JPS61260505A - Manufacture of transparent conductive film - Google Patents

Manufacture of transparent conductive film

Info

Publication number
JPS61260505A
JPS61260505A JP10135985A JP10135985A JPS61260505A JP S61260505 A JPS61260505 A JP S61260505A JP 10135985 A JP10135985 A JP 10135985A JP 10135985 A JP10135985 A JP 10135985A JP S61260505 A JPS61260505 A JP S61260505A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
substrate
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10135985A
Other languages
Japanese (ja)
Inventor
浩 川崎
英夫 田辺
熊田 政治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Japan Display Inc
Original Assignee
Hitachi Device Engineering Co Ltd
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Device Engineering Co Ltd, Hitachi Ltd, Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Device Engineering Co Ltd
Priority to JP10135985A priority Critical patent/JPS61260505A/en
Publication of JPS61260505A publication Critical patent/JPS61260505A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、耐熱性の小さい基板上に所望の透明導電膜を
低温度かつ高速度で再現性良く得られる透明導電膜の製
造方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for producing a transparent conductive film, which allows a desired transparent conductive film to be formed on a substrate with low heat resistance at low temperature and at high speed with good reproducibility. be.

〔発明の背景〕[Background of the invention]

一般にスパッタリング法により基板上に透明導電膜を形
成する方法としては、ターゲットにInzOs  Sn
O2酸化物等を用いて、Arガス雰囲気中でスパッタす
る方法と、In−8n合金等をAr と02との混合ガ
ス中でスパッタする方法の2種が提案されている。そし
て、前者はスパッタ直後に低電気抵抗、高光透過率の膜
が形成できるが、成膜速度を大きくすることが困難であ
る。一方、後者の場合、成膜速度は大きいが、基板加熱
または熱処理することなく、低電気抵抗、高光透過率の
膜が得られる成膜条件の範囲が極めて狭く、成膜コント
ロールが極端に難かしいという欠点があった。
Generally speaking, a sputtering method is used to form a transparent conductive film on a substrate using InzOsSn as a target.
Two methods have been proposed: a method in which O2 oxide or the like is sputtered in an Ar gas atmosphere, and a method in which In-8n alloy or the like is sputtered in a mixed gas of Ar and O2. In the former method, a film with low electrical resistance and high light transmittance can be formed immediately after sputtering, but it is difficult to increase the film formation rate. On the other hand, in the latter case, although the film formation rate is high, the range of film formation conditions that allow a film with low electrical resistance and high light transmittance to be obtained without substrate heating or heat treatment is extremely narrow, making film formation control extremely difficult. There was a drawback.

これに対して特開昭56−9905公報にょシ、金属イ
ンジウムを蒸発源として酸化性ガス雰囲気中に水蒸気を
含ませ、真空蒸着で形成された蒸着膜に酸化処理する方
法が報告されている。
On the other hand, Japanese Patent Laid-Open No. 56-9905 reports a method in which a vapor deposited film formed by vacuum evaporation is subjected to oxidation treatment by using metal indium as an evaporation source and including water vapor in an oxidizing gas atmosphere.

〔発明の目的〕[Purpose of the invention]

したがって、本発明は前述した従来の問題に鑑みてなさ
れたもので、その目的とするところは、基板温度を上げ
ずに高速度で再現性良く透明導電膜の形成を可能にした
透明導電膜の製造方法を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and its purpose is to create a transparent conductive film that enables the formation of a transparent conductive film at high speed and with good reproducibility without raising the substrate temperature. The purpose is to provide a manufacturing method.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために本発明は、スバッタ中
に基板ホルダにバイアス電圧を印加させ、透明導電膜の
膜質を制御することによシ、成膜を正確に制御するもの
である。
In order to achieve such an object, the present invention accurately controls film formation by applying a bias voltage to the substrate holder during sputtering and controlling the film quality of the transparent conductive film.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を用いて本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明による透明導電膜の製造方法の一例を
示すためのスパッタリング装置を示す要部断面図である
。同図において、1はスパッタ装置、2は透明導電膜を
形成する基板を保持させるホルダ、3はホルダ2に対向
して配置されたIn−8n合金からなるターゲット、4
はホルダ2上に装着された基板、5はターゲット3に高
電圧を印加する電源、6は酸素(O2)の流量を制御す
るマス70−コントローラ、7はアルゴン(Ar )の
流量を制御するマス70−コントローラ、8はホルダ2
に電圧を印加するバイアス電源でおる。
FIG. 1 is a cross-sectional view of a main part of a sputtering apparatus for illustrating an example of a method for manufacturing a transparent conductive film according to the present invention. In the figure, 1 is a sputtering device, 2 is a holder for holding a substrate on which a transparent conductive film is to be formed, 3 is a target made of In-8n alloy and placed opposite to the holder 2, and 4 is a sputtering device.
is a substrate mounted on the holder 2, 5 is a power source that applies high voltage to the target 3, 6 is a mass 70-controller that controls the flow rate of oxygen (O2), and 7 is a mass that controls the flow rate of argon (Ar). 70 - controller, 8 is holder 2
A bias power supply is used to apply voltage to the

