JPS61260107A - Method and device for three-dimensional measurement - Google Patents

Method and device for three-dimensional measurement

Info

Publication number
JPS61260107A
JPS61260107A JP10148285A JP10148285A JPS61260107A JP S61260107 A JPS61260107 A JP S61260107A JP 10148285 A JP10148285 A JP 10148285A JP 10148285 A JP10148285 A JP 10148285A JP S61260107 A JPS61260107 A JP S61260107A
Authority
JP
Japan
Prior art keywords
striped pattern
pattern
scanner
scan
decided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10148285A
Other languages
Japanese (ja)
Other versions
JPH0525044B2 (en
Inventor
Shigeru Kawai
滋 河合
Keiichi Kubota
恵一 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10148285A priority Critical patent/JPS61260107A/en
Publication of JPS61260107A publication Critical patent/JPS61260107A/en
Publication of JPH0525044B2 publication Critical patent/JPH0525044B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To judge the dimension number of approved contour moire fringes even of a staged object by changing a striped pattern in the direction of the pattern and projecting the striped pattern to an object to be measured at least twice. CONSTITUTION:When the pre-optical system of a holographic laser scanner 4 is adjusted in such a way that a scan beam can converge in a scan direction and diverge in a sub-scan direction on the surface of the object 7, a scope having the length decided as a scan length is uniformly scanned according to the beam width in the sub-scan direction. At this time an optical space modulator 4 is placed in the pre-optical system, and a light transmissivity is set to zero or '1', thereby creating the striped pattern. The scanner 5 scans said pattern, whereby the striped pattern can be created on the surface of the object 7. When the striped pattern 30 in parallel with the stage is projected on the staged object with the aid of a lattice 22 in terms of moire topography, an approved contour becomes discontinuous at the position where the stage is present, and accordingly the dimension number cannot be decided. However, fringes having different directions are projected on the subject at least twice, whereby the dimension number can be always decided, and the shape of the object can be measured.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、特に、モアレトポグラフィに代表されるよ
うな縞を利用した3次元計測方法および装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention particularly relates to a three-dimensional measurement method and apparatus using stripes such as moire topography.

(従来技術とその問題点) モアレトポグラフィは、物体面上に縞状パターンを投影
し、物体の形状により変型した縞模様と基準の縞模様を
重ね合わせ、その差周波数として生じる等肩線を示すモ
アレ縞を解析することにより、物体の形状を測定する方
法である。詳しくは、例えば、雑誌「アプライド・オプ
ティックス」(Applied 0ptics)、 9
巻、 1970年、 1467〜1472ページに記載
の論文「モアレ・トポグラフィ(Moir! Topo
−graphy) Jに述べられている。この方法には
、第4図に示すように物体23の直前に置いた格子22
を点光源21によって照射する格子照射型と、第5図に
示すように格子24の像を物体面上に結像させる格子投
影型がある。両方法を比較した場合、操作性において、
後者のほうに柔軟性があり、応用範囲が広い。格子投影
型モアレトポグラフィについては、例えば雑誌「アプラ
イド・オプティックス(AppliedOptics)
22巻、 1983年、 850〜855ページに記載
の論文[自動3次元トポグラフィにおける移動格子法を
用いた投影法モアレ(Projection Mo1r
a with movinggrantings fo
r antomated 3−D topograph
y月に詳しく述べられている。これらの方法では、発生
する格子の方向はいつも一定である。ところが第2図に
示すような物体23を計測する場合には、物体が階段状
になっている場所で、等高線モアレ縞の次数が判断でき
なくなる。
(Prior art and its problems) Moiré topography projects a striped pattern onto the object surface, superimposes the striped pattern deformed due to the shape of the object and the standard striped pattern, and shows the isotopic line generated as the difference frequency. This is a method of measuring the shape of an object by analyzing moire fringes. For details, see, for example, the magazine "Applied Optics", 9
vol., 1970, pages 1467-1472.
-graphy) J. This method includes a grid 22 placed just in front of the object 23 as shown in FIG.
There are two types: a grating irradiation type in which a point light source 21 irradiates the light with a point light source 21, and a grating projection type in which an image of a grating 24 is formed on the object plane as shown in FIG. When comparing both methods, in terms of operability,
The latter is more flexible and has a wider range of applications. Regarding grid-projection moiré topography, see, for example, the magazine “Applied Optics”.
22, 1983, pages 850-855 [Projection Moiré using moving grid method in automatic three-dimensional topography]
a with moving grants for
r antomated 3-D topography
It is detailed in month y. In these methods, the direction of the generated grid is always constant. However, when measuring an object 23 as shown in FIG. 2, it becomes impossible to determine the order of the contour moiré fringes in places where the object has a step-like shape.

