JPS61259868A - Production of nozzle for casting - Google Patents

Production of nozzle for casting

Info

Publication number
JPS61259868A
JPS61259868A JP9963085A JP9963085A JPS61259868A JP S61259868 A JPS61259868 A JP S61259868A JP 9963085 A JP9963085 A JP 9963085A JP 9963085 A JP9963085 A JP 9963085A JP S61259868 A JPS61259868 A JP S61259868A
Authority
JP
Japan
Prior art keywords
nozzle
casting
slurry
resistance
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9963085A
Other languages
Japanese (ja)
Inventor
Isao Ebisawa
海老沢 功夫
Kozo Kanamaru
金丸 公三
Yukinobu Kurashina
倉科 幸信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP9963085A priority Critical patent/JPS61259868A/en
Publication of JPS61259868A publication Critical patent/JPS61259868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To extend the life of a casting nozzle having high corrosion resistance and strength by sticking a refractory slurry by a drain casting method to the inside wall surface of said nozzle to a prescribed thickness thereby providing spalling resistance to the inside wall surface and adding also an effect of shielding heat thereto. CONSTITUTION:The hydrated refractory slurry consisting essentially of the pulverous powder of alumina or silica is filled in the calcined nozzle for casting consisting of the high corrosion-resistant and high-strength material such as high alumina, high alumina carbon or high zirconia carbon and is drained after the specified time to form the sticking layer of the prescribed thickness on the inside surface of the nozzle. The layer is thereafter dried or calcined. The fire resistance and spalling resistance which are the disadvantages of the above- mentioned nozzle material are improved and the effect of heat insulation is added by the gaps between the inside wall surface and the slurry, by which the nozzle life is extended.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鋳造用ノズルの耐食性を損なうことなく、耐ス
ポール性を改善した鋳造用ノズルの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a casting nozzle that improves spalling resistance without impairing the corrosion resistance of the casting nozzle.

[従来の技術] 鋳造用ノズルはその形状が円筒形状であるため、鋳造開
始時にノズル内壁面に急激な熱がかかり、熱膨張差に起
因して発生する熱応力がノズル外部にかかる。従って、
非常に割れ易い欠点がある。
[Prior Art] Since a casting nozzle has a cylindrical shape, rapid heat is applied to the inner wall surface of the nozzle at the start of casting, and thermal stress generated due to a difference in thermal expansion is applied to the outside of the nozzle. Therefore,
It has the drawback of being very easy to break.

そのために鋳造用ノズルを溶融金属の鋳造に使用する場
合、鋳造用ノズルは安定した操業を行うために高耐食性
材質を使用することが必要となる。
Therefore, when a casting nozzle is used for casting molten metal, it is necessary to use a highly corrosion-resistant material for the casting nozzle to ensure stable operation.

[発明が解決しようとする問題点コ 一般に、耐火物の耐食性と耐スポール性は相反する関係
にある0例えば、耐火物中のシリカを増量すると熱膨張
率は低下し、耐スポール性は向上するが耐火度は低下す
る0組織的に強度を上げると耐食性は改善されるが同時
に弾性率も比例的に大きくなるため耐スポール性が劣化
する。
[Problems to be solved by the invention Generally speaking, the corrosion resistance and spalling resistance of refractories have a contradictory relationship.0 For example, increasing the amount of silica in a refractory reduces the coefficient of thermal expansion and improves spalling resistance. However, if the strength is increased structurally, the corrosion resistance will be improved, but at the same time, the elastic modulus will increase proportionally, so the spall resistance will deteriorate.

このような関係から耐スポール性を維持するために高耐
食性材質の適用はかなりの制限を受けてきた。
Due to this relationship, the application of highly corrosion resistant materials to maintain spall resistance has been severely restricted.

上述の問題を解決するために、泥漿物をノズル内壁面に
電着鋳込により付着させる方法かが提唱されているが、
この方法は泥漿に直流を与えて粒子を電気泳動で型に付
着させるものであり、非常にコストがかかり、一般的な
溶融金属の鋳造用ノズルに適用することは現実的には不
可能である。
In order to solve the above problems, a method has been proposed in which the slurry is deposited on the inner wall surface of the nozzle by electrodeposition casting.
This method applies a direct current to the slurry and causes the particles to adhere to the mold by electrophoresis, which is very expensive and cannot be applied to common nozzles for casting molten metal. .

