 8 by a predetermined amount d to This is done by typing. The fixed flll that constitutes the thrust bearing 3
I1 member 3a and movable side member 3b (annular bearing member 7),
If either or both of the fixed side member 4a and the movable side member 4b (annular bearing member 7) that constitute the radial bearing 4 are made of stainless steel, a thin layer of lubricant can be applied to the contact surface of the bearing. , stable performance can be obtained over a long period of time.

負荷トルクを小さくする必要もあり、この場合は特に耐
摩耗特性の優れたセラミックス系の材質が好ましい。な
かでも炭素ケイ素又はアルミナが好適である。
It is also necessary to reduce the load torque, and in this case, a ceramic material with particularly excellent wear resistance is preferable. Among them, carbon silicon and alumina are preferred.

また、素地とは異種材料の薄膜をコーティングして形成
するか、素地を変質させた表面変質層が設けられている
.この薄膜は物理的蒸着、化学的蒸着若しくはメッキに
より形成することができる。この薄膜は通常、素地とは
異種の材料が使用される。例えば、素地がステンレスで
コーティング材料がセラミックからなる組合わせである
。しかしながら素地と同種の材料を用いることもある。
In addition, the substrate is coated with a thin film of a material different from the substrate, or a surface-altered layer is provided by altering the substrate. This thin film can be formed by physical vapor deposition, chemical vapor deposition or plating. This thin film is usually made of a different material from the base material. For example, the base material is stainless steel and the coating material is ceramic. However, the same type of material as the base material may be used.

例えばある種のニッケルメッキはメッキにより素地より
到密で硬いものとなる。また、平滑度を高めることがで
きる。′素地とは異種材料の」とはこのような場合も含
むものとする。また、表面変質層とは、例えば酸化弛理
、窒化処理若しくはイオン注入にまり形或できる。
For example, some types of nickel plating become denser and harder than the base material. Moreover, the smoothness can be improved. ``The base material is a different material'' shall include such cases. Further, the surface altered layer can be formed by, for example, oxidation relaxation, nitriding treatment, or ion implantation.

また、組立時のラジアル動圧軸受とスラスト動圧軸受の
直角度を確保するために、取付基台1とスラスト軸受3
の固定側部材3aの間に弾性体からなる弾性パッド10
を介在させることにより、該弾性パッド10に調芯機能
をもたせ該直角度を容易に実現できる.この弾性バッド
10は弾性体であればどんな材料でもかまわないがシリ
コンゴムのような入手が容易な材料が好ましい。
In addition, in order to ensure the right angle between the radial dynamic pressure bearing and the thrust dynamic pressure bearing during assembly, the mounting base 1 and the thrust bearing 3
An elastic pad 10 made of an elastic body is placed between the fixed side member 3a of
By interposing the elastic pad 10 with an alignment function, the perpendicularity can be easily achieved. The elastic pad 10 may be made of any elastic material, but an easily available material such as silicone rubber is preferred.

また、上記スピンドルモータは支持軸2の外周に等間隔
に複数のステータコイル5を配設し、支承部材6の内周
に該ステータコイル5に対応するロータマグネット8を
配設した所謂同期電動機型のスピンドルモータとしたが
、スピンドルモータは同期電動機型に限定されるもので
はなく、誘導電動機型であってもよい。その場合はロー
タマグネット8に替えて、ロータ鉄心等のロータ磁性体
を等間隔で複数配設する。
The spindle motor is a so-called synchronous motor type in which a plurality of stator coils 5 are arranged at equal intervals around the outer periphery of the support shaft 2, and rotor magnets 8 corresponding to the stator coils 5 are arranged on the inner periphery of the support member 6. However, the spindle motor is not limited to a synchronous motor type, but may be an induction motor type. In that case, instead of the rotor magnet 8, a plurality of rotor magnetic bodies such as a rotor core are arranged at equal intervals.