このように構成されたスパッタリング装置において、ま
ず、スパッタ装置1内にアルゴンガスと10数係の酸素
ガスとの混合fスをマス70−コントロー26,7によ
って導入し、ターゲット3に電圧を印加して、基板4の
対向面上にターゲット3のIn−8n合金をスパッタリ
ングさせる。このターゲット3に電圧を印加する電源5
からの入力パワー、酸素、アルゴンガス流量、バイアス
電源の電圧等の成膜パラメータで、例えば、入力パワー
およびアルゴンガス流量を固定し、バイアス電圧を印加
せずに酸素ガス流量を増加させて透明導電膜を成膜した
場合、透明導電膜の膜質は第2図のように変化する。す
なわち、同図において、シート抵抗の極小値を示す02
流量よシ低酸素流量側では膜は黒くインジウムリッチの
低級酸化物を形成してお)、また高酸素流量側では膜は
透明で高抵抗な酸化物を形成する。そして、この低級酸
化物から化学量論組成の高抵抗な酸化物に変化する領域
において成膜速度が急激に変化し、この成膜速度の急激
な変化が起こる領域Aで低電気抵抗、高光透過率を有す
る透明導電膜が得られた。
In the sputtering apparatus configured in this way, first, a mixed gas of argon gas and oxygen gas of a factor of 10 is introduced into the sputtering apparatus 1 by the mass 70-controllers 26, 7, and a voltage is applied to the target 3. Then, the In-8n alloy of the target 3 is sputtered onto the opposite surface of the substrate 4. A power source 5 that applies voltage to this target 3
For example, by fixing the input power and argon gas flow rate and increasing the oxygen gas flow rate without applying a bias voltage, a transparent conductive film can be formed using film formation parameters such as the input power, oxygen and argon gas flow rates, and voltage of the bias power supply. When a film is formed, the quality of the transparent conductive film changes as shown in FIG. That is, in the same figure, 02 indicates the minimum value of sheet resistance.
On the low oxygen flow rate side, the film forms a black, indium-rich lower oxide), and on the high oxygen flow side, the film forms a transparent, high-resistance oxide. The film formation rate changes rapidly in the region where this lower oxide changes to a high resistance oxide with a stoichiometric composition, and in region A where this rapid change in film formation rate occurs, low electrical resistance and high light transmission occur. A transparent conductive film having a high conductivity was obtained.

しかしながら、この成膜領域Aは、ターゲット30表面
状態により大きく変動するため、予め酸素流量の最適化
を行ない、成膜条件を固定させて行なっても最適成膜領
域が狭いために良質の膜を再現性良く成膜することが困
難であった。
However, this film-forming area A varies greatly depending on the surface condition of the target 30, so even if the oxygen flow rate is optimized in advance and film-forming conditions are fixed, the optimal film-forming area is narrow and a high-quality film cannot be obtained. It was difficult to form a film with good reproducibility.

したがって本発明では、予め酸素流量の最適化を行なっ
た後に、成膜パラメータである入カッ(ワー、および酸
素、アルゴンガス流量を固定し、基板ホルダ2に印加す
るバイアス電圧を可変できるようにし、透明導電膜の膜
厚をこのバイアス電圧により制御するものである。これ
により第3図のようにバイアス電圧を高くもしくは低く
することで透明導電膜の膜質は徐々に変化し良質の膜が
得られるバイアス電圧範囲は広くなシ、したがって膜質
の制御が容易となる。
Therefore, in the present invention, after optimizing the oxygen flow rate in advance, the film forming parameters such as the input gas and the oxygen and argon gas flow rates are fixed, and the bias voltage applied to the substrate holder 2 is made variable. The thickness of the transparent conductive film is controlled by this bias voltage.As shown in Figure 3, by increasing or decreasing the bias voltage, the quality of the transparent conductive film gradually changes and a high quality film can be obtained. The bias voltage range is wide, so film quality can be easily controlled.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

まず、ターゲット3にIn−5wt%Sn合金を用い基
板4とターゲット3との間の距離を12011ml。
First, an In-5wt%Sn alloy was used for the target 3, and the distance between the substrate 4 and the target 3 was 12011 ml.

