JPS61261921A - Light emitting element driving circuit - Google Patents

Light emitting element driving circuit

Info

Publication number
JPS61261921A
JPS61261921A JP10323685A JP10323685A JPS61261921A JP S61261921 A JPS61261921 A JP S61261921A JP 10323685 A JP10323685 A JP 10323685A JP 10323685 A JP10323685 A JP 10323685A JP S61261921 A JPS61261921 A JP S61261921A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
output
transistor
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10323685A
Other languages
Japanese (ja)
Inventor
Hitoshi Miyashita
宮下 均
Aritaka Yorifuji
依藤 有貴
Akira Nagaoka
長岡 暁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10323685A priority Critical patent/JPS61261921A/en
Publication of JPS61261921A publication Critical patent/JPS61261921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a light emitting output of a light emitting element constant by impressing a voltage to a base of an output transistor through between a base and an emitter of a transistor having a temperature characteristic being reverse to a characteristic of the light emitting output of the light emitting element and an ambient temperature. CONSTITUTION:Transistors Q1, Q2 are connected to a transistor Q. These transistors Q1, Q2 have a characteristic being reverse to a characteristic of a light emitting output of a light emitting element D. A voltage is impressed to a base of the transistor through between the base and the emitter of these transistors Q1, Q2. In this way, the temperature characteristic is offset against a temperature variation consequently, and the light emitting output of the light emitting element becomes constant.

Description

【発明の詳細な説明】 [技術分野] 本発明は、例えば光電スイッチに使用される発光素子ド
ライブ回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a light emitting element drive circuit used, for example, in a photoelectric switch.

[背景技術1 第2図は従来例の発光素子ドライブ回路を示すものであ
り、例えば発光ダイオードからなる発光素子りと、出力
トランジスタQと、抵抗Rとの直列回路から構成されて
いる。ここで、トランジスタQのベースに印加される電
圧をVi、)ランノスフQのベース・エミッタ闇電圧を
VBI!%  )ランノスフQのエミッタの電位なV 
LEDとし、発光素子りの駆動電流をI LFiD、ト
ランジスタQの電流増幅率をhfeとすると、 VLpo=Vi  VB□ I tEn=V+−Eo/[Ri(1/hfe)+11
]となる。ここでhfe>>1とすると、I LED=
 V LED/ R ==(V i  VBE)/ R と近似できる。
[Background Art 1] FIG. 2 shows a conventional light emitting element drive circuit, which is composed of a series circuit of a light emitting element made of, for example, a light emitting diode, an output transistor Q, and a resistor R. Here, the voltage applied to the base of transistor Q is Vi,) the base-emitter dark voltage of Rannosph Q is VBI! %) Rannosph Q emitter potential V
If it is an LED, the driving current of the light emitting element is I LFiD, and the current amplification factor of the transistor Q is hfe, then VLpo=Vi VB□ I tEn=V+-Eo/[Ri(1/hfe)+11
]. Here, if hfe>>1, I LED=
It can be approximated as V LED/R ==(V i VBE)/R.

ここで、発光素子りの相対発光出力POと周囲温度Ta
(順方向電流I p =const)の関係を第3図に
示す、尚、横軸は線形0嵜、縦軸は対数0区で表してい
る。第2図より明らかなように、温度変化により、大き
く相対発光出力POが変化することが判る。例えば、あ
る発光ダイオードでは、周囲温度Ta”25℃の時、P
o=100%とすると、Ta=  25℃の時、Po=
160%、Ta=60℃の時、Po=71%である。以
下、例としてこの発光ダイオード使用時の温度特性につ
いて述べる。
Here, the relative light emission output PO of the light emitting element and the ambient temperature Ta
The relationship between (forward current I p =const) is shown in FIG. 3, where the horizontal axis is linear zero and the vertical axis is logarithmic zero. As is clear from FIG. 2, it can be seen that the relative light emission output PO changes greatly due to temperature changes. For example, in a certain light emitting diode, when the ambient temperature Ta is 25°C, P
If o=100%, when Ta=25℃, Po=
160%, and when Ta=60°C, Po=71%. The temperature characteristics when this light emitting diode is used will be described below as an example.