第4図は本発明に係わる軸受構造の概念図である。今、
動圧ラジアル軸受の固定側部材41の長径をDd、長さ
をLd、固定側部材41と可動側部材42とのクリアラ
ンスCd及び玉軸受43と固定側部材41の中心の距離
をBとすると、縦姿勢で使用する時には、例えば、cd
が数ミクロの ン、B/L=1、L/D=1の時、玉軸受43飴ラジア
ル隙間cbが5ミクロン程度の軸受けを使えば、起動時
に玉軸受43に支持されて回転することを確認した。起
動時に玉軸受に支持されて回転rるためには、玉軸受け
の径とラジアル方向のクリアランス及び動圧ラジアル軸
受けのラジアル外径、ラジアル方向のクリアランスとラ
ジアル長さ及び21!Iの軸受の相対距離に依存し、本
発明でCま次の関係式を満たす構成であれば良い。
FIG. 4 is a conceptual diagram of a bearing structure according to the present invention. now,
If the major axis of the fixed side member 41 of the hydrodynamic radial bearing is Dd, the length is Ld, the clearance Cd between the fixed side member 41 and the movable side member 42, and the distance between the centers of the ball bearing 43 and the fixed side member 41 is B, When used in a vertical position, for example, CD
is several microns, B/L=1, L/D=1, if you use a bearing with a ball bearing 43 radial clearance cb of about 5 microns, it will rotate supported by the ball bearing 43 at startup. confirmed. In order to rotate while being supported by the ball bearing during startup, the diameter and radial clearance of the ball bearing, the radial outer diameter of the dynamic pressure radial bearing, the radial clearance and radial length, and 21! It depends on the relative distance of the bearing I, and any configuration that satisfies the C-order relational expression according to the present invention may be used.

Cb<(2Cd/Ld)XB また、横姿勢で使用する時には磁力によるブリロードを
かけることにより、縦姿勢と同じ条件で使用できる。
Cb<(2Cd/Ld)XB Furthermore, when used in a horizontal position, by applying a magnetic bridle, it can be used under the same conditions as in a vertical position.

上記のように袴通のころがり軸受を併用することにより
容易に起動トルクを低減できるとノ(に、ふたつのベア
リングが使用される構造であるにも関わらず一力がころ
がり軸受であるため組立てが容易となる。
As mentioned above, the starting torque can be easily reduced by using Hakamatoru's rolling bearings (although the structure uses two bearings, one of the forces is the rolling bearing, so assembly is difficult. It becomes easier.

なお、上記実施例では本発明の軸受構造をスピンドルモ
ータに使川した例を示したが、本発明の軸受構造はスピ
ンドルモータに限定されるものではなく、振動が少なく
高速で回転する回転体の軸受構造として広く利用するこ
とが可能である。
Although the above embodiment shows an example in which the bearing structure of the present invention is used in a spindle motor, the bearing structure of the present invention is not limited to spindle motors, but is applicable to rotating bodies that rotate at high speed with little vibration. It can be widely used as a bearing structure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば下記のような優れた
効果が得られる。
As explained above, according to the present invention, the following excellent effects can be obtained.

〈1)軸受構造を決める次のパラメータ;動圧ラジアル
軸受を構成する固定側部材の長径,長さ,クリアランス
,またころがり軸受とラジアル軸受の中心の距離のかな
り広い範聞において、これらのパラメータに対応したラ
ジアル隙間を有するころがり軸受を用いることにより起
動トルクが低減できる. (2)ころがり軸受を使用しているにも関わらず回転時
には動圧軸受の高特性が実現できる。
(1) The following parameters that determine the bearing structure: The major axis, length, clearance of the fixed side member that makes up the hydrodynamic radial bearing, and the distance between the centers of the rolling bearing and the radial bearing. Starting torque can be reduced by using a rolling bearing with a corresponding radial clearance. (2) Even though a rolling bearing is used, the high characteristics of a hydrodynamic bearing can be achieved during rotation.

(3)一方の軸受がころがり軸受であるので組立時の寸
法精度を高くすることが容易となる。
(3) Since one of the bearings is a rolling bearing, it is easy to increase the dimensional accuracy during assembly.

(4)スラスト方向にブリ口一ドをかけることにより、
軸受の片当りを防止でき、起動トルクをより低減できる
(4) By applying a sudden thrust in the thrust direction,
Uneven bearing contact can be prevented and starting torque can be further reduced.