アルゴンガス流量65SCCM 、酸素ガス流量158
CCM、入力パワーは直流で200Wと固定し、ホルダ
2に保持された基板4にはンーダガラス、バイアス電源
8は直流電源を使用した。ここでバイアス電源8はOv
〜+100vの間で可変できるようにしておく。
Argon gas flow rate 65SCCM, oxygen gas flow rate 158
The input power of the CCM was fixed at 200 W with direct current, the substrate 4 held in the holder 2 was made of underglass, and the bias power supply 8 was a direct current power supply. Here, the bias power supply 8 is Ov
It should be possible to vary between ~+100v.

以上のような成膜条件において、基板4に印加  ゛す
るバイアス電圧のみを変えて透明導電膜を成膜し、得ら
れた膜の膜質から基板ホルダ2に印加するバイアス電圧
を最適化する。これによシ成膜裕度が向上し、低温度で
低電気抵抗、高光透過率を有する透明導電膜を再現性良
く得ることができた。
Under the above film forming conditions, a transparent conductive film is formed by changing only the bias voltage applied to the substrate 4, and the bias voltage applied to the substrate holder 2 is optimized based on the quality of the obtained film. As a result, the latitude for film formation was improved, and a transparent conductive film having low electrical resistance and high light transmittance could be obtained at low temperature with good reproducibility.

すでに発明者らによυ特願昭56−192935号公報
で成膜中にプラズマ中のインジウムと酸素のエミッショ
ンライン強度を測定し、この比が一定値となるように成
膜パラメータにフィードバックをかけると再現性が向上
することが明らかにされている。このフィードバックを
かける成膜バラメーメを本発明である基板へのバイアス
電圧とすると更に再現性が向上する。
The inventors have already reported in Japanese Patent Application No. 56-192935 that the emission line intensities of indium and oxygen in the plasma were measured during film formation, and feedback was applied to the film formation parameters so that this ratio remained constant. It has been shown that reproducibility is improved. Reproducibility is further improved when the bias voltage to the substrate according to the present invention is used as the film forming parameter to which this feedback is applied.

このような方法によれば、基板4の温度が約100℃以
下、成膜速度600シ一以上で良質の透明導電膜が再現
性良く作製することができる。この場合、膜特性は基板
4の種類、材質等により、多少異なるが、例えば、ソー
ダガラス上に上記実施例で形成した膜厚約300Xの透
明導電膜においては、シート抵抗約100Ω/口、波長
500 nmにおいて約88%の光透過率が得られた。
According to such a method, a high-quality transparent conductive film can be produced with good reproducibility at a temperature of the substrate 4 of about 100° C. or lower and a film formation rate of 600 cm or higher. In this case, the film characteristics differ somewhat depending on the type and material of the substrate 4, but for example, in the case of a transparent conductive film with a film thickness of about 300X formed on soda glass in the above example, the sheet resistance is about 100Ω/gate, and the wavelength A light transmittance of about 88% was obtained at 500 nm.

なお、本実施例では、ターゲット3にIn−5wt%S
nを使用したが、本発明はこれに限定されるものではな
く、In+Sn+Sn  Sb、Zn 等でも良く、さ
らに合金の場合、組成比を変えても同様の効果を発揮す
る。
In this example, In-5wt%S was added to the target 3.
Although n is used, the present invention is not limited thereto, and may also be In+Sn+Sn, Sb, Zn, etc. Furthermore, in the case of an alloy, the same effect can be achieved even if the composition ratio is changed.

また、本実施例では、酸化性ガスとして酸素を用いた場
合について説明したが、COzガスr N z Oガス
等の酸化性ガスあるいは、これらと酸素ガスの混合ガス
を用いた場合においても同様の効果が得られる。
In addition, in this example, the case where oxygen was used as the oxidizing gas was explained, but the same effect can be obtained when using an oxidizing gas such as COz gas r Nz O gas or a mixed gas of these and oxygen gas. Effects can be obtained.