また、トランジスタQのベース・エミッタ間電圧VBH
の温度係数なT 、 C(Ib V / ”C)とする
と、■ Ta=25℃の時(標準) Itpo=(Vi  VBE)/R ■ Ta=−25℃の時 ILEo=(Vi  (VBE  T、CX50)l/
R■ Ta=60℃の時 ILro=iVi  (VBp+T、CX35))/R
となり、Ta=Tの時の一般式は IcEn=[Vi  IVsE T、CX(25T)l
/Rとなる。
Also, the base-emitter voltage VBH of transistor Q
Assuming the temperature coefficient T, C (Ib V / "C), ■ When Ta = 25℃ (standard) Itpo = (Vi VBE) / R ■ When Ta = -25℃ ILEo = (Vi (VBE T , CX50) l/
R■ When Ta=60℃ ILro=iVi (VBp+T, CX35))/R
The general formula when Ta=T is IcEn=[Vi IVsE T, CX(25T)l
/R.

ここで、 Vi=3V VB!=0.65V R=10Ω T 、 C=   2 Ill V / ’(:とする
と、 ■ Ta=25℃の時 ■L2D= 235 mA ■ Ta=−25℃の時 r LPD= 225 mA ■ Ta=60℃の時、 ILED=242翔A となる。尚、抵抗Rの温度ドリフFは■旺の温度ドリフ
トに対して無視できる程小さい。
Here, Vi=3V VB! =0.65V R=10Ω T , C= 2 Ill V / '(:: ■ When Ta = 25℃ ■ L2D = 235 mA ■ When Ta = -25℃ r LPD = 225 mA ■ Ta = 60 ℃, ILED=242A.The temperature drift F of the resistor R is so small that it can be ignored compared to the temperature drift of the resistor R.

今、Ta”25の時の相対IPを100%とすとなる。Now, let us assume that the relative IP at Ta"25 is 100%.

また、上記の周囲温度Taと相対発光出ここで、I、と
Poの関係はリニアとみなせるので、I、の温度特性を
考慮したTaとPoの関係は以下の表の如くなる。
Furthermore, since the relationship between I and Po can be regarded as linear between the above-mentioned ambient temperature Ta and relative light emission, the relationship between Ta and Po considering the temperature characteristics of I is as shown in the table below.

光電スイッチの場合を考えると、相対発光出力Poと検
知出力αとの関係はp6ocQ”であるからこの結果、
Ta=25°Cの時設定した距離が、Ta=−25℃の
時25%のび、Ta=60℃の時紐離が15%短くなる
ことを意味する。このように温度に対して検知距離が上
述の如く大きく変化すると、誤動作の原因となり、光電
スイッチとして使用不可能となる。
Considering the case of a photoelectric switch, the relationship between the relative light emission output Po and the detection output α is p6ocQ'', so as a result,
This means that the distance set when Ta = 25°C increases by 25% when Ta = -25°C, and the string separation becomes 15% shorter when Ta = 60°C. If the detection distance changes significantly with respect to temperature as described above, it may cause malfunction and become unusable as a photoelectric switch.

[発明の目的] 本発明は上述の1点に鑑みて提供したものであって、発
光素子の発光出力の温度による変化を補償し、温度変化
に対して一定の発光出・力を供給できるようにすること
を目1′?!11− ?−0乎豪半VライプH路を提供
するものである。
[Object of the Invention] The present invention has been provided in view of the above-mentioned point, and is capable of compensating for changes in the light emitting output of a light emitting element due to temperature and supplying constant light emitting output and power in response to temperature changes. What do you want to do? ! 11-? It provides a -0 to half V life route.

[発明の開示] 以下、本発明の実施例を図面により説明する。[Disclosure of invention] Embodiments of the present invention will be described below with reference to the drawings.

第1図は具体回路図を示すものであり、トランジスタQ
のベースにトランジスタQ、、Q2のベース・エミッタ
間を介して電圧Viを印加するようにしている。実施例
ではトランジスタを3個使用しているが何個使用しても
構わない。その個数は駆動電流、発光ダイオードである
発光素子りの特性等によって決定すれば良い。尚、発光
素子りの発光出力と周囲温度の特性と逆の特性を有する
トランジスタを用いている。第1図において従来例と同
様な考察を試みる。
Figure 1 shows a specific circuit diagram, and shows the transistor Q.
A voltage Vi is applied to the bases of transistors Q, , Q2 between their bases and emitters. Although three transistors are used in the embodiment, any number of transistors may be used. The number may be determined depending on the driving current, the characteristics of the light emitting element, which is a light emitting diode, and the like. Note that a transistor is used that has characteristics opposite to those of the light emitting element in terms of light emission output and ambient temperature. In FIG. 1, consideration similar to the conventional example is attempted.