また、回転時には動圧と拮抗する力が存在する事により
、回転が安定する。特に、横姿勢で使用した時は、モー
タ回転部はスラスト方向の動圧により飛び出ること無く
安定して回転する.(5)ラジアル軸受及びスラスト軸
受を構成部材及び支持軸の少なくとも1つ又はその一部
がセラミックス材料で作るか、又は各構成部材の互いに
対向する摺動面にセラミック材層又は素地とは異種材料
をコーティングした薄膜又は素地を変質させた表面変質
層を設けることにより、無潤滑又は最小限の潤滑で使用
できる。
Furthermore, during rotation, the presence of a force that counteracts the dynamic pressure stabilizes the rotation. In particular, when used in a horizontal position, the motor rotating part rotates stably without jumping out due to dynamic pressure in the thrust direction. (5) In radial bearings and thrust bearings, at least one or a part of the constituent members and support shafts are made of a ceramic material, or the mutually opposing sliding surfaces of each constituent member have a ceramic material layer or a material different from the base material. By providing a thin film coated with or a surface modified layer formed by modifying the base material, it can be used without or with minimal lubrication.

(6〉スラスト軸受けと固定側の間に弾性パッド介在さ
せたことにより、動圧軸受のラジアルとスラストの直角
度が容易に実現できる。
(6) By interposing an elastic pad between the thrust bearing and the fixed side, the perpendicularity between the radial and thrust of the dynamic pressure bearing can be easily realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1(50は本発明に係る軸受構造を利用したスピンド
ルモータの断面図、第2図はラジアル軸受部材に形成さ
れた動圧発生溝の例を示す図、第3図はスラスト軸受部
材に形成された動圧発生溝の例を示す図、第4図は本発
明に係る軸受構造を示す断面図、第5図は従来のHDD
用スピンドルモータの一部断面を示す図、第6図は本出
願前に特許出願された動圧軸受を使用したスピンドルモ
ータの断面図である。 図中、1・・・・取付基台、2・・・・支持軸、3・・
・・スラスト軸受、4・・・・ラジアル軸受、5・・・
・ステータコイル、6・・・・支承部材、7・・・・円
環状軸部材、8・・・・ロータマグネット、9・・・・
玉軸受、10・・・・弾性パッド。
1 (50 is a sectional view of a spindle motor using the bearing structure according to the present invention, FIG. 2 is a diagram showing an example of a dynamic pressure generating groove formed in a radial bearing member, and FIG. 3 is a diagram showing an example of a dynamic pressure generating groove formed in a thrust bearing member. FIG. 4 is a sectional view showing a bearing structure according to the present invention, and FIG. 5 is a diagram showing an example of a conventional HDD.
FIG. 6 is a cross-sectional view of a spindle motor using a hydrodynamic bearing, for which a patent application was filed before the present application. In the figure, 1...Mounting base, 2...Support shaft, 3...
...Thrust bearing, 4...Radial bearing, 5...
・Stator coil, 6...Supporting member, 7...Annular shaft member, 8...Rotor magnet, 9...
Ball bearing, 10...elastic pad.

Claims (8)