さらにバイアス電源8においても直流電源に限定される
ものではなく、高周波電源でも良く同様の効果が得られ
るものである。
Further, the bias power source 8 is not limited to a DC power source, but may also be a high frequency power source and the same effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による透明導電膜の製造方法
によれば、基板温度を上げずに透明導電膜を高速度で再
現性良く形成することができ、また、基板温度を高温度
に上げられない耐熱性の小さい基板、例えばプラスチッ
ク基板、偏光板等にも透明導電膜を低温度でかつ高速度
でしかも容易に膜質をコントロールすることができると
いう極めて優れた効果が得られる。
As explained above, according to the method for manufacturing a transparent conductive film according to the present invention, a transparent conductive film can be formed at high speed and with good reproducibility without increasing the substrate temperature, and the substrate temperature can be raised to a high temperature. Even on substrates with low heat resistance such as plastic substrates, polarizing plates, etc., an extremely excellent effect can be obtained in that the transparent conductive film can be formed at low temperature and at high speed, and the film quality can be easily controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による透明導電膜の形成方法の一例を説
明するためのスパッタリング装置を示す要部断面図、第
2図は透明導電膜の酸素流量に対するシート抵抗、光透
過率の変化を示す特性図、第3図は入力パワー、アルゴ
ン、酸素流量を固定して成膜した場合のバイアス電圧に
対する透明導電膜のシート抵抗、光透過率の変化を示す
特性図である。 1・・・・スパッタ装置、2・・・・基板ホルダ、3・
・・・ターゲット、4・・・・基板、5番・・φ電源%
6・・・・酸素ガスマスフロコントローラ 7 II 
@・・アルゴンガスマスフロコントローラ、8・・・・
バイアスti。
FIG. 1 is a cross-sectional view of a main part of a sputtering apparatus for explaining an example of the method for forming a transparent conductive film according to the present invention, and FIG. 2 shows changes in sheet resistance and light transmittance with respect to oxygen flow rate of the transparent conductive film. A characteristic diagram, FIG. 3, is a characteristic diagram showing changes in sheet resistance and light transmittance of a transparent conductive film with respect to bias voltage when a film is formed with fixed input power, argon, and oxygen flow rates. 1... Sputtering device, 2... Substrate holder, 3...
...Target, 4...Substrate, No.5...φ power supply%
6...Oxygen gas mass flow controller 7 II
@...Argon gas mass flow controller, 8...
bias ti.

Claims (1)

【特許請求の範囲】[Claims] 不活性ガスと酸化性ガスとの混合ガス中で金属をスパッ
タリングして基板上に透明導電膜を形成する透明導電膜
の製造方法において、前記スパッタリング中に基板にバ
イアス電圧を印加し透明導電膜の膜質を制御することを
特徴とした透明導電膜の製造方法。
In a method for producing a transparent conductive film in which a transparent conductive film is formed on a substrate by sputtering a metal in a mixed gas of an inert gas and an oxidizing gas, a bias voltage is applied to the substrate during the sputtering to form a transparent conductive film. A method for producing a transparent conductive film characterized by controlling film quality.
JP10135985A 1985-05-15 1985-05-15 Manufacture of transparent conductive film Pending JPS61260505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10135985A JPS61260505A (en) 1985-05-15 1985-05-15 Manufacture of transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10135985A JPS61260505A (en) 1985-05-15 1985-05-15 Manufacture of transparent conductive film

Publications (1)

Publication Number Publication Date
JPS61260505A true JPS61260505A (en) 1986-11-18

Family

ID=14298637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10135985A Pending JPS61260505A (en) 1985-05-15 1985-05-15 Manufacture of transparent conductive film

Country Status (1)

Country Link
JP (1) JPS61260505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232358A (en) * 1989-03-03 1990-09-14 Ulvac Corp Production of transparent conductive film and apparatus for producing such film
JPWO2007080738A1 (en) * 2006-01-11 2009-06-11 株式会社村田製作所 Transparent conductive film and method for producing transparent conductive film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232358A (en) * 1989-03-03 1990-09-14 Ulvac Corp Production of transparent conductive film and apparatus for producing such film
JPWO2007080738A1 (en) * 2006-01-11 2009-06-11 株式会社村田製作所 Transparent conductive film and method for producing transparent conductive film
JP5181677B2 (en) * 2006-01-11 2013-04-10 株式会社村田製作所 Transparent conductive film

Similar Documents

Publication Publication Date Title
US4379040A (en) Method of and apparatus for control of reactive sputtering deposition
US4336119A (en) Method of and apparatus for control of reactive sputtering deposition
US3655545A (en) Post heating of sputtered metal oxide films
US4201649A (en) Low resistance indium oxide coatings
US4622120A (en) Sputtered indium oxide films
US3749658A (en) Method of fabricating transparent conductors
JPS61260505A (en) Manufacture of transparent conductive film
JPH0370326B2 (en)
JPH058527B2 (en)
JP2628591B2 (en) Method for forming transparent conductive film
JPH07223814A (en) Indium oxide film having enhanced resistance
JP4079457B2 (en) Method for increasing resistance of indium-tin oxide film
JPS6215961B2 (en)
JP2003027216A (en) Method and apparatus for producing transparent electrically conductive film
JPS61176010A (en) Manufacture of transparent conductive film
JPH0338681B2 (en)
JPS647445B2 (en)
JPH05290635A (en) Transparent conductive electrode and manufacture thereof
CN110626087B (en) Ink-free laser color printing method based on phase-change material
JPH0784288A (en) Light controllable window glass and its production
JPH10183333A (en) Formation of transparent conductive film
JP2588910B2 (en) Improved dimmer
JP3281646B2 (en) Method for producing transparent conductive film
JPH0444812B2 (en)
JP3128332B2 (en) Method of forming diffused optical waveguide with improved surface morphology