JPS61261407A - Operating method for blast furnace - Google Patents

Operating method for blast furnace

Info

Publication number
JPS61261407A
JPS61261407A JP10257485A JP10257485A JPS61261407A JP S61261407 A JPS61261407 A JP S61261407A JP 10257485 A JP10257485 A JP 10257485A JP 10257485 A JP10257485 A JP 10257485A JP S61261407 A JPS61261407 A JP S61261407A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
dolomite
mgo
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10257485A
Other languages
Japanese (ja)
Inventor
Hideyuki Kamano
秀行 鎌野
Kazuo Ichifuji
一藤 和夫
Kazuo Okumura
奥村 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10257485A priority Critical patent/JPS61261407A/en
Publication of JPS61261407A publication Critical patent/JPS61261407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To maintain the basicity of slag, the concn. of MgO and the content of S in a molten iron within set values and to stabilize the furnace condition of a blast furnace by controlling the charging rate of auxiliary raw materials such as dolomite with the furnace top temp. as an index in the stage of operating the blast furnace. CONSTITUTION:The basicity of molten slag and the MgO component in the molten slag are maintained at the adequate set values and the content of S in the molten iron is controlled so as not to exceed the set value in the stage of operating the blast furnace. The top gas temp. of the blast furnace is controlled to a 100-150 deg.C range and the dolomite consisting of CaCO3 and MgCO3 is added to the blast furnace raw material for the above-mentioned purpose. The CaCO3 and MgCO3 absorb the heat for thermal decomposition thereof to CaO and MgO to decrease the furnace top gas temp. to <=150 deg.C; at the same time the content of S in the molten iron is decreased by the increased basicity of the molten slag in the furnace and content of MgO therein. The charging of the dolomite is stopped to prevent the temp. decrease by the thermal decomposition of the dolomite when the furnace top gas temp. decreases to <=100 deg.C. The furnace top gas is thus held again at 100-150 deg.C and the furnace condition is stabilized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉の操業技術の分野に属し、とくに炉熱の
調整や溶銑・滓成分の調整を、高炉内に副原料の生鉱石
の直接投入という方法によって実現するための実際的な
操業技術を提案する。
Detailed Description of the Invention (Field of Industrial Application) The present invention belongs to the field of blast furnace operation technology, and in particular, it is used to control the adjustment of furnace heat, hot metal and slag components. We propose a practical operating technology to realize this by direct input method.

(従来の技術) 一般的な高炉操業の場合、溶銑・滓成分の調整を目的と
して使うCaO源やMgO源となる鉱石は、特開昭53
−6215号で提案されているように処理鉱例えば焼結
鉱やペレット中に含ませるのが普通であり、たとえ副原
料をそのまま塊状で高炉内に装入することがあってもそ
れはと(少量である。すなわち特開昭47−27111
号、特開昭49−24824号で開示されているように
高炉内に生の副原料をそのまま装入して溶滓成分や塩基
度やMgO濃度の調整を行うと、それらが炉内で溶解す
る時に炉熱を著しく低下させるため、塊状で直接高炉へ
装入できる量は限られており、しかもその分抽の燃料、
例えばコークス装入量を増加させたり、送風温度を高め
たりして熱保障をしなければならない。
(Prior art) In the case of general blast furnace operation, the ore that becomes the CaO source and MgO source used for the purpose of adjusting the hot metal and slag components is
As proposed in No. 6215, it is normal to include treated ore, such as sintered ore, or pellets. That is, Japanese Patent Application Laid-Open No. 47-27111
As disclosed in JP-A No. 49-24824, when raw auxiliary raw materials are directly charged into a blast furnace and the slag components, basicity, and MgO concentration are adjusted, they melt in the furnace. The amount of fuel that can be directly charged to the blast furnace in lump form is limited, and the amount of fuel that can be extracted is limited.
For example, heat must be guaranteed by increasing the amount of coke charged or raising the temperature of the air.

(発明が解決しようとする問題点) 上述したところから明らかなように、高炉内にCaO源
、 MgO源となる生鉱石(副原料)を直接装入すると
、溶銑、溶滓成分の調整に有効であるものの炉熱低下及
びそれに伴って燃料比の増大をもたらすため通常予備処
理をしているが、それでは処理鉱製造段階で余分のエネ
ルギーが必要となるので、不経済であるという問題点が
あった。
(Problems to be solved by the invention) As is clear from the above, directly charging raw ore (auxiliary raw material) that becomes a source of CaO and MgO into the blast furnace is effective in adjusting the components of hot metal and slag. However, pretreatment is usually carried out to reduce the furnace heat and increase the fuel ratio, but this has the problem of being uneconomical as extra energy is required at the processing ore manufacturing stage. Ta.