Vしto=Vi−V旺−VBE2 I Lpn= V LED/ R =(Vi−VaゆIVBE□)/R いま、トランジスタQ、、Q、のベース・エミッタ間電
゛圧VBEllVBE2の温度係数をそれぞれT、C1
、T、C2とすると、Ta=Tの時のI LEDの一般
式は以下のように表せる。
Vshito=Vi-Vo-VBE2 I Lpn=V LED/R=(Vi-VayuIVBE□)/R Now, the temperature coefficient of the base-emitter voltage VBEllVBE2 of transistors Q, Q, respectively T, C1
, T, and C2, the general formula of I LED when Ta=T can be expressed as follows.

rcEo”4Vi  (Vst+  T、CIX(25
−T)1−(VaE□−T、C2X(25−T )+1
/Rここで、 Vi=3V ■Bゆ、=0.65V VBE□=1.5V T、C1=−2mV/”C T、C2=−4mV/’C R=3,6Ω とすると、犬のようになる。
rcEo”4Vi (Vst+T, CIX(25
-T)1-(VaE□-T, C2X(25-T)+1
/RHere, Vi=3V ■B=0.65V VBE□=1.5V T, C1=-2mV/'C T, C2=-4mV/'C R=3,6Ω Then, the dog's It becomes like this.

■ Ta=25°Cの時 I LED= 236 mA ■ Ta=25℃の時 r LE111= 153 mA ■ Ta=60℃の時 I Lpo= 29411+A ここで、TaとPoとの関係を考慮すると、となる。■ When Ta=25°C I LED = 236 mA ■ When Ta=25℃ r LE111= 153 mA ■ When Ta=60℃ I Lpo=29411+A Here, considering the relationship between Ta and Po, it becomes.

光電スイッチの場合を考えると以下の表の如〈従来例と
比較すると、下表のようになり、温度変化に対する検知
距離の変化の大きな改善がみられる。つまり、温度が変
化しても、検知距離の変向、上の表中の中段は従来例を
示し、下段は実施例を示す。
Considering the case of a photoelectric switch, the table below shows a comparison with the conventional example, which shows a significant improvement in the change in detection distance with respect to temperature changes. In other words, even if the temperature changes, the detection distance changes. In the above table, the middle row shows the conventional example, and the lower row shows the example.

また、従来では、温度変化による発光パワー(出力)の
増減が大きいことにより、光電スイッチにおける受光回
路の飽和やあるいは、受光量不足による誤動作があった
が、本実施例により、温度変化による発光パワー、の増
減が低くなり、光電スイッチにおける受光回路の飽和や
、受光量不足による誤動作が防止可能である。従って、
温度変化による検知距離の変化を低減し、安定した動作
を可能とするものである。
In addition, in the past, large increases and decreases in the light emitting power (output) due to temperature changes caused saturation of the light receiving circuit in the photoelectric switch, or malfunctions due to insufficient amount of light received. The increase and decrease of , becomes low, and saturation of the light receiving circuit in the photoelectric switch and malfunction due to insufficient amount of light received can be prevented. Therefore,
This reduces changes in detection distance due to temperature changes and enables stable operation.

[発明の効果1 本発明は上述のように、発光ダイオードのような発光素
子と出力トランジスタとを直列に接続し、該出力トラン
ジスタのベースに電圧を印加して発光素子を発光させる
ようにした発光素子ドライブ回路において、上記発光素
子の発光出力と周囲温度との特性と逆の温度特性を有し
、そのべ一入・エミッタ間を介しで出力トランジスタの
ベースに電圧を印加するトランジスタを少なくとも1つ
以上設けたものであるから、発光素子の発光出力と周囲
温度との特性と逆の温度特性を有するトランジスタのベ
ース・エミッタ間を介して電圧を出力トランジスタのベ
ースに印加することで、温度変化に対して温度特性が相
位J5−れ為ことにな〜て、発光素子から一定の発光出
力の供給が可能となり、従って、例えば、光電スイッチ
に本発明の発光素子を用いれば、温度変化による発光素
子の発光出力の変化が低減されることによる検知距離変
化の低減によって、温度変化に対して安定した検知距離
が設定でき、誤動作を防止することができる効果を奏す
るものである。
[Effect of the Invention 1] As described above, the present invention provides a light emitting device in which a light emitting element such as a light emitting diode and an output transistor are connected in series, and a voltage is applied to the base of the output transistor to cause the light emitting element to emit light. In the element drive circuit, at least one transistor has temperature characteristics opposite to the characteristics of the light emission output and ambient temperature of the light emitting element, and applies a voltage to the base of the output transistor via the base input and emitter. As described above, by applying a voltage to the base of the output transistor through the base-emitter of the transistor, which has temperature characteristics opposite to the characteristics of the light emitting output of the light emitting element and the ambient temperature, temperature changes can be suppressed. On the other hand, since the temperature characteristics are in phase J5-, it becomes possible to supply a constant light emitting output from the light emitting element. Therefore, for example, if the light emitting element of the present invention is used in a photoelectric switch, the light emitting element will change due to temperature changes. By reducing the change in the detection distance due to the reduction in the change in the light emission output of the sensor, a stable detection distance can be set against temperature changes, and malfunctions can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の具体回路図、第2図は従来例
の具体回路図、第3図は周囲温度と相対発光出力との関
係を示す特性図である。 Dは発光素子、Qは出力トランジスタ、Q IIQ2は
トランジスタを示す。
FIG. 1 is a specific circuit diagram of an embodiment of the present invention, FIG. 2 is a specific circuit diagram of a conventional example, and FIG. 3 is a characteristic diagram showing the relationship between ambient temperature and relative light output. D represents a light emitting element, Q represents an output transistor, and QIIQ2 represents a transistor.

Claims (1)

【特許請求の範囲】[Claims] (1)発光ダイオードのような発光素子と出力トランジ
スタとを直列に接続し、該出力トランジスタのベースに
電圧を印加して発光素子を発光させるようにした発光素
子ドライブ回路において、上記発光素子の発光出力と周
囲温度との特性と逆の温度特性を有し、そのベース・エ
ミッタ間を介して出力トランジスタのベースに電圧を印
加するトランジスタを少なくとも1つ以上設けて成る発
光素子ドライブ回路。
(1) In a light emitting element drive circuit in which a light emitting element such as a light emitting diode and an output transistor are connected in series and a voltage is applied to the base of the output transistor to cause the light emitting element to emit light, A light emitting element drive circuit comprising at least one transistor having a temperature characteristic opposite to that of an output and an ambient temperature, and applying a voltage to the base of an output transistor via its base and emitter.
JP10323685A 1985-05-15 1985-05-15 Light emitting element driving circuit Pending JPS61261921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10323685A JPS61261921A (en) 1985-05-15 1985-05-15 Light emitting element driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10323685A JPS61261921A (en) 1985-05-15 1985-05-15 Light emitting element driving circuit

Publications (1)

Publication Number Publication Date
JPS61261921A true JPS61261921A (en) 1986-11-20

Family

ID=14348811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10323685A Pending JPS61261921A (en) 1985-05-15 1985-05-15 Light emitting element driving circuit

Country Status (1)

Country Link
JP (1) JPS61261921A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245297B2 (en) 2004-05-22 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US7482629B2 (en) 2004-05-21 2009-01-27 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US8134546B2 (en) 2004-07-23 2012-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
US9076383B2 (en) 2002-05-15 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9076383B2 (en) 2002-05-15 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Display device
US7482629B2 (en) 2004-05-21 2009-01-27 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US7834355B2 (en) 2004-05-21 2010-11-16 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US7245297B2 (en) 2004-05-22 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US8111215B2 (en) 2004-05-22 2012-02-07 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US8134546B2 (en) 2004-07-23 2012-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
US8482493B2 (en) 2004-07-23 2013-07-09 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof

Similar Documents

Publication Publication Date Title
JP2840632B2 (en) Full-wave rectifier circuit
US3925690A (en) Direct drive circuit for light emitting diodes
JPS61261921A (en) Light emitting element driving circuit
JP2533201B2 (en) AM detection circuit
US4366447A (en) Push-pull amplifier circuit
US4401899A (en) Current comparator circuit
JPS5915124Y2 (en) power amplifier circuit
JP2537290B2 (en) Driving circuit for semiconductor light emitting device
JPS5842886B2 (en) constant voltage device
JP3221058B2 (en) Rectifier circuit
JP2778029B2 (en) Frequency modulation circuit
JPS6267466A (en) Output display circuit for amplifier
JPS5928076B2 (en) Laser diode bias circuit
SU615604A1 (en) Inverter
JPH0746974Y2 (en) Temperature compensation bias circuit
JPH0117847Y2 (en)
JPH062347Y2 (en) Signal switching circuit
JPS6152996B2 (en)
JPS58108814A (en) Peak clipping circuit
JPS627175A (en) Light emitting diode driving circuit
JPS5874089A (en) Control system for semiconductor laser output
JPH0519844B2 (en)
GB1134400A (en) Improvements in or relating to circuit arrangements for producing a direct current
JPS58144913U (en) current stabilization circuit
JPH0541220U (en) Limiter circuit