(発明の目的) この発明の目的は、階段状の物体においても等高線モア
レ縞の次数を判断できる3次元計測方法および3次元計
測装置を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a three-dimensional measuring method and a three-dimensional measuring device that can determine the order of contour moiré fringes even in a step-like object.

(発明の構成) この発明の3次元計測方法は、縞状パターンを縞の方向
を変えて少なくとも2回、被測定物体に投影することを
特徴としている。また、この3次元計測装置は、半導体
レーザから成る光源と、複数のホログラムレンズをディ
スク上に配置したホログラフィックレーザスキャナと、
前記光源から出射された単色光のビームを整形して前記
ホログラムレンズに導く光学系と、前記ビームを空間的
に変調せしめる光空間変調器と、前記光空間変調器を制
御する制御装置と、前記ホログラフィックスキャナによ
り走査される走査ビームを観測するためのカメラと、走
査格子パターンと前記カメラより得られた物体面上で変
形した格子パターンとからモアレ縞を抽出する画像処理
装置とを備えている構成となっている。
(Structure of the Invention) The three-dimensional measurement method of the present invention is characterized in that a striped pattern is projected onto an object to be measured at least twice while changing the direction of the stripes. In addition, this three-dimensional measurement device includes a light source consisting of a semiconductor laser, a holographic laser scanner in which a plurality of hologram lenses are arranged on a disk,
an optical system that shapes a monochromatic light beam emitted from the light source and guides it to the hologram lens; an optical spatial modulator that spatially modulates the beam; a control device that controls the optical spatial modulator; It is equipped with a camera for observing a scanning beam scanned by a holographic scanner, and an image processing device for extracting moiré fringes from a scanning grating pattern and a grating pattern deformed on the object plane obtained by the camera. The structure is as follows.

(発明の作用・原理) ホログラフィックレーザスキャナに代表されるホログラ
フィックレーザビーム走査装置においては、いくつかの
ホログラムをディスクの円周上に配置固定し、それを高
速回転することによりレーザビームを走査する。ホログ
ラフィックレーザスキャナの前置光学系において、走査
ビームが物体面上で走査方向に収束、副走査方向に発散
するように調整すれば、副走査方向のビーム幅により、
走査長として決められ長さを一面に走査する。この時、
前置光学系内部に、1次元光空間変調器を置き、光透過
率を0または1にすることにより、縞状のパターンがで
きる。これをスキャナで走査することにより、物体面に
縞模様を発生することができる。さらに、光空間変調器
の光透過率パターンをスキャナの回転に周期させて、時
系列に移動させると物体面で縞模様は傾きを持つ。パタ
ーンの移動速度を変化させることにより、任意の傾きを
持つ縞模様を発生させることができる。
(Operation/Principle of the Invention) In a holographic laser beam scanning device such as a holographic laser scanner, several holograms are arranged and fixed on the circumference of a disk, and the laser beam is scanned by rotating the holograms at high speed. do. If the front optical system of a holographic laser scanner is adjusted so that the scanning beam converges in the scanning direction on the object plane and diverges in the sub-scanning direction, the beam width in the sub-scanning direction
The length determined as the scan length is scanned over the entire surface. At this time,
By placing a one-dimensional optical spatial modulator inside the front optical system and setting the light transmittance to 0 or 1, a striped pattern is created. By scanning this with a scanner, a striped pattern can be generated on the object surface. Furthermore, if the light transmittance pattern of the optical spatial modulator is moved in time series with the rotation of the scanner, the striped pattern will have an inclination on the object plane. By changing the moving speed of the pattern, a striped pattern with an arbitrary inclination can be generated.