本発明の目的は、不経済であるという問題点を克服する
こと、および炉況に悪影響を及ぼすことなく、副原料の
生鉱石を多量に装入し得るとともに炉熱および溶銑・滓
成分の確実な調整ができるような技術を提案することに
ある。
The purpose of the present invention is to overcome the problem of being uneconomical, to charge a large amount of raw ore as an auxiliary raw material without adversely affecting the furnace condition, and to ensure the furnace heat and hot metal/slag components. The goal is to propose technology that allows for precise adjustments.

(問題点を解決するための手段) 本発明は上記問題点解決手段として、CaO系鉱石やM
gO系鉱石などの副原料を直接高炉内に装入、ざ・ することにより、炉熱調整および溶銑、溶滓成分調整を
行うようにした方法において、上記副原料の装入制御を
高炉炉頂温度にもとづいて行うことを特徴とする高炉操
業方法を採用する。
(Means for Solving the Problems) The present invention solves the above problems by using CaO-based ores, M
In a method that adjusts the furnace heat and adjusts the composition of hot metal and slag by directly charging and pouring auxiliary materials such as gO-based ore into the blast furnace, the charging control of the auxiliary materials is carried out at the top of the blast furnace. A blast furnace operating method that is characterized by temperature-based operation is adopted.

要するに、炉頂部の温度が予め設定された温度レベル以
上にあるとき、副原料の装入量を制御して溶銑、溶滓の
成分調整を図り、併せて一定レベルの温度以上になった
時は装入副原料を増加させて炉熱調整を図るようにする
方法である。
In short, when the temperature at the top of the furnace is above a preset temperature level, the charging amount of auxiliary materials is controlled to adjust the composition of hot metal and slag, and when the temperature exceeds a certain level, This method attempts to adjust the furnace heat by increasing the amount of auxiliary materials charged.

(作 用) 本発明者らが過去の高炉操業データを解析したところに
よれば、ドロマイトの装入量と炉頂温度との間には、第
1図の(a)に示すように明瞭な関係があることがわか
った。
(Function) According to the inventors' analysis of past blast furnace operation data, there is a clear relationship between the charging amount of dolomite and the furnace top temperature, as shown in Figure 1 (a). It turns out that there is a relationship.

すなわち、ドロマイトはCaCO2・MgCO3の分子
式で表わされる鉱石であり、その溶解熱は70.8Kc
al/molである。第1図(a)から判るように、高
炉内にドロマイトを100にg/ch入れると、炉頂温
度は、約5℃低下する。
In other words, dolomite is an ore represented by the molecular formula of CaCO2/MgCO3, and its heat of solution is 70.8Kc.
al/mol. As can be seen from FIG. 1(a), when 100 g/ch of dolomite is introduced into the blast furnace, the furnace top temperature decreases by about 5°C.

一方、ドロマイト装入量と塩基度とは、第1図−(b)
のような関係があり、ドロマイト装入量を100 Kg
/ch増せば塩基度は約0.01増大する。またMgO
濃度については、第1図(c)に示すようにドロマイト
装入量を100 Kg/ch増せば、0.15%増大す
る。
On the other hand, the amount of dolomite charged and basicity are shown in Figure 1-(b).
There is a relationship as follows, and the amount of dolomite charged is 100 kg.
/ch increases, the basicity increases by about 0.01. Also, MgO
Regarding the concentration, as shown in Fig. 1(c), if the amount of dolomite charged is increased by 100 kg/ch, the concentration will increase by 0.15%.

このような関係にあることから、炉頂温度を指標として
ドロマイト装入量を増減させれば塩基度及びMgOtl
i度の調整が可能になることが明白である−0 従って本発明は、これらの知見を基礎として、高炉の炉
頂温度が一定レベル以上にあるとき副原料の装入量を増
減させて、炉熱調整を行うと同時に、溶銑・滓成分をも
調整するようにしたのである。なお上記説明では、副原
料性鉱石の例としてドロマイトを使用する例について説
明したが、CaO源、 MgO源としてはその他方灰石
やじゃもん岩等にも適用できるのはもちろんである。
Because of this relationship, if the amount of dolomite charged is increased or decreased using the furnace top temperature as an index, the basicity and MgOtl
Therefore, based on these findings, the present invention increases or decreases the charging amount of auxiliary raw materials when the top temperature of the blast furnace is above a certain level. At the same time as adjusting the furnace heat, the hot metal and slag components were also adjusted. In the above explanation, dolomite is used as an example of the auxiliary raw material ore, but it goes without saying that other sources such as ash, jamonite, etc. can also be used as the CaO source and MgO source.