【特許請求の範囲】[Claims] (1)取付基台の中央部に立設した支持軸と、中央部に
該支持軸が貫挿される支持軸貫挿穴を有する回転部とを
具備し、前記回転部はラジアル軸受を介して前記支持軸
に支持されると共に、スラスト軸受を介して取付基台に
支持され、前記ラジアル軸受及びスラスト軸受はそれぞ
れ動圧軸受であり、さらに前記回転部はころがり軸受を
介して前記支持軸に支持されていることを特徴とする軸
受構造。
(1) The mounting base includes a support shaft erected in the center thereof, and a rotating part having a support shaft penetration hole in the center part into which the support shaft is inserted, and the rotating part is connected to the mounting base through a radial bearing. The rotating part is supported by the support shaft and also supported by the mounting base via a thrust bearing, the radial bearing and the thrust bearing are each hydrodynamic bearings, and the rotating part is supported by the support shaft via a rolling bearing. A bearing structure characterized by:
(2)前記ラジアル軸受を構成する固定側部材及び可動
側部材、前記スラスト軸受を構成する固定側部材及び可
動側部材、支持軸の少なくとも1つ又はその一部がセラ
ミックス材料で作られ、又は前記スラスト軸受及びラジ
アル軸受固定側部材と可動側部材の互いに対向する摺動
面にセラミック材層又は素地とは異種材料をコーティン
グした薄膜又は素地を変質させた表面変質層が設けられ
たことを特徴とする請求項(1)記載の軸受構造。
(2) At least one or a part of the fixed side member and the movable side member that constitute the radial bearing, the fixed side member and the movable side member that constitute the thrust bearing, and the support shaft are made of a ceramic material, or Thrust bearings and radial bearings A ceramic material layer or a thin film coated with a material different from the base material or a surface-altered layer obtained by altering the quality of the base material is provided on the mutually opposing sliding surfaces of the fixed side member and the movable side member. The bearing structure according to claim (1).
(3)前記セラミックスが炭化ケイ素又はアルミナであ
ることを特徴とする請求項(1)又は(2)記載の軸受
構造。
(3) The bearing structure according to claim 1 or 2, wherein the ceramic is silicon carbide or alumina.
(4)前記スラスト軸受の動圧発生方向と反対方向に磁
力によりプリロードすることを特徴とする請求項(1)
乃至(3)のいずれか1つに記載の軸受構造。
(4) Claim (1) characterized in that the thrust bearing is preloaded by magnetic force in a direction opposite to the direction in which dynamic pressure is generated.
The bearing structure according to any one of (3) to (3).
(5)前記スラスト軸受を構成する固定側部材と取付基
台の間に弾性パッドを介在させたことを特徴とする請求
項(1)乃至(4)のいずれか1つに記載の軸受構造。
(5) The bearing structure according to any one of claims (1) to (4), characterized in that an elastic pad is interposed between the fixed side member constituting the thrust bearing and the mounting base.
(6)前記弾性パッドがシリコンゴムであることを特徴
とする請求項(5)記載の軸受構造。
(6) The bearing structure according to claim (5), wherein the elastic pad is made of silicone rubber.
(7)前記請求項(1)乃至(6)のいずれか1つに記
載の軸受構造を具備する回転体。
(7) A rotating body comprising the bearing structure according to any one of claims (1) to (6).
(8)前記回転部にロータマグネット又はロータ磁性体
を配設し、前記固定側には該ロータマグネット又はロー
タ磁性体に対応してステータコイルを配設し、スピンド
ルモータとしたことを特徴とする前記請求項(7)記載
の軸受構造を具備する回転体。
(8) A rotor magnet or a rotor magnetic body is disposed on the rotating part, and a stator coil is disposed on the stationary side in correspondence with the rotor magnet or rotor magnetic body, thereby forming a spindle motor. A rotating body comprising the bearing structure according to claim 7.
JP2214789A 1989-08-17 1990-08-14 Rotor and bearing structure therefor Pending JPH03159537A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-211743 1989-08-17
JP21174389 1989-08-17

Publications (1)

Publication Number Publication Date
JPH03159537A true JPH03159537A (en) 1991-07-09

Family

ID=16610853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214789A Pending JPH03159537A (en) 1989-08-17 1990-08-14 Rotor and bearing structure therefor

Country Status (1)

Country Link
JP (1) JPH03159537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548550U (en) * 1991-11-25 1993-06-25 株式会社三協精機製作所 motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548550U (en) * 1991-11-25 1993-06-25 株式会社三協精機製作所 motor

Similar Documents

Publication Publication Date Title
JPH03128650A (en) Spindle motor
US5142173A (en) Bearing structure
US4998033A (en) Gas dynamic bearing for spindle motor
JP3609258B2 (en) motor
JP3043294B2 (en) Conical fluid bearing, head drum having the same, and spindle motor
JPH05240241A (en) Spindle motor
JP2000314421A (en) Radial/axial combined bearing structure and spindle motor having the same
JP2004092715A (en) Rotation supporting apparatus and rotating machine apparatus
JPH08335366A (en) Dynamic pressure bearing motor
JPS62140271A (en) Liquid bearing type disk driving device
JP2505916B2 (en) Bearing structure
JPH07310733A (en) Dynamic pressure bearing device
JPH03159537A (en) Rotor and bearing structure therefor
JP2002122147A (en) Ball bearing, and manufacturing method thereof
JPS59188351A (en) Dynamic pressure type bearing motor
JPH03128649A (en) Spindle motor
JPS6069320A (en) Shaft unit with bearing
JPH11113215A (en) Motor equipped with dynamic pressure bearing and rotator equipment using the motor as driving source
JPH02211036A (en) Rotary supporting device of disc
JPH03159552A (en) Spindle motor
JP2622906B2 (en) Flexible disk drive
JPH03159551A (en) Spindle motor
JPH04111256A (en) Spindle motor
JPH11201153A (en) Rotating machine
JP2000078813A (en) Spindle motor for driving recording disk