モアレトポグラフィでは格子22を用いて階段状の物体
に第2図に示すような方向の縞模様30を投影すると段
差のある位置で等高線が不連続となり、次数の判定がで
きなくなる。この際、第3図に示すように段差に平行で
ない縞31を投影すると等高線が連続になるため次数の
判定が可能となる。測定前の段階では段差の有無、段差
の方向が不明である。しかし方向の異なる縞を少なくと
も2回物体に投影することにより、それぞれの測定で等
高線が不連続となる段差は他の方向の測定で段差になら
ない。この結果次数の判定が常に可能となり、物体の形
状を測定できる。すなわち、第1回目の測定において、
例えば第2図の方向の縞を物体に投影する。次に、第2
回目の測定において、例えば第3図のように第1回目の
測定の縞の方向から90°異なる方向の縞を物体に投影
することで一方の測定で不足している情報を他方で補う
ことができる。
In moire topography, when a striped pattern 30 in the direction shown in FIG. 2 is projected onto a step-like object using a grating 22, the contour lines become discontinuous at positions where there are steps, making it impossible to determine the order. At this time, as shown in FIG. 3, if stripes 31 that are not parallel to the step are projected, the contour lines become continuous, making it possible to determine the order. Before measurement, the presence or absence of a step and the direction of the step are unknown. However, by projecting stripes in different directions onto the object at least twice, a step difference in which the contour lines are discontinuous in each measurement will not result in a step difference in measurements in other directions. As a result, the order can always be determined and the shape of the object can be measured. That is, in the first measurement,
For example, stripes in the direction shown in FIG. 2 are projected onto the object. Next, the second
In the second measurement, for example, as shown in Figure 3, by projecting fringes in a direction 90° different from the direction of the fringes in the first measurement onto the object, information missing in one measurement can be compensated for in the other. can.

(実施例) 第1図は、この発明の一実施例である。半導体レーザか
ら成る光源1から発振された光は、コリメーティングレ
ンズ2でコリメートされた後、円筒レンズ3により楕円
ビームに変換され、例えば液晶シャッタアレイなどの光
空間変調器4を通った後、ホログラフィックレーザスキ
ャナ5のホログラムレンズ6によって物鰐を走査する。
(Example) FIG. 1 shows an example of the present invention. Light emitted from a light source 1 consisting of a semiconductor laser is collimated by a collimating lens 2, converted into an elliptical beam by a cylindrical lens 3, and passed through an optical spatial modulator 4 such as a liquid crystal shutter array, for example. The crocodile is scanned by the hologram lens 6 of the holographic laser scanner 5.

光空間変調器の各アレイの光透過率をGP−IBインタ
フェイスを有するファンクションジュネレータなどの変
調器制御装置12により、縞状に0または1とする。こ
の縞状に変調された光をスキャナにより、物体面に走査
投影すると、光空間変調S4の光透過率4のパターンが
スキャナの走査長として定められた長さ一面に走査され
る。この時、エンコーダ13によってスキャナの回転同
期信号をGP−IBインタフェイスを有するマイコンな
どの演算制御装置10に取り入れる。演算制御装置10
により光空間変調器4の光透過率のパターンを時系列に
変化させると物体面の縞状パターンが傾きを持つ。この
時の信号の様子を第6図に示す。エンコーダ13の同期
信号60を受けた演算制御装置10は変調器制御装置1
2に対して変調開始信号61を送る。これを受けて変調
器制御装置12は、光空間変調器制御時系列信号62を
発生させて光空間変調器の光透過率パターンを時系列に
移動させ、物体面に任意の傾きを持った縞模様を発生さ
せる。物体面上にできた縞模様は、TV左カメラによっ
て観測し、その像をGP−IBなどのインクフェイスを
有する画像間の積算、加減算の機能を持つ画像処理装置
11に転送する。画像処理装置11には、あらかじめ演
算制御装置10よりそれぞれの縞模様に対応する基準の
縞状パターンを入力しておき物体面で変形した縞模様と
の間のモアレ縞を観測する。1回の測定が終わった後、
光空間変調器4のパターンを変化させ、1回目の測定と
異なった方向の縞模様を発生させ観測する。尚、画像間
の四則演算とは、画像の階調をデジ779表現し、ドツ
ト毎に階調の演算をおこなうことである。
The light transmittance of each array of optical spatial modulators is set to 0 or 1 in a striped manner by a modulator control device 12 such as a function generator having a GP-IB interface. When this striped modulated light is scanned and projected onto the object plane by a scanner, a pattern of light transmittance 4 of the optical spatial modulation S4 is scanned over a length determined as the scanning length of the scanner. At this time, the encoder 13 inputs the rotation synchronization signal of the scanner to the arithmetic and control unit 10 such as a microcomputer having a GP-IB interface. Arithmetic control device 10
When the pattern of light transmittance of the optical spatial modulator 4 is changed in time series, the striped pattern on the object plane has an inclination. FIG. 6 shows the state of the signal at this time. The arithmetic control device 10 that receives the synchronization signal 60 of the encoder 13 is the modulator control device 1
A modulation start signal 61 is sent to 2. In response to this, the modulator control device 12 generates an optical spatial modulator control time-series signal 62 to move the light transmittance pattern of the optical spatial modulator in time series, thereby forming stripes with an arbitrary inclination on the object plane. Generate a pattern. The striped pattern formed on the object plane is observed by a TV left camera, and its image is transferred to an image processing device 11, such as a GP-IB, which has functions of integrating, adding and subtracting between images having an ink face. A reference striped pattern corresponding to each striped pattern is input in advance to the image processing device 11 from the arithmetic and control device 10, and moire fringes between the striped pattern and the striped pattern deformed on the object plane are observed. After one measurement is completed,
The pattern of the optical spatial modulator 4 is changed to generate and observe a striped pattern in a direction different from the first measurement. Note that the four arithmetic operations between images means that the gradation of the image is expressed in digital 779, and the gradation calculation is performed for each dot.