(実施例) 本発明操業方法につき、内容積2500m” 、通常送
風N3N360ON/sin 、送風温度約1000℃
、設定炉頂温度100℃〜150℃の条件の高炉で説明
する。
(Example) Regarding the operating method of the present invention, the internal volume is 2500 m'', the normal air blowing is N3N360ON/sin, and the air blowing temperature is about 1000°C.
, a blast furnace with a set furnace top temperature of 100°C to 150°C will be explained.

副原料は貯鉱槽に入れておき必要に応じて切り出して高
炉内に装入する。
The auxiliary raw materials are stored in an ore storage tank and cut out as needed and charged into the blast furnace.

第2図に本発明性実施前と実施後の炉頂温度、ドロマイ
ト装入量、滓塩基度、環中MgOtM度、銑中S濃度、
高炉内装入物およびスリップ回数の変化を示す。
Figure 2 shows the furnace top temperature, dolomite charging amount, slag basicity, MgOtM degree in the ring, S concentration in the pig iron, before and after implementing the present invention.
It shows the changes in the contents in the blast furnace and the number of slips.

設定炉頂温度の上限を150℃、下限を100℃とし、
炉頂温度が150℃を超えた図中Aの期間について、炉
頂温度が150℃を下、まわるまでドロマイト装入量を
増加していった。その後、炉頂温度が設定下限の100
℃を下まわるまでドロマイト装入量を維持した。この間
、滓(スラグ)の塩基度、MgO濃度は高レベルとなり
、その結果、銑中5t74度は低レベルとなった。
The upper limit of the set furnace top temperature is 150℃, the lower limit is 100℃,
Regarding the period A in the figure when the furnace top temperature exceeded 150°C, the amount of dolomite charged was increased until the furnace top temperature fell below 150°C. After that, the furnace top temperature reaches the set lower limit of 100.
The dolomite charge was maintained until the temperature dropped below ℃. During this period, the basicity and MgO concentration of the slag became high, and as a result, the 5t74 degree in the pig iron became a low level.

一方、B期間は、炉頂温度が設定下限の100℃を下ま
わったため、ドロマイト装入量を減じていき、その後炉
頂部の温度が設定上限の150℃を上まわるまで、ドロ
マイト装入量を維持した。この間スラグ塩基度、MgO
t!js度は低下し、銑中S濃度は上昇した。しかし、
StJm度は設定上限以下に保った。これはスリップ回
数の変遷でわかるよう炉況が安定していたためである。
On the other hand, in period B, the furnace top temperature fell below the set lower limit of 100°C, so the dolomite charge amount was reduced, and then the dolomite charge amount was reduced until the furnace top temperature exceeded the set upper limit of 150°C. Maintained. During this period, slag basicity, MgO
T! JS degree decreased, and the S concentration in the pig iron increased. but,
The StJm degree was kept below the set upper limit. This is because the furnace conditions were stable, as can be seen from the change in the number of slips.

C期間以後においても、A期間と同様のアクションをと
った。
The same actions as in Period A were taken after Period C.

なお炉況安定度については、スリップ回数の変動でこれ
を示した。本発明実施後は実施前に比べてスリップの回
数が激減しており、本発明の効果が大きいことがわかる
The stability of the furnace condition was shown by the fluctuation of the number of slips. After implementing the present invention, the number of slips was drastically reduced compared to before implementing the present invention, which shows that the present invention is highly effective.