また、この電着鋳込方法はその特徴として充填性が優れ
ており、それ自体の耐食性は強いが内壁面と一体化する
ため分離構造体としての耐スポール性改善効果及び断熱
性による耐スポール性改善効果は発現しにくい等の欠点
があった。
In addition, this electrodeposition casting method has excellent filling properties, and has strong corrosion resistance itself, but since it is integrated with the inner wall surface, it has the effect of improving spalling resistance as a separate structure, and has excellent spalling resistance due to its insulation properties. There were drawbacks such as difficulty in achieving improvement effects.

すなわち、耐スポール性を維持するために耐食性を飛躍
的に改善することはできないのが現状である。
That is, the current situation is that it is not possible to dramatically improve corrosion resistance in order to maintain spalling resistance.

E問題点を解決するための手段] 上述の問題点を解決するなめに、耐火物に泥漿物を排泥
方法により2次的処理を行なえば安価に耐スポール性を
改善することができ、また高耐食性材質を適用すること
が可能となり、耐食性を大幅に向上できることを知見し
、本発明を完成するに至った。
Means for Solving Problem E] In order to solve the above problems, it is possible to improve the spall resistance at a low cost by performing secondary treatment of sludge on the refractory by a sludge removal method, and also to improve the spall resistance. It has become possible to apply highly corrosion-resistant materials, and it has been discovered that corrosion resistance can be significantly improved, leading to the completion of the present invention.

すなわち、本発明は鋳造用ノズルの内壁面に耐火性泥漿
物を排泥方法により所定の厚みで付着さることからなる
2層式鋳造用ノズルの製造方法を提供するにある。
That is, the present invention provides a method for manufacturing a two-layer casting nozzle, which comprises depositing a refractory slurry to a predetermined thickness on the inner wall surface of the casting nozzle by a slurry removal method.

[作用] 本発明による2層式鋳造用ノズルは耐火性泥漿物の層に
よる断熱効果により鋳造用ノズル本体の耐スポール性を
改善するものである。
[Function] The two-layer casting nozzle according to the present invention improves the spall resistance of the casting nozzle body due to the heat insulating effect of the layer of refractory slurry.

本発明に使用する排泥方法は高耐食性並びに高強度材質
からなる鋳造用ノズルの下端を水密的に閉塞し、次にノ
ズル内に泥漿を注入し、所定の厚みに泥漿が付着したと
ころで残留泥漿を排出することからなる。泥漿の付着厚
は泥漿の粘性を調節することにより任意に変化させるこ
とができる。
The slurry removal method used in the present invention is to watertightly close the lower end of a casting nozzle made of a material with high corrosion resistance and high strength, then inject slurry into the nozzle, and when the slurry has adhered to a predetermined thickness, the remaining slurry will be removed. It consists of discharging. The adhesion thickness of the slurry can be arbitrarily changed by adjusting the viscosity of the slurry.

上述の排泥方法は従来提唱されてきた電着鋳込方法より
充填率が低く、組織はポーラスであるために耐食性は若
干劣るものの、断熱性による耐スポール性改善効果は大
きい。
Although the above-mentioned sludge removal method has a lower filling rate than the conventionally proposed electrodeposition casting method and has a porous structure, the corrosion resistance is slightly inferior, but the spalling resistance improvement effect due to the heat insulation property is large.

更に泥漿物と鋳造用ノズル内壁面との密着度がそれ程良
くないために内壁面と泥漿物の間には隙間が発現し、泥
漿物と内壁面とは分離構造体としての関係を保持する。
Furthermore, since the degree of adhesion between the slurry and the inner wall surface of the casting nozzle is not so good, a gap appears between the inner wall surface and the slurry, and the slurry and the inner wall maintain a relationship as a separate structure.

この隙間により鋳造開始時の急激な熱は遮断され、伝播
されない、この熱遮断作用も加わり、本発明により製造
した鋳造用ノズルの耐スポール性の改善効果は更に大き
いものとなる。
This gap blocks the rapid heat generated at the start of casting and prevents it from propagating.This heat blocking effect is also added, and the effect of improving the spalling resistance of the casting nozzle manufactured according to the present invention becomes even greater.

従って、本発明方法を使用すれば高耐食性材質、例えば
高アルミナ材質、高アルミナ−カーボン材質、高ジルコ
ニア−カーボン材質並びに高強度材質等を鋳造用ノズル
に使用しても鋳造開始時の熱スポールに充分耐用できる
Therefore, if the method of the present invention is used, even if a highly corrosion-resistant material such as a high alumina material, a high alumina-carbon material, a high zirconia-carbon material, or a high-strength material is used in the casting nozzle, there will be no thermal spalling at the start of casting. It is durable enough.

本発明方法における耐火性泥漿物としては泥漿化できる
耐火材なら全て適用が可能であるが、泥漿製造上の生産
性及びコスト等並びに泥漿物が鋳造初期の段階で溶損し
て溶融金属中に混入するものであるから、使用する操業
条件も考慮して選定することが好ましい。
Any refractory material that can be turned into slurry can be used as the refractory slurry in the method of the present invention, but there are problems with the productivity and cost of producing the slurry, and the slurry is melted and mixed into the molten metal in the early stages of casting. Therefore, it is preferable to consider the operating conditions to be used when making a selection.

本発明方法においては泥漿物を鋳造用ノズル成形体に流
し込むものである。成形体は通常焼成品であるが、素地
に流し込んで焼成することもできる。また、焼成品に鋳
込排泥後、再焼成することも、また焼成品に流し込んで
乾燥するだけでもよく、用途に応じて適宜選択すること
ができる。
In the method of the present invention, the slurry is poured into a nozzle molded body for casting. The molded body is usually a fired product, but it can also be poured into a base and fired. Further, it is possible to cast the product into a fired product and remove the slurry and then re-fire it, or to just pour it into the fired product and dry it, which can be selected as appropriate depending on the purpose.

泥漿物の厚みはその厚さが増大する程耐スポール性改善
効果は高まるが、内壁面の厚みを増大させるには鋳造用
ノズル内に泥漿を長時間滞留させるか、高粘性化処理を
行なうが、または鋳造用ノズルを加温する等の操作を必
要とし、そのために泥漿物の製造の生産性が低下する。
As the thickness of the slurry increases, the effect of improving spall resistance increases, but in order to increase the thickness of the inner wall surface, the slurry must remain in the casting nozzle for a long time or be treated to increase its viscosity. Otherwise, operations such as heating the casting nozzle are required, which reduces the productivity of slurry production.

従って、製造面及び必要とする耐スポール性改善度合に
応じて適宜厚みを選定することが好ましい。
Therefore, it is preferable to appropriately select the thickness depending on the manufacturing aspect and the required degree of improvement in spall resistance.

[実施例] 以下に実施例を挙げ、本発明を更に説明する。[Example] The present invention will be further explained with reference to Examples below.

イン −トノズルの ゛ アルミナ原料+水ヒ粘土の混合物をフリクションプレス
にて外径145mmφ×内径65mmφ×高さ180m
mのノズル形状に成形し、これをトンネルキルンにて1
600℃で焼成した。得られたインサートノズルは以下
の第1表の(A)及び(B)に記載する成分割合をもつ
ものであった。
For the injection nozzle, a mixture of alumina raw material + atomized clay was made using a friction press into an outer diameter of 145 mmφ x inner diameter of 65 mmφ x height of 180 m.
It is molded into a nozzle shape of
It was fired at 600°C. The resulting insert nozzle had the component ratios listed in (A) and (B) in Table 1 below.

なお、得られたインサートノズルの緒特性も第1表に併
記する。
The characteristics of the obtained insert nozzle are also listed in Table 1.

及1匠L 325メツシユ以下のジルコン微粉45重量%、50〜
100メツシユのジルコン粒45重量%及び水10重量
%からなる泥漿物を成分割合(B)をもつインサートノ
ズルの内孔に注入し、5分間放置後、残留泥漿を排出し
た。
and 1 Takumi L 45% by weight of zircon fine powder of 325 mesh or less, 50~
A slurry consisting of 45% by weight of 100 mesh zircon grains and 10% by weight of water was injected into the inner hole of an insert nozzle having the component ratio (B), and after standing for 5 minutes, the remaining slurry was discharged.

得られたインサートノズルは第1表の成分割合(P)を
もつ耐火性泥漿物を3mmの厚さで付着するものであっ
た。
The resulting insert nozzle was coated with a fire-resistant slurry having a component ratio (P) shown in Table 1 to a thickness of 3 mm.

得られたインサートノズルの諸特性を第1表に併記する
Various properties of the obtained insert nozzle are also listed in Table 1.

イン −トノズル (a)第1表の成分割合(A)をもつインサートノズル
を鋼の連続鋳造に使用したが、計画5連に対し、3連途
中で溶損のため鋳造を中止した。
Insert nozzle (a) An insert nozzle having the component ratio (A) shown in Table 1 was used for continuous casting of steel, but casting was discontinued during 3 of the planned 5 series due to melting.

(b)第1表の成分割合(B)をもつインサートノズル
を鋼の鋳造に使用したが、鋳造開始時に縦割れが生じ、
使用することができなかった。
(b) An insert nozzle with the component ratio (B) in Table 1 was used for casting steel, but vertical cracks occurred at the start of casting.
Couldn't use it.

(c)実施例1で製造したインサートノズルを鋼の連続
鋳造に使用したところ、鋳造初期の割れも発生せず、最
高9連鋳にも耐用した。
(c) When the insert nozzle manufactured in Example 1 was used for continuous casting of steel, no cracking occurred at the initial stage of casting, and it could withstand up to nine continuous castings.

エアシールパイプの ゛ (i)アルミナ43%、シリカ30%、炭化珪素5%及
び黒鉛20%を含有する組成物にピッチを外掛で10%
添加し、混練後、ラバープレス(1500kg/ 0m
2)にて外径200mmφ×内径1001φ×高さ10
00m+++のノズルを成形し、これをコークスプリー
ズに詰め、トンネルキルンにて1100℃で焼成してエ
アーシールパイプを得た。このエアーシールパイプは第
1表の成分割合(C)をもつものであった。
Air seal pipe (i) Add 10% pitch to a composition containing 43% alumina, 30% silica, 5% silicon carbide, and 20% graphite.
After adding and kneading, rubber press (1500kg/0m
2) Outer diameter 200mmφ x inner diameter 1001φ x height 10
A nozzle of 00m+++ was molded, packed in coke please, and fired at 1100°C in a tunnel kiln to obtain an air seal pipe. This air seal pipe had the component ratio (C) shown in Table 1.

(ii)アルミナ73%、シリカ6%、炭化珪素3%及
び黒鉛18%よりなる組成物にフェノールを外掛で10
%添加し、混線後、ラバープレス(1500kg/ a
m2)にて外径2001φ×内径1001φ×高さ10
00mmのノズルを成形し、これをコークスプリーズに
詰め、トンネルキルンにて1100℃で焼成してエアー
シールパイプを得た。このエアーシールパイプは第1表
の成分割合(D)をもつものであった。
(ii) Add 10% phenol to a composition consisting of 73% alumina, 6% silica, 3% silicon carbide, and 18% graphite.
% added and mixed, rubber press (1500kg/a
m2) outer diameter 2001φ x inner diameter 1001φ x height 10
A nozzle with a diameter of 0.00 mm was molded, packed in a coke pleat, and fired at 1100° C. in a tunnel kiln to obtain an air seal pipe. This air seal pipe had the component ratio (D) shown in Table 1.

なお、得られたエアシールパイプ(C)及び(D)の諸
特性を第1表に併記する。
The properties of the obtained air seal pipes (C) and (D) are also listed in Table 1.

200メツシユ以下の溶融シリカ80重量%及び水20
重量%からなる泥漿物を成分割合(D)をもつエアシー
ルパイプの内孔に注入し、10分間放置後、残留泥漿を
排出した。
200 mesh or less fused silica 80% by weight and water 20%
A slurry consisting of % by weight was injected into the inner hole of an air seal pipe having a component ratio (D), and after standing for 10 minutes, the remaining slurry was discharged.

得られたエアーシールパイプは第1表の成分割合(Q>
をもつ耐火性泥漿物を41の厚さで付着するものであっ
た。
The obtained air seal pipe has the component ratio (Q>
A fire-resistant slurry with a thickness of 41 mm was deposited.

得られたエアシールパイプの諸特性を第1表に併記する
Various properties of the obtained air seal pipe are also listed in Table 1.

エアシールパイプ (a)取鍋−タンディシュ間の溶鋼に第1表の配合割合
(C)をもつエアシールパイプを使用したところ、計画
4連に対し3連途中で浸漬部が溶断したため鋳造を中止
した。
Air seal pipe (a) When an air seal pipe having the compounding ratio (C) shown in Table 1 was used for the molten steel between the ladle and the tundish, the immersion part was fused in the middle of 3 of the planned 4 series, so casting was stopped.

(b)第1表の配合割合(D>をもつエアシールパイプ
を使用したところ、鋳造開始時に縦割れが発生して鋳造
を行なうことができなかった。
(b) When an air seal pipe having a blending ratio (D>) shown in Table 1 was used, vertical cracking occurred at the start of casting and casting could not be carried out.

(e)実施例2で製造したエアシールパイプを使用した
ところスポーリングも発生せず、最高12連鋳にも耐用
した。
(e) When the air seal pipe manufactured in Example 2 was used, no spalling occurred and it could withstand up to 12 continuous castings.

[発明の効果] 本発明による耐スポール性、耐食性の両者に優れた鋳造
用ノズルを提供することによって溶融金属の鋳造は従来
と比して極めて安定して行なえるようになった。
[Effects of the Invention] By providing a casting nozzle excellent in both spall resistance and corrosion resistance according to the present invention, it has become possible to cast molten metal extremely stably compared to conventional methods.

Claims (1)

【特許請求の範囲】[Claims] 鋳造用ノズルの内壁面に耐火性泥漿物を排泥方法により
所定の厚みで付着さることからなる2層式鋳造用ノズル
の製造方法。
A method for producing a two-layer casting nozzle, which comprises depositing a refractory slurry at a predetermined thickness on the inner wall surface of the casting nozzle by a slurry removal method.
JP9963085A 1985-05-13 1985-05-13 Production of nozzle for casting Pending JPS61259868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9963085A JPS61259868A (en) 1985-05-13 1985-05-13 Production of nozzle for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9963085A JPS61259868A (en) 1985-05-13 1985-05-13 Production of nozzle for casting

Publications (1)

Publication Number Publication Date
JPS61259868A true JPS61259868A (en) 1986-11-18

Family

ID=14252399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9963085A Pending JPS61259868A (en) 1985-05-13 1985-05-13 Production of nozzle for casting

Country Status (1)

Country Link
JP (1) JPS61259868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441060A (en) * 1990-06-07 1992-02-12 Nippon Steel Corp Molten metal conduit tube for casting and casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441060A (en) * 1990-06-07 1992-02-12 Nippon Steel Corp Molten metal conduit tube for casting and casting method

Similar Documents

Publication Publication Date Title
KR940002021B1 (en) Nozzle for continuous casting and method of producing the same
JPH0413308B2 (en)
US5979720A (en) Nozzle for the continuous casting of steel
JPS6144836B2 (en)
CN115536410A (en) Low-carbon magnesia carbon brick and preparation method thereof
JPS61259868A (en) Production of nozzle for casting
US3662058A (en) Utilization of molten slag from metallurgical furnace in manufacture of fused cast refractory shapes
JPH0113950B2 (en)
JP4960574B2 (en) Refractory used for continuous casting nozzles to prevent alumina adhesion
JP2727266B2 (en) Nozzle for continuous casting for steelmaking
JPS61238909A (en) Lance for treating molten metal
JPS61127672A (en) Magnesia pour-in refractories
JPH10279357A (en) Lining material for induction furnace
JP2629730B2 (en) Block for tundish weir
JPS6234546B2 (en)
JPS6343188B2 (en)
JPS6324945B2 (en)
JPH0211255A (en) Unburned alumina carbon quality nozzle for casting
JPS5915115B2 (en) Alumina-chromium vibration molding material
JPH0541590B2 (en)
CN116199517A (en) Low-carbon corundum spinel impact brick for tundish and preparation method thereof
JPS62202860A (en) Nozzle for molten steel casting
JPS63166752A (en) Refractories for gas blowing
JPH01127156A (en) Nozzle for continuous casting
JPH087355Y2 (en) Steel tap trough integrated structure for arc furnace