(演算の効果) 以上詳述したように、方向の異なる縞模様を少なくとも
2回物体に投影することにより、従来計測のできなかっ
た階段状の物体においても、容易に3次元形状計測が可
能となる。
(Effect of calculation) As detailed above, by projecting striped patterns in different directions onto an object at least twice, it is possible to easily measure the three-dimensional shape of a step-shaped object, which was previously impossible to measure. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す図、第2図は、階
段状物体における計測の不可能な格子の方向例を示す図
、第3図は、階段状物体における計測の可能な格子の方
向例を表わす図、第4図は、格子照射型モアレトポグラ
フィの従来例を示す図−1第5図は、格子投影型モアレ
トポグラフィの従来例を示す図である。第6図は、信号
のタイミングチャートを表わす図である。 図において 1・・・半導体レーザ 2・・・コリメーティングレンズ 4・・・光空間変調器     3・・・円筒レンズ4
・・・ホログラフィックレーザスキャナ6・・・ホログ
ラムレンズ   7・・・物体8・・・TV左カメラ 
    10・・・演算制御装置11・・・画像処理装
置    12・・・変調器制御装置13・・・エンコ
ーダ     21・、・光源22・・・格子    
    23・・・物体24・・・格子       
       工業技術院」亭  4  図 亭  5   図 ] 図 −601)コータ仕龜わ 同期信号 ・let #s:IM砂fg号
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of the direction of a grid that cannot be measured in a stepped object, and FIG. FIG. 4 is a diagram showing an example of the direction of the grating, and FIG. 4 is a diagram showing a conventional example of grating irradiation type moire topography. FIG. 5 is a diagram showing a conventional example of grating projection type moire topography. FIG. 6 is a diagram showing a timing chart of signals. In the figure, 1... Semiconductor laser 2... Collimating lens 4... Optical spatial modulator 3... Cylindrical lens 4
... Holographic laser scanner 6 ... Hologram lens 7 ... Object 8 ... TV left camera
10... Arithmetic control device 11... Image processing device 12... Modulator control device 13... Encoder 21... Light source 22... Grid
23...Object 24...Lattice
Figure 601) Coater setting synchronization signal / let #s: IM sand fg number

Claims (2)