(発明の効果) 以上説明したように本発明によれば、炉頂温度を指標と
してドロマイト等副原料の装入量を制御することで、炉
況を安定に維持することができる他、燃料比を増大させ
ることなく、スラグの塩基度、MgO’IM度、銑中S
濃度を設定値内に保つことが可能となった。従って、従
来法では、ドロマイトなどのCaO源、 MgO源とな
る副原料を500 Kg/chしか高炉へ直接装入でき
なかったのに対し、本発明法では1500 Kg/ch
まで増すことができ、また焼結鉱などに予め含有させる
必要がないから省エネルギーにもなるし、経済的にも有
利である。
(Effects of the Invention) As explained above, according to the present invention, by controlling the charging amount of auxiliary materials such as dolomite using the furnace top temperature as an index, it is possible to maintain the furnace condition stably, and also to maintain the fuel ratio. slag basicity, MgO'IM degree, and S in pig iron without increasing
It became possible to maintain the concentration within the set value. Therefore, in the conventional method, only 500 kg/ch of auxiliary raw materials such as dolomite, which is a CaO source and MgO source, could be directly charged into the blast furnace, whereas in the present method, 1500 kg/ch could be charged directly into the blast furnace.
Furthermore, since it is not necessary to include it in sintered ore in advance, it saves energy and is economically advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図の(a) 、 (b) 、 (c)は、ドロマイ
ト装入量と炉頂温度、スラグ塩基度、MgO濃度との関
係を示すグラフ、 第2図は、本発明実施例にっての高炉操業データに関す
る推移図である。 第2図 期間(月) My 04危〔%]41に一戊閂ね〕
(a), (b), and (c) in Fig. 1 are graphs showing the relationship between dolomite charging amount, furnace top temperature, slag basicity, and MgO concentration; This is a transition chart regarding blast furnace operation data. Figure 2 Period (month) My 04 crisis [%] 41%

【−】係下しに炉
頂(し覧(’C)
[-] At the top of the furnace ('C)

Claims (1)

【特許請求の範囲】[Claims] 1、CaO系鉱石やMgO系鉱石などの副原料を直接高
炉内に装入することにより、炉熱調整および溶銑、溶滓
成分の調整を行うようにする高炉操業の方法において、
上記副原料の装入制御を高炉炉頂温度レベル配慮のもと
に行うことを特徴とする高炉操業方法。
1. In a blast furnace operation method that adjusts the furnace heat and adjusts the hot metal and slag components by directly charging auxiliary materials such as CaO ore and MgO ore into the blast furnace,
A method for operating a blast furnace, characterized in that the charging of the auxiliary raw materials is controlled with consideration given to the temperature level at the top of the blast furnace.
JP10257485A 1985-05-16 1985-05-16 Operating method for blast furnace Pending JPS61261407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10257485A JPS61261407A (en) 1985-05-16 1985-05-16 Operating method for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10257485A JPS61261407A (en) 1985-05-16 1985-05-16 Operating method for blast furnace

Publications (1)

Publication Number Publication Date
JPS61261407A true JPS61261407A (en) 1986-11-19

Family

ID=14330995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10257485A Pending JPS61261407A (en) 1985-05-16 1985-05-16 Operating method for blast furnace

Country Status (1)

Country Link
JP (1) JPS61261407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099150A (en) * 2009-11-06 2011-05-19 Kobe Steel Ltd Blast furnace operation method
JP2011127197A (en) * 2009-12-18 2011-06-30 Kobe Steel Ltd Method for operating blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099150A (en) * 2009-11-06 2011-05-19 Kobe Steel Ltd Blast furnace operation method
JP2011127197A (en) * 2009-12-18 2011-06-30 Kobe Steel Ltd Method for operating blast furnace

Similar Documents

Publication Publication Date Title
US4917727A (en) Method of operating a blast furnace
CA1149175A (en) Recovery of steel from high phosphorous iron ores
JPS61261407A (en) Operating method for blast furnace
GB1532204A (en) Cupola furnace and a method for the melting and refining of cement copper
KR910009867B1 (en) Process for producing chromium containing molten iron
KR910009962B1 (en) Method for producing chromium containing molten iron with low sulphur concentration
JPS6250544B2 (en)
RU2190667C1 (en) Blast smelting method
JPS6156211A (en) Method for operating blast furnace
KR100376513B1 (en) method for controlling heat level in melter gasifier
JP2889088B2 (en) Blast furnace operation method
JPH0635604B2 (en) Blast furnace operation method
KR100431855B1 (en) Operating method of blast furnace
SU1199799A1 (en) Method of controlling blast furnace operation
KR100376479B1 (en) A method and an apparatus for producing low silicon iron of blast furnace
JP2006152317A (en) Blast furnace-operation method
JPH06172825A (en) Operation of blast furnace
RU2157413C1 (en) Method of cast iron smelting in blast furnace
SU1103799A3 (en) Method for controlling blast furnace smelting
JPH0913109A (en) Operation of blowing large quantity of pulverized fine coal into blast furnace
JPS63171809A (en) Control method for furnace heat in oxygen blast furnace
Grant et al. Adaptation of EAF operations for unconventional raw materials
JP3617464B2 (en) Blast furnace operation method
GB1178853A (en) Improvements in or relating to Processes and Apparatus for Producing Metallurgical Products
JP2837282B2 (en) Production method of chromium-containing hot metal