JP3128332B2 - Method of forming diffused optical waveguide with improved surface morphology - Google Patents

Method of forming diffused optical waveguide with improved surface morphology

Info

Publication number
JP3128332B2
JP3128332B2 JP04173741A JP17374192A JP3128332B2 JP 3128332 B2 JP3128332 B2 JP 3128332B2 JP 04173741 A JP04173741 A JP 04173741A JP 17374192 A JP17374192 A JP 17374192A JP 3128332 B2 JP3128332 B2 JP 3128332B2
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
ion bombardment
dielectric substrate
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04173741A
Other languages
Japanese (ja)
Other versions
JPH05341146A (en
Inventor
裕俊 永田
潤 日高
純一郎 箕輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP04173741A priority Critical patent/JP3128332B2/en
Publication of JPH05341146A publication Critical patent/JPH05341146A/en
Application granted granted Critical
Publication of JP3128332B2 publication Critical patent/JP3128332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、表面形態の改善された
拡散型光導波路の形成方法に関するものである。更に詳
しく述べるならば、本発明は、光集積回路板の作製に必
要な、誘電体(強誘電体を包含する)基板、例えばLi
NbO3 単結晶基板上に表面粗度の低い光導波路を形成
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a diffusion type optical waveguide having an improved surface morphology. More specifically, the present invention relates to a dielectric (including ferroelectric) substrate such as Li
The present invention relates to a method for forming an optical waveguide having a low surface roughness on an NbO 3 single crystal substrate.

【0002】[0002]

【従来の方法】一般に、誘電体結晶、特に高い電気光学
特性を有する強誘電体の結晶、例えばLiNbO3 の単
結晶、からなる基板の表面に、前記誘電体結晶の屈折率
を高める作用を有する物質、例えば、LiNbO3 単結
晶に対してはTi、を所定パターンに付着させ、これを
誘導体基板表面近傍部分に熱内拡散させ、それによって
当該誘導体基板の前記パターン部分の屈折率を局部的に
高めて光導波路を形成し得ることが知られている。
2. Description of the Related Art In general, a substrate made of a dielectric crystal, particularly a ferroelectric crystal having high electro-optical characteristics, for example, a single crystal of LiNbO 3 has an effect of increasing the refractive index of the dielectric crystal. A substance, for example, Ti for LiNbO 3 single crystal is adhered to a predetermined pattern, and this is thermally diffused into a portion near the surface of the derivative substrate, thereby locally changing the refractive index of the pattern portion of the derivative substrate. It is known that optical waveguides can be formed at elevated levels.

【0003】このような技術は、例えば西原、春名、栖
原共著「光集積回路」、(オーム社(1985))に、
Ti拡散型LiNbO3 導波路を例示しつゝ解説されて
いる。LiNbO3 単結晶の表面部分に、Tiを内拡散
させて形成された導波路は、すぐれた電気化学効果、お
よび光非線形効果を有し、このため光電子デバイスに高
い応用価値を有するものであり、この技術に関して多く
の研究成果が報告されている(例えば、R.V.Schmidt &
I.P.Kaminiw, Appl.Phys.Lett.25 (1974)458)。
[0003] Such a technique is described in, for example, "Optical Integrated Circuit", co-authored by Nishihara, Haruna, and Suhara (Ohmsha (1985)).
A Ti-diffused LiNbO 3 waveguide is illustrated and described. A waveguide formed by inwardly diffusing Ti in the surface portion of a LiNbO 3 single crystal has an excellent electrochemical effect and an optical non-linear effect, and therefore has a high application value to an optoelectronic device. Many studies have been reported on this technology (eg, RVSchmidt &
IP Kaminiw, Appl. Phys. Lett. 25 (1974) 458).

【0004】強誘電体基板、例えばLiNbO3 単結晶
基板に、その屈折率を高める物質、例えばTiを内拡散
させるには、基板表面の所定パターン領域に、Tiを堆
積付着させ、この堆積付着したTiを、LiNbO3
curie温度1080℃より低く、しかし、より高い
拡散速度を得るためにできるだけ高い温度、例えば98
0℃の高温下で加熱してこれを基板内に熱拡散させる方
法が採用されている(例えば、R.j.Holmes & D.M.Smyt
h, J.Appl.Phys.55(1984)3531)。しかし、従来方法
においては、Tiの熱内拡散処理において、得られる光
導波路の表面に多数の凹凸を生じその表面粗度が増大す
るという問題がある。
In order to indiffuse a substance for increasing the refractive index, for example, Ti, into a ferroelectric substrate, for example, a LiNbO 3 single crystal substrate, Ti is deposited and deposited on a predetermined pattern region on the substrate surface. Ti is treated at a temperature lower than the Curie temperature of 1080 ° C. of LiNbO 3 but as high as possible to obtain a higher diffusion rate, for example 98 ° C.
A method of heating at a high temperature of 0 ° C. and thermally diffusing the same into a substrate is adopted (for example, Rj Holmes & DMSmyt)
h, J. Appl. Phys. 55 (1984) 3531). However, in the conventional method, there is a problem that the surface roughness of the obtained optical waveguide is increased due to a number of irregularities in the surface of the obtained optical waveguide in the thermal diffusion treatment of Ti.

【0005】光導波路表面の粗度が増大すると、当然、
光導波路の光伝搬損失が大きくなるという重大な欠点を
生ずる。このため、光導波路表面の粗度を低下させるた
めの多くの試みがなされてきた。
When the roughness of the optical waveguide surface increases, naturally,
There is a serious disadvantage that the light propagation loss of the optical waveguide is large. For this reason, many attempts have been made to reduce the roughness of the optical waveguide surface.

【0006】光導波路表面の粗度を低下させ、その表面
形態を改善する試みの一つとして、熱内拡散処理におけ
る加熱雰囲気中に水蒸気を導入する方法が開発され、こ
の方法は既に実用化されている。この技法は、例えば、
M.DeSario, M.N.Armenice, C.Canali, A.Carnera, P.Ma
zzodldi & G.Celotti, J.Appl.Phys.,57 (1985)1482に
開示されている。
[0006] As one of attempts to reduce the roughness of the surface of an optical waveguide and improve the surface morphology, a method of introducing water vapor into a heated atmosphere in a thermal diffusion treatment has been developed, and this method has already been put to practical use. ing. This technique, for example,
M.DeSario, MNArmenice, C.Canali, A.Carnera, P.Ma
zzodldi & G. Celotti, J. Appl. Phys., 57 (1985) 1482.

【0007】しかし上記技法において、Ti拡散光導波
路の表面形態は、加熱雰囲気の水蒸気含有率、キャリヤ
ガスなどを含む加熱雰囲気の組成などに敏感に依存する
ため、その工程管理がきわめて複雑になる(野沢、須
藤、宮沢、「応用物理」、59,(1990)99
6)。このため誘電体基板又は強誘電体基板上に、表面
粗度の低い拡散型光導波路を形成する方法の開発が強く
望まれていた。
However, in the above technique, the surface morphology of the Ti-diffused optical waveguide is sensitively dependent on the water vapor content of the heating atmosphere, the composition of the heating atmosphere including the carrier gas, and the like. Nozawa, Sudo, Miyazawa, "Applied Physics", 59 , (1990) 99
6). Therefore, development of a method for forming a diffusion type optical waveguide having a low surface roughness on a dielectric substrate or a ferroelectric substrate has been strongly desired.

【0008】[0008]

【発明が解決しようとする課題】本発明は誘電体基板上
に、熱内拡散法によって光導波路を形成するに際し、表
面粗度が低く、従って光伝搬損失の小さい光導波路を形
成する方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention provides a method for forming an optical waveguide on a dielectric substrate by a thermal diffusion method, which has a low surface roughness and therefore a small optical propagation loss. What you want to do.

【0009】[0009]

【課題を解決するための手段】本発明者らは、誘電体基
板表面に熱内拡散法により光導波路を形成するに際し、
誘電体基板表面に予じめイオン衝撃処理を施すことによ
り、得られる光導波路表面の形態が著しく改善し得るこ
とを見出し、本発明方法を完成させたのである。
Means for Solving the Problems In forming an optical waveguide on the surface of a dielectric substrate by a thermal diffusion method, the present inventors
The inventors have found that the form of the surface of the obtained optical waveguide can be remarkably improved by performing the ion bombardment treatment on the surface of the dielectric substrate in advance, and have completed the method of the present invention.

【0010】本発明に係る表面形態の改善された拡散型
光導波路の形成方法は、誘電体基板の表面に、前記誘電
体の屈折率を高める効果を有する物質を堆積付着させ、
これを前記基板の表面近傍部分に熱内拡散させて光導波
路を形成するに際し、前記付着工程に先立って、前記基
板の前記光導波路を形成する表面の全面に対してイオン
衝撃処理を施し、前記イオン衝撃処理が、前記イオンを
前記基板表面に衝突させて、この表面部分に欠陥、およ
び/又は変質を生ぜしめる効果を有し、かつこれらの表
面欠陥、および/又は変質が、前記イオン衝撃処理の後
に施される前記堆積付着物質の熱内拡散処理によって回
復することを特徴とするものである。
According to a method of forming a diffusion type optical waveguide having an improved surface morphology according to the present invention, a substance having an effect of increasing the refractive index of the dielectric is deposited and adhered on the surface of a dielectric substrate.
When forming an optical waveguide by thermally diffusing this into a portion near the surface of the substrate, prior to the attaching step, performing ion bombardment treatment on the entire surface of the substrate on which the optical waveguide is formed, The ion bombardment treatment has the effect of causing the ions to bombard the substrate surface to cause defects and / or alteration on this surface portion, and these surface defects and / or alterations are caused by the ion bombardment treatment. The recovery is performed by a thermal diffusion treatment of the deposited substance which is performed after the step.

【0011】[0011]

【作用】本発明において「誘電体」とは通常の誘電体お
よび強誘電体を包含する。本発明方法に用いられる誘電
体基板は従来使用されているもの、例えばLiNbO3
単結晶、LiTaO3 単結晶およびKNbO3 単結晶な
どからなる基板から選ぶことができる。
In the present invention, the term "dielectric" includes ordinary dielectrics and ferroelectrics. The dielectric substrate used in the method of the present invention is one conventionally used, for example, LiNbO 3
The substrate can be selected from a single crystal, a LiTaO 3 single crystal, a KNbO 3 single crystal, and the like.

【0012】本発明方法において、誘電体基板の屈折率
を高めるために用いられる熱拡散物質は、従来当該技術
に用いられているもの、例えばTiなどの遷移金属元素
およびErなどの希土類元素などから選ぶことができ
る。希土類元素は、遷移金属元素よりなる拡散型導波路
中に同時に拡散させることにより導波路中における発光
効果などをもたらす。
In the method of the present invention, the thermal diffusion material used to increase the refractive index of the dielectric substrate is selected from those conventionally used in the art, for example, transition metal elements such as Ti and rare earth elements such as Er. You can choose. The rare-earth element causes a light-emitting effect in the waveguide by diffusing the rare-earth element simultaneously into a diffusion-type waveguide made of a transition metal element.

【0013】本発明方法においては、先ず誘電体基板表
面の、少なくとも所定パターンの光導波路形成予定領域
を含む表面の全面に、イオン衝撃処理が施される。この
イオン衝撃処理は、光導波路の形成、およびその性能に
悪影響を与えることのない物質のイオン、好ましくは高
効率のイオン衝撃を付与するために、少なくとも希ガス
(すなわちHe,Ne,Ar,Kr,XeおよびRnの
少なくとも1種)のイオンを含むガス雰囲気中で行われ
る。このイオン衝撃処理の方式については、イオンが誘
電体基板表面に衝突し、それに所望の効果を与え得る限
り格別の制限はないが、一般にRFスパッタリング法、
イオンビームスパッタリング法、ECRスパッタリング
法などが用いられる。
In the method of the present invention, first, an ion bombardment treatment is performed on the entire surface of the surface of the dielectric substrate including at least the region where the optical waveguide of the predetermined pattern is to be formed. This ion bombardment treatment involves at least a noble gas (ie, He, Ne, Ar, Kr) in order to impart ions of a substance that does not adversely affect the formation of the optical waveguide and its performance, preferably high efficiency. , Xe and Rn) in a gas atmosphere containing ions. There is no particular limitation on the type of the ion bombardment treatment as long as the ions bombard the surface of the dielectric substrate and can give a desired effect thereto.
An ion beam sputtering method, an ECR sputtering method, or the like is used.

【0014】本発明方法において、誘電体基板の所定パ
ターンの光導波路が形成される表面の全面にイオン衝撃
処理が施されると、この表面部分の構成原子の少なくと
も一部分がスパッタ放出され、当該基板表面近傍部分
に、イオン打込み、結晶欠陥、格子欠陥などの点欠陥、
および/又は変質が生ずる。こゝで変質とは、結晶基板
においてはその表面近傍部分のアモルファス化などを含
み、また強誘電体結晶においては荷電衝撃による分極構
造の変化などを含む。誘電体基板の表面部分は本来絶縁
体であるが、イオン衝撃処理を施した表面部分は導電体
化しており、上述のようにイオン衝撃処理により、誘導
体基板表面近傍部分に電導キャリアとなる結晶欠陥が発
生していることが示唆される。
In the method of the present invention, when the entire surface of the surface of the dielectric substrate on which the optical waveguide of the predetermined pattern is formed is subjected to the ion bombardment treatment, at least a part of the constituent atoms of the surface portion is sputtered and emitted. Point defects such as ion implantation, crystal defects, lattice defects, etc.
And / or alteration occurs. Here, the alteration includes, for example, amorphization of a portion near the surface of a crystal substrate, and a change in a polarization structure due to a charge impact in a ferroelectric crystal. Although the surface portion of the dielectric substrate is essentially an insulator, the surface portion subjected to the ion bombardment treatment is turned into a conductor, and as described above, the crystal defects that become conductive carriers near the surface of the derivative substrate by the ion bombardment treatment It is suggested that the occurrence has occurred.

【0015】次に、イオン衝撃処理を施され改質された
前記誘電体基板の表面に、屈折率向上物質、例えばTi
が所定の導波路のパターンに従って堆積付着される。こ
の屈折率向上物質の堆積付着方法には格別の限定はない
が、一般には蒸着法、およびスパッタリング法など、特
に真空蒸着法が用いられ、所定量の屈折率向上物質が前
記誘電体基板のイオン衝撃処理面上に堆積される。
Next, a surface of the dielectric substrate which has been subjected to the ion bombardment treatment and modified, has a refractive index improving substance, for example, Ti
Are deposited according to a predetermined waveguide pattern. Although there is no particular limitation on the method of depositing and depositing the refractive index improving substance, generally, a vacuum deposition method such as an evaporation method and a sputtering method is used, and a predetermined amount of the refractive index improving substance is ionized on the dielectric substrate. Deposited on impact treated surface.

【0016】次に、誘電体基板上の屈折率向上物質に対
し、熱内拡散処理が施される。この熱内拡散処理条件
は、使用される屈折率向上物質および誘電体基板の種類
に応じて適宜に設定されるが、LiNbO3 基板の場合
は、一般に濕潤酸素気流雰囲気中において、980〜1
050℃の温度において行われる。
Next, the material for improving the refractive index on the dielectric substrate is subjected to a thermal diffusion treatment. The conditions of the heat diffusion treatment are appropriately set according to the type of the refractive index improving substance and the dielectric substrate to be used. In the case of the LiNbO 3 substrate, the conditions are generally 980 to 1 in a moist oxygen gas stream atmosphere.
It is performed at a temperature of 050 ° C.

【0017】本発明方法においては、上述のように、イ
オン衝撃処理により誘電体基板の光導波路形成表面の全
面に、結晶欠陥や、変質などの改質が生ずるが、これに
引続いて施される上記熱内拡散処理により、屈折率向上
物質が、前記表面改質層を介して誘電体基板内に熱内拡
散すると同時に、誘電体基板表面の前記欠陥および変質
が正常な状態に復元され、表面形態の良好な、例えば比
較的平滑な表面を有する光導波路が形成される。
In the method of the present invention, as described above, modification such as crystal defects and alteration occurs over the entire surface of the dielectric substrate on which the optical waveguide is formed by the ion bombardment treatment. By the above-mentioned thermal diffusion treatment, the refractive index improving substance is thermally diffused into the dielectric substrate via the surface modification layer, and at the same time, the defects and alteration on the dielectric substrate surface are restored to a normal state. An optical waveguide having a good surface morphology, for example, having a relatively smooth surface is formed.

【0018】本発明方法の熱内拡散において、その加熱
温度が著しく低い場合、例えば、結晶薄膜層の最適エピ
タキシヤル成長温度として知られている、融点(絶対温
度)の1/2の温度(石坂、日本物理学会誌、44(198
9)408 )よりも低い場合は、誘電体基板表面の欠陥お
よび変質の復元が不十分になる可能性がある。また、こ
の加熱温度がcurie点などの相転移温度より高くな
ると、得られる導波路が、本来の物性(電気光学効果な
ど)を発現しないなどの欠点を生ずる。
In the thermal diffusion in the method of the present invention, when the heating temperature is extremely low, for example, a temperature (Ishizaka) which is half the melting point (absolute temperature), which is known as the optimum epitaxial growth temperature of the crystal thin film layer. , Journal of the Physical Society of Japan, 44 (198
9) If lower than 408), the restoration of defects and alterations on the dielectric substrate surface may be insufficient. Further, if the heating temperature is higher than the phase transition temperature such as the Curie point, the obtained waveguide has drawbacks such as not exhibiting the original physical properties (such as the electro-optical effect).

【0019】本発明方法において、誘電体基板表面に施
されるイオン衝撃処理が、その上に形成される光導波路
の表面形態を良好にする理由については、未だ十分には
明らかではないが、イオン衝撃により誘電体基体表面に
形成された結晶欠陥、酸素欠損、および変質が、屈折率
向上物質の熱拡散の速度および拡散反応などを助長し、
光導波表面の粗度を左右する要因の一つである未反応物
の析出を防止するためと考えられる。
In the method of the present invention, the reason why the ion bombardment treatment applied to the surface of the dielectric substrate improves the surface morphology of the optical waveguide formed thereon has not yet been sufficiently clarified. Crystal defects, oxygen vacancies, and alterations formed on the surface of the dielectric substrate due to the impact promote the rate of thermal diffusion and diffusion reaction of the refractive index improving substance,
It is considered to prevent precipitation of unreacted substances, which is one of the factors affecting the roughness of the optical waveguide surface.

【0020】[0020]

【実施例】本発明を下記実施例により更に説明する。The present invention is further described by the following examples.

【0021】実施例1 LiNbO3 基板(Z−カットされたもの、山寿セラミ
ックス社製、3インチ基板、0.5mm厚の表面を、アセ
トン、エチルアルコール、界面活性剤、超純水により湿
式洗浄し、乾燥した。この基板をRF−スパッタリング
装置の電極上にセットし、これに、純アルゴン雰囲気に
おいて、圧力:0.3Pa,RF出力:100Wの条件
において15分間、前記基板表面の全面にアルゴンイオ
ン衝撃処理を施した。
Example 1 LiNbO 3 substrate (Z-cut, manufactured by Yamatosu Ceramics Co., Ltd., 3 inch substrate, 0.5 mm thick surface was wet-cleaned with acetone, ethyl alcohol, a surfactant and ultrapure water. The substrate was set on an electrode of an RF-sputtering apparatus, and argon was applied to the entire surface of the substrate in a pure argon atmosphere at a pressure of 0.3 Pa and an RF output of 100 W for 15 minutes. An ion bombardment treatment was applied.

【0022】上記アルゴンイオン衝撃処理により、誘電
体基板の被処理表面は黒変し、その抵抗値は200〜3
00Ωに低下した。
By the above argon ion bombardment treatment, the surface to be treated of the dielectric substrate turns black, and its resistance value is 200 to 3
It dropped to 00Ω.

【0023】上記基板の処理表面に、真空蒸着法と、フ
ォトリソグラフ法を用いたリフトオフ法により、Tiの
光導波路パターンを描画した。このときTi蒸着層の厚
さが800nmになるように蒸着時間を調整した。
An optical waveguide pattern of Ti was drawn on the processed surface of the substrate by a vacuum deposition method and a lift-off method using a photolithographic method. At this time, the evaporation time was adjusted so that the thickness of the Ti evaporation layer was 800 nm.

【0024】上記のTi蒸着された誘電体基板を電気炉
内に装入し、980℃において20時間の熱内拡散処理
を施した。このとき、合成空気を室温の超純水中にバブ
リングさせつゝ、電気炉内に導入した。
The above-described dielectric substrate on which Ti was deposited was placed in an electric furnace and subjected to a thermal diffusion treatment at 980 ° C. for 20 hours. At this time, the synthetic air was introduced into the electric furnace while bubbling the ultrapure water at room temperature.

【0025】上記操作より得られた光導波路の表面形態
を光学顕微鏡により撮影した。その写真を図1に示す。
図1から明らかなように、誘電体基板上に形成された、
幅7μmの光導波路、(写真中央部に、横方向に伸びて
いる縞状部分)の表面は、比較的低い粗度を有するもの
であった。また、得られた誘電体基板の表面の黒変は、
熱内拡散処理により解消し、表面導電特性も絶縁体に回
復した。また得られた光導波路が、従来法によりイオン
衝撃処理を施すことなしに作製された光導波路と同様
に、電気光学効果による光変調特性を示すことを、マッ
ハツェンダー型強度変調器を作製して確認した。
The surface morphology of the optical waveguide obtained by the above operation was photographed with an optical microscope. The photograph is shown in FIG.
As is evident from FIG. 1, formed on the dielectric substrate,
The surface of the optical waveguide having a width of 7 μm (the stripe portion extending in the lateral direction at the center of the photograph) had relatively low roughness. Also, the blackening of the surface of the obtained dielectric substrate,
It was eliminated by heat diffusion treatment, and the surface conductivity was restored to an insulator. In addition, a Mach-Zehnder type intensity modulator was manufactured to show that the obtained optical waveguide exhibited light modulation characteristics due to the electro-optic effect, similarly to an optical waveguide manufactured without performing ion bombardment treatment by a conventional method. confirmed.

【0026】比較例1 実施例1と同様にしてLiNbO3 基板上に光導波路
(幅7μm)を形成した。但し、アルゴンイオン衝撃処
理を省略した。得られた光導波路の表面を図2に示す。
図2から明らかなように光導波路の表面の粗度は、実施
例1のそれよりも明瞭に低いものであった。
Comparative Example 1 An optical waveguide (7 μm in width) was formed on a LiNbO 3 substrate in the same manner as in Example 1. However, the argon ion bombardment treatment was omitted. FIG. 2 shows the surface of the obtained optical waveguide.
As is clear from FIG. 2, the surface roughness of the optical waveguide was clearly lower than that of Example 1.

【0027】[0027]

【発明の効果】本発明方法により誘導体基板上に、表面
形態が改善され、比較的粗度の低い表面を有する光導波
路を形成することが可能になった。また、本発明方法に
おいて、イオン衝撃処理により基板表面近傍部分に結晶
欠陥、変質などが生じ、黒変、導電性化などが発生する
が、これらは引き続き施される熱内拡散処理により復元
解消され、性能の良好な光導波路が形成される。本発明
方法により得られる光導波路は、光伝搬損失などの光導
波特性、工程の再現・管理の両面において信頼性の高い
ものであって、光電子デバイスプロセス技術としてきわ
めて高い価値を有するものである。
According to the method of the present invention, it is possible to form an optical waveguide having an improved surface morphology and a relatively low roughness on a dielectric substrate. In addition, in the method of the present invention, crystal defects, alteration, etc. occur in the vicinity of the substrate surface due to the ion bombardment treatment, causing blackening, conductivity, etc., which are restored and eliminated by the subsequent thermal diffusion treatment. Thus, an optical waveguide having good performance is formed. The optical waveguide obtained by the method of the present invention has high reliability in both optical waveguide characteristics such as light propagation loss and process reproduction / management, and has extremely high value as an optoelectronic device process technology. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法(実施例)により得られた光導波路
の表面形態を示す光学顕微鏡写真である。
FIG. 1 is an optical microscope photograph showing a surface morphology of an optical waveguide obtained by a method (Example) of the present invention.