【特許請求の範囲】[Claims] (1)縞状パターンを縞の方向を変えて少なくとも2回
、被測定物体に投影することを特徴とする3次元計測方
法。
(1) A three-dimensional measurement method characterized by projecting a striped pattern onto an object to be measured at least twice while changing the direction of the stripes.
(2)半導体レーザから成る光源と、複数のホログラム
レンズをディスク上に配置したホログラフィックレーザ
スキャナと、前記光源から出射された単色光のビームを
整形して前記ホログラムレンズに導く光学系と、前記ビ
ームを空間的に変調せしめる光空間変調器と、前記光空
間変調器を制御する制御装置と、前記ホログラフィック
スキャナにより走査される走査ビームを観測するための
カメラと、走査パターンと前記カメラにより得られた物
体面上で変形した縞状パターンとからモアレ縞を抽出す
る画像処理装置とを備えていることを特徴とする3次元
計測装置。
(2) a light source made of a semiconductor laser; a holographic laser scanner including a plurality of hologram lenses arranged on a disk; an optical system that shapes a monochromatic light beam emitted from the light source and guides it to the hologram lens; an optical spatial modulator for spatially modulating a beam; a control device for controlling the optical spatial modulator; a camera for observing the scanning beam scanned by the holographic scanner; A three-dimensional measurement device comprising: a striped pattern deformed on an object plane;
JP10148285A 1985-05-15 1985-05-15 Method and device for three-dimensional measurement Granted JPS61260107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10148285A JPS61260107A (en) 1985-05-15 1985-05-15 Method and device for three-dimensional measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10148285A JPS61260107A (en) 1985-05-15 1985-05-15 Method and device for three-dimensional measurement

Publications (2)

Publication Number Publication Date
JPS61260107A true JPS61260107A (en) 1986-11-18
JPH0525044B2 JPH0525044B2 (en) 1993-04-09

Family

ID=14301931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10148285A Granted JPS61260107A (en) 1985-05-15 1985-05-15 Method and device for three-dimensional measurement

Country Status (1)

Country Link
JP (1) JPS61260107A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214914A (en) * 2005-02-04 2006-08-17 Asahi Glass Co Ltd Mirror surface profile measuring method, system, inspection method, and device for measuring mirror face shape
CN108562240A (en) * 2018-01-24 2018-09-21 北京理工大学 Splice the digital Moire phase-shifting interference measuring method of method based on two step carrier waves

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214914A (en) * 2005-02-04 2006-08-17 Asahi Glass Co Ltd Mirror surface profile measuring method, system, inspection method, and device for measuring mirror face shape
CN108562240A (en) * 2018-01-24 2018-09-21 北京理工大学 Splice the digital Moire phase-shifting interference measuring method of method based on two step carrier waves
CN108562240B (en) * 2018-01-24 2019-08-23 北京理工大学 Digital Moire phase-shifting interference measuring method based on two step carrier waves splicing method

Also Published As

Publication number Publication date
JPH0525044B2 (en) 1993-04-09

Similar Documents

Publication Publication Date Title
US5289264A (en) Method and apparatus for ascertaining the absolute coordinates of an object
US6486982B1 (en) System for making a hologram of an image by manipulating object beam characteristics to reflect image data
US6252623B1 (en) Three dimensional imaging system
US6246495B1 (en) Phase-shift digital holographic apparatus
US4000949A (en) Photomask inspection by optical spatial filtering
US20100195114A1 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
EP1643210A1 (en) Method and apparatus for measuring shape of an object
DE112009001652T5 (en) Multichannel recording
JP2714152B2 (en) Object shape measurement method
JP3855756B2 (en) 3D color shape detection device and 3D scanner
FR2635965A1 (en) OPTICAL PROBE FOR THREE-DIMENSIONAL MEASUREMENT OF TEETH IN THE ORAL CAVITY AND METHOD OF IMPLEMENTING
US5262879A (en) Holographic image conversion method for making a controlled holographic grating
US7495777B2 (en) Method and apparatus for contact free measurement of periodically moving objects
JP3254392B2 (en) Evaluation chart and image recording device
JPS61260107A (en) Method and device for three-dimensional measurement
JP2538435B2 (en) Fringe phase distribution analysis method and fringe phase distribution analyzer
JPH0473523B2 (en)
JPH10122834A (en) Noncontact measuring method and measuring equipment of three-dimensional form
JP2939944B2 (en) 3D object shape measurement device
JP3673959B2 (en) Method for producing hologram
JPH0525043B2 (en)
JP3236051B2 (en) Lattice plate for three-dimensional shape measurement, device for manufacturing the same, and three-dimensional shape measurement device
JP2001099624A (en) Method for measuring and analyzing interference fringe
US3749492A (en) Interferometric hypsocline generator
JPH1144515A (en) Active light irradiator, light detector and three-dimensional image input device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term