【図2】従来方法(比較例)により得られた光導波路の
表面形態を示す光学顕微鏡写真である。図1および図2
において、図中、中央部分に横方向に伸びている縞状部
分が光導波路である。
FIG. 2 is an optical microscope photograph showing a surface morphology of an optical waveguide obtained by a conventional method (comparative example). 1 and 2
In the figure, the stripe-shaped portion extending in the lateral direction at the center portion is the optical waveguide.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−157602(JP,A) 特開 平4−251804(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 6/12 - 6/14 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-59-157602 (JP, A) JP-A-4-251804 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 6/12-6/14 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体基板の表面に、前記誘電体の屈折
率を高める効果を有する物質を堆積付着させ、これを前
記基板の表面近傍部分に熱内拡散させて光導波路を形成
するに際し、前記付着工程前に先立って、前記基板の前
記光導波路を形成する表面の全面に対してイオン衝撃処
理を施し、前記イオン衝撃処理が、前記イオンを前記基
板表面に衝突させて、この表面部分に欠陥、および/又
は変質を生ぜしめる効果を有し、かつこれらの表面欠
陥、および/又は変質が、前記イオン衝撃処理の後に施
される前記堆積付着物質の熱内拡散処理によって回復す
ることを特徴とする、表面形態の改善された拡散型光導
波路の形成方法。
1. A method of depositing and adhering a substance having an effect of increasing the refractive index of the dielectric on the surface of a dielectric substrate, and thermally diffusing the substance into a portion near the surface of the substrate to form an optical waveguide. Prior to the adhering step, an ion bombardment process is performed on the entire surface of the substrate on which the optical waveguide is formed, and the ion bombardment process causes the ions to collide with the surface of the substrate. It has an effect of causing defects and / or alteration, and these surface defects and / or alteration are recovered by the thermal diffusion treatment of the deposited substance after the ion bombardment treatment. A method for forming a diffusion type optical waveguide having an improved surface morphology.
【請求項2】 前記イオン衝撃処理を、少なくとも希ガ
スイオンを含むガス雰囲気中で行う、請求項1に記載の
方法。
2. The method according to claim 1, wherein the ion bombardment treatment is performed in a gas atmosphere containing at least rare gas ions.
【請求項3】 前記誘電体基板がLiNbO3 単結晶基
板であり、前記屈折率向上物質がTiである、請求項1
に記載の方法。
3. The method according to claim 1, wherein the dielectric substrate is a LiNbO 3 single crystal substrate, and the refractive index improving substance is Ti.
The method described in.
JP04173741A 1992-06-09 1992-06-09 Method of forming diffused optical waveguide with improved surface morphology Expired - Fee Related JP3128332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04173741A JP3128332B2 (en) 1992-06-09 1992-06-09 Method of forming diffused optical waveguide with improved surface morphology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04173741A JP3128332B2 (en) 1992-06-09 1992-06-09 Method of forming diffused optical waveguide with improved surface morphology

Publications (2)

Publication Number Publication Date
JPH05341146A JPH05341146A (en) 1993-12-24
JP3128332B2 true JP3128332B2 (en) 2001-01-29

Family

ID=15966272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04173741A Expired - Fee Related JP3128332B2 (en) 1992-06-09 1992-06-09 Method of forming diffused optical waveguide with improved surface morphology

Country Status (1)

Country Link
JP (1) JP3128332B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8380027B2 (en) * 2010-05-10 2013-02-19 Intel Corporation Erasable ion implanted optical couplers

Also Published As

Publication number Publication date
JPH05341146A (en) 1993-12-24

Similar Documents

Publication Publication Date Title
JPH1073722A (en) Polarizing optical element and its production
JP3128332B2 (en) Method of forming diffused optical waveguide with improved surface morphology
JP2000352700A (en) Optical waveguide device
US6195191B1 (en) Optical devices having improved temperature stability
KR20050059097A (en) Silver selenide film stoichiometry and morphology control in sputter deposition
US5347608A (en) Optical waveguide and optical waveguide device
JP3213619B2 (en) Method for manufacturing optical waveguide device and optical waveguide device
JP4309571B2 (en) Optical waveguide device
JP4137680B2 (en) Manufacturing method of light control element
JP3478561B2 (en) Sputter deposition method
JPH06103817A (en) Conductive thin film
US4883562A (en) Method of making a photosensor
JP3307416B2 (en) LiNbO3 thin film optical waveguide device and method of manufacturing the same
KR100439960B1 (en) PMN-PT optical waveguides by thermal diffusion and fabrication methods thereof
JP3222092B2 (en) Manufacturing method of ridge structure optical waveguide
JPH06308343A (en) Optical waveguide and its production
JP2809112B2 (en) Light control device and manufacturing method thereof
JPH06331843A (en) Optical waveguide and its production
JP3050202B2 (en) Optical waveguide device and method of manufacturing the same
JP2966600B2 (en) Nonlinear optical material
JP5282809B2 (en) Optical waveguide device and manufacturing method thereof
JP2624199B2 (en) Light control device and manufacturing method thereof
JP3549374B2 (en) Manufacturing method of polarization diffraction element
JP2759047B2 (en) Manufacturing method of nonlinear optical material
Morisaki et al. Varistorlike I− V characteristics in sputtered carbon